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• The global traffic keeps increasing over the past 30 years with 60% annual growth rate;

• From China Telecom: the annual incremental rate in Chinese backbone network is 200%, 

the wideband subscriber increases 80% annually；

• Tremendous improvement of network capacity is demanding for applications like Big data, 

cloud computing, IoT, 5G, etc;

• Photonic technologies are essential

Big data Cloud computing

Fiber network connects the world
Historical global 

network traffic data 
1990-2015

Global Traffic: economy and sustainable society 
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• Optimized physical channel for better communication & sensing: 
high quality and long distance; 
Photonic solutions: medium, Tx/Rx, link component, etc.

Modulation &
coding channel

Physical channel
（Fiber）

Modulation 
& Coding

Demodulation 
&Decoding

Transmitter Receiver

Transmission of Information

Channel estimation

Linear/NL effects

Impairments

Artificial channel for telecom

Optical fiber: artificial channel
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Development of Digital Telecommunications

Bit Rate

Tb/s

Gb/s

Mb/s

Kb/s

1850 1900 20001950
Year

Telegraph

Radio

Submarine Cable

Optical Fiber 
Comm.

Advanced OFC

Optical Fiber Communications 

1970-2010,  40 years
Charles K. Kao

1966

1960/70

1960 

Laser

1970

Low-Loss 
Optical Fiber
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◆ A patent on laser was filed by Schawlow and Townes of Bell Lab  in 
1958 and awarded in 1960. 3 claims were on communication, 4 on 
laser and 4 on amplifiers.

◆ First laser was demonstrated by Maiman of Hughes Research Lab.

◆ One main intended application of laser was on communication

Laser and Communication

Think of all that bandwidth!
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• Challenge of laser communication:

– Loss due to diverging beam

– Loss due to environment

• Need a light guiding mechanism laser Detector

Optical fiber: perfect medium
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Charles Kao(高錕)

◆ Optical fiber with core and cladding

◆ Single mode operation with very low guiding loss
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◆ Loss due to Rayleigh scattering loss can be small for glass fiber

◆ Loss is mainly due to impurity and can be reduced to less than 20dB/km

Charles Kao(高錕)
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11

◆ With cladding size 100 times of wavelength, mechanical strength is good 

◆ Bending radius can be 1000 times of the wavelength.

◆ Single mode is important for good transmission  performance
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Pioneers of Low Loss Silica Glass Optical Fibers

—Corning (1970) and Bell Labs (1971) (later also NTT)
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• Lightweight / non-obtrusive

• Passive / low power

• EMI resistant

• High sensitivity and 

bandwidth

• Environmental ruggedness

• Complementary to 

telecom / optoelectronics
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Guiding mechanism: TIR (Total Internal Reflection)

Conventional optical fiber
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◆ Early optical communication systems used direct detection

◆ Photodetector is a square law detector and only intensity can be detected. Minimum 
received average power(sensitivity) for a given Bit Error rate(BER) 

◆ Receiver sensitivity is decided by data rate.  Transmission distance is limited by data rate and 
thermal noise of the receiver transimpedance amplifier (TIA).

◆ From first generation optical communication system operating at 0.8 µm with GaAs 
semiconductor lasers at 45 Mbit/s with repeater spacing of up to 10 km in 1970’s to 2.5Gbit/s 
at 1.5 µm with repeater spacing of 100km in the early 1990’s

Q=7, BER=10-12 , R: responsivity, B: bandwidth

Optical Communications



16

◆ Best sensitivity can be achieved with shot noise limited detection

◆ This can be realized using coherent detection with a local oscillator with large power. Instead 

of detecting Ps as in direct detection system, 2 𝑃𝑠𝑃𝐿𝑂 is detected.

◆ Need frequency and phase diversity (Homodyne) and polarization diversity.

◆ Significantly improved receiver sensitivity can be realized.

K Kikuchi: Fundamental of Coherent Optical fiber Communications, Journal of Lightwave Technology, 
Vol. 34, No.1, pp. 157-179, January 2016.

Coherent Detection-First Generation 
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◆ The use of optical amplifier will also allow achieving shot noise limited detection and will 
also allow the removal of  electronic regenerator.

◆ The concept is not new but suggested in the first laser patent.

◆ First demonstrated in 1987 by ORC of university of Southampton and Bell Lab.

Poole, S. B., Payne, D. N., and Fermann, M. E.: 'Fabrication of low-loss optical fibres containing 

rare-earth ions', Electron. Lett.,1985, 21, pp. 737-738, August 1985.

R. J. Mears, L. Reekie, I.M. Jauncey, D. N. Payne, "Low-Noise Erbium-Doped Fibre Amplifier 

Operating at 1.54um," Electronics Letters, Vol 23, No. 19, September 1987

E. Desurvire, J. Simpson, and P.C. Becker, High-gain erbium-doped traveling-wave fiber 

amplifier," Optics Letters, vol. 12, No. 11, 1987, pp. 888–890

Optical Amplifier
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Single-Mode Fiber Loss Spectrum vs. 
EDFA Amplifier Gain Spectrum

EDFA Gain (C-band)
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Need for Capacity

◆ The internet developed rapidly in 1990’s after the release of the first Web Browser Netscape 
Navigator. The internet traffic demand has since increased rapidly  

◆ The need for transmission capacity on optical fiber has since increased rapidly. 

◆ At one time, people think 2.5Gbps will last us for generations. Soon there is an urgent need 
to increase capacity again. Transmission delay:

Unacceptable: >30 sec
Acceptable: 5~ 10 sec
Satisfied: 1~2 sec

Digital Apps

DVD5
DVD9

Blu-Ray
Video

Stream
HD

4K, 8K

Music

File transfer
Cloud storage

Shared Printer

1Mb/s 10Mb/s 100Mb/s 1Gb/s 10Gb/s 100Gb/s

>1Gb/s per user is required！

Data rate:
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• Shannon Capacity 

• Typical C band EDFA has a bandwidth of 
35nm. Roughly 4375GHz. 

• How to utilize the available bandwidth to 
increase system capacity – wavelength 
division multiplexing

Power: limited by NL

Noise of EDFA, PD, TIA
Single fiber 
capacity

Bandwidth: determined by 
EDFA, C+L=95nm

C=Blog2(1+S/N)

C band
data signal

Receiver

100Gbps-400Gbps / ch.

Transmitter

100G – 400Gbps / ch.

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical 

Multiplexer REG

REG

REG

REG

PD

PD
Optical

Amplifier

Optical

Amplifier

Optical

De-multiplexer

PD
m

Ultra-high speed OFC
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Inventor of WDM: Tingye Li 

WDM transmission system
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Rainbow in 

Great Falls, 

Montana, 

USA

Beauty of DWDM 

in Nature
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Relative Costs / DS-3 Mile (or 45 Mb/s x 1.6 km)

Year19881986198419821980 1990 1992

0

20%

40%

60%

80%

100% 6 GHz Digital Radio

405 Mb/s

810 Mb/s

1.2 Gb/s

1.7 Gb/s
2.4 Gb/s

565 Mb/s

1994 1996 1998

DWDM

80 Gb/s

First Generation Optical Fiber Systems
TDM systems from 90 Mb/s to 10 Gb/s (1980-1995)

10 Gb/s-10 Tb/s DWDM Systems

(1995-2002)

WDM

10 Gb/s

Advanced Optical Fiber Systems

Optical Fiber Communication Systems Greatly 

Reduced Cost of Digital Transmission
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❖ Multiplex Several Optical Channels (Colors of Light) on the Same 
Fiber for e.g., 8, 16, 40, or 160 Times in Transmission Capacity

❖ Use Wideband EDFA (Erbium-Doped Optical Fiber Amplifier) for 
simultaneous amplification of all optical channels C+L+S Bands

lN

l2

l1

lN

l2

l1

lNl2l1lNl2l1

Wavelength

Multiplexer

(WDM-MUX)

Wavelength

Demultiplexer

(WDM-DMUX)

Wideband Erbium-Doped 

Optical Fiber Amplifiers

(EDFA)

DFB Lasers 

for DWDM

DWDM Transmission: “Rainbow Principle” 
Wideband Optical Amplifiers (EDFAs) are essential

)(log10)()()(58)( 10 NdBLdBNFdBmPdBSNR spaninopt −−−+=



27



28

• Invention of fiber Bragg grating:

– By K Hill of CRC Canada

– DWDM filter, add/drop multiplexer, EDFA gain equalizer

Hill, K.O.; Fujii, Y.; Johnson, D. C.; Kawasaki, B. S. (1978). "Photosensitivity in optical fiber waveguides: 
application to reflection fiber fabrication". Appl. Phys. Lett. 32 (10): 647

Meltz, G.; et al. (1989). "Formation of Bragg gratings in 

optical fibers by a transverse holographic method". Opt. 

Lett. 14 (15): 823–5
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• Since bandwidth is decided by EDFA bandwidth, we 

can increase the spectral efficiency – bit/Hz.

• Improve the bandwidth utilization and efficiency：
– Multilevel modulation, Nyquist shaping, Superchannel, SEFDM 和

FTN to further increase bandwidth utilization

– Need detection of phase and polarization – second generation of 
coherent optical communication  systems.

◆ Shannon Capacity 

(C/B)=log2(1+S/N)

Spectral efficiency：Bit/Hz Signal to noise ratio in E-domain 

Ultra-high efficient OFC
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I I

Q Q

Pi/2

In-phase Data

Quadrature Data

PM-QPSK: 2 bits/symbol – for the same amplifier bandwidth data rate 

is doubled

PM-QAM8:  6 bits/symbol

PM-QAM16:  8 bits/symbol

Advanced modulation format
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◆ Second generation coherent system

 Intradyne detection using optical hybrid and polarization diversity

 Frequency tracking, carrier phase recovery, equalization, 

synchronization, polarization tracking and demultiplexing are all 

done using DSP 

K Kikuchi: Fundamental of Coherent Optical fiber Communications, Journal of Lightwave Technology, Vol. 34, 
No.1, pp. 157-179, January 2016.

Coherent System – second generation
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A. Heterodyne

B. Homodyne

C. Intradyne

𝜔𝐿𝑂 = 𝜔𝑠
𝜔 𝜔0 0

𝜔𝑠𝜔𝐿𝑂
𝜔0

𝜔𝐼𝐹 = 𝜔𝐿𝑂 − 𝜔𝑠

𝜔0 𝜔𝐼𝐹

𝜔𝐿𝑂 ≈ 𝑓𝑠
𝜔 𝜔

0
∆𝜔= 𝜔𝐿𝑂 − 𝜔𝑠
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• Degree of freedom

✓ POLARIZATION +

✓ Polarization division multiplexing (PDM) – using two orthogonal 
polarizations to double the transmission rate

BPSK QPSK 8-PSK

1bit/symbol 2bit/symbol 3bit/symbol

16-QAM

4bit/symbol

(1)(0) (11)

(10)(00)

(01)

PHASE PHASE+AMPLITUDE

Coherent System- second generation
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S J Savory”Digital Coherent Optical Receivers: Algorithms and Subsystems”. IEEE J SEL 

TOP QUANT, 16 (5), 2010

A.P.T. Lau, et al, “Advanced DSP Techniques Enabling High Spectral Efficiency and Flexible 

Transmissions: Toward Elastic Optical Networks,” IEEE Signal Processing Magazine, 31, (2), 

pp. 82–92, March 2014.

Coherent System- second generation
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 Coherent detection + DSP (ASIC): Golden combination

Coherent Vs IM/DD
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• Bandwidth efficiency
– Nyquist WDM, Superchannel, 

SEFDM, FTN to further 
increase bandwidth 
utilization

Detection  using Maximum-likelihood sequence 

estimation (MLSE) or maximum-a-posteriori 

probability (MAP) algorithms 

◆ Shannon Capacity 

(C/B)=log2(1+S/N)

Spectral efficiency：Bit/Hz Signal to noise ratio in E-domain 
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Power: limited by NL

Noise of EDFA, PD, TIA
Single fiber 
capacity

Bandwidth: determined by 
EDFA, C+L=95nm

C=Blog2(1+S/N)

• Shannon Capacity

Since we have reached the spectral efficiency limit of 

quasi linear transmission, further increase in 

transmission capacity will involve either increase B 

(linear increase) or increase SNR(increase power: 
Log increase) 

How to further enhance the data rate?
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• Adding additional B (linear increase of capacity) ：
– S+C+L

– SOA， Raman amplifier

• Reduce the fiber loss to have smaller Lspan (0.145dB/km, 

limited by Rayleigh scattering）

J. Renaudier et al,”107 Tb/s transmission of 103 nm 

bandwidth over 3x100 km SSMF using ultra-wideband 

hybrid Raman/SOA repeaters”, ECOC 2018 PDP 

paper. 
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Noise and nonlinearity-limited system

SE is not free, more signal energy is required for a higher SE.

R.-J. Essiambre et al., Phys. Rev. Lett. (2008) or J. Lightwave Technol. (2010)
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Fiber Nonlinearity-Digital Backpropagation
• Digital back-propagation(DBP):

• Use the received waveform, insert it as an input for NLSE, swaps 
the sign of z, and then solves the NLSE in the backward direction 
to the transmitter z=0 using split step Fourier method. This has 
effectively removed the effect of fiber nonlinearity. 

• A few dB improvement. In order to realize its effectiveness, need 
to increase the number of steps per span(up to 10 steps per 
span). However, complexity can be prohibitive.

• Only intrachnnel nonlinearity.

• Interchannel nonlinearity can be compensated through joint 
processing of multiple WDM channels

• Machine learning may help in the system design.

¶E

¶z
+ j

b2

2

¶2E

¶t2
+

a

2
E = jg |E |2 E
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• Using machine learning techniques such as Support Vector 
Machine(SVM) at the receiver to create nonlinear detection 
boundaries

D. Wang, M. Zhang, Z. Li, Y. Cui, J. Liu, Y. Yang, H. Wang, Nonlinear 
decision boundary created by a machine learning-based classifier to 
mitigate non- linear phase noise, in: Optical Communication (ECOC), 
2015 European Con- ference, IEEE, 2015, pp. 1–3. 

Yue Cui, Min Zhang, Danshi Wang, Siming Liu, Ze Li, and Gee-

Kung Chang, "Bit-based support vector machine nonlinear 

detector for millimeter-wave radio-over-fiber mobile fronthaul 
systems," Opt. Express 25, 26186-26197 (2017)

Fiber Nonlinearity Mitigation
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Demand from the market
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The evolution of transmission capacity in optical fibres as 
evidenced by state-of-the-art laboratory transmission 
demonstrations [2]. 

[1] P. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
[2] D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photon. 7, 354–362 (2013).

Spatial division multiplexing (SDM) technique has been intensively investigated for  
expanding the transmission capacity in telecommunication.

Physical dimensions for modulation and 
multiplexing of electromagnetic waves [1]. 

SDM technology in telecommunication
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Merit of improving SE using SDM     

( Shannon limit)

Why MCF is promising
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Challenge of MCF

Fiber structure:

1) Core pitch;                                2)Cladding diameter;

3)Core-outer cladding distance;  4)Optical confinement

Fiber application:

1) Fiber bend & twist;                  2) Larger effective area; 

2) Low Loss;                                 4) Crosstalk     
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MCF design

Multicore fiber design using COMSOL environment and Matlab

Simulation model: Design procedures

1 refractive index profile map to satisfy 
MFD, bending loss, cutoff wavelength

2 core pitch to suppress crosstalk and 
cutoff wavelength of inner core

3 out cladding thickness to suppress
excess loss of outer cores.
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MCF fabrication

Two kinds of MCF have been fabricated: Homogeneous step-index 7-
core fiber; Homogeneous trench-assisted (TA) 7-core fiber

Optical Properties Characteristics
Value Typical

Cross Talk（Adjacent Core） <-40dB/100km -50dB/100km

Attenuation@1310nm (dB/km) < 0.45 0.3

Attenuation@1550nm (dB/km) < 0.25 0.18

Zero Dispersion Wavelength (nm) 1290～1320 1308

Dispersion@1550nm (ps/nm/km) 17±1.0 17.1

PMD ps/sqrt(km) < 0.2 < 0.2

Cable Cutoff Wavelength λcc (nm) < 1350 1300

Mode Field Diameter@1310nm(µm) 8.5±0.5 8.4

Mode Field Diameter @1550nm(µm) 9.5±0.5 9.5
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MCF SDM MUX/DEMUX methods

B. Zhu et al. Opt. Express, 18, pp 117-122. Yusaku Tottori et al. Photonics Technology Letters, 24.

Osamu Shimakawa et al. OFC/NFOEC OM3I.2 2013

Tapered MCF Connector Lens Coupling

Fiber Bundle MethodFiber Bundle with V-groove

H. Takara et al. ECOC Postdeadline Papers 2012 
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Fiber bundles preparations

Free space alignment UV curing in-house product

Chinese patent pending, 201510691273.x Chinese patent licensed, ZL201310069346.2
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Properties of fan-in/fan-out device

loss analysis

Characterization of fan-in/fan-out device 

Core 1 2 3 4 5 6 7 AVE

IL(dB) 0.3 1.0 0.8 1.0 1.2 1.0 1.0 <1.0

RL(dB) -54 -55 -56 -55 -53 -57 -55 -55

Crosstalk between channels is less than -50 dB

Borui Li, et al., Opt. Express 23, 10997-11006 (2015)
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Side-view based alignment method End-view based alignment method

K.Saito et al. OFC(2016),paper M3F.3.

Low loss MCF splicing : angle rotation alignment

Lack of accuracy:

need to rotate fiber to
different angle when
splicing, accuracy is
less than 4°.

Results of  side-view based method

K. Saito et al. OFC(2016),paper M3F.3.
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Alignment procedure: cross-correlation method
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Alignment procedure: self-correlation method
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7-core MCF Splicing results

Peak angle number 1 2 3 4 5 6

Cross-correlation 13.4° 73.5° 133.5° 193.4° 253.4° 313.4°

Self-correlation
Right 14.5° 74.4° 135.4° 194.5° 254.4° 314.5°

Left 1.0° 61.0° 121.0° 181.0° 241.0° 301.0°

Cross-correlation
Self-correlation

Left

Right
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Software panel:

Before alignment After alignment

Result

Core 1 2 3 4 5 6 7 Mean(dB) Max(dB)

1 0.520 0.460 0.260 0.064 0.541 0.365 0.432 0.377 0.541 

2 0.211 0.086 0.176 0.120 0.235 0.357 0.363 0.221 0.363 

3 0.743 0.037 0.196 0.355 0.370 0.677 0.770 0.450 0.770 

4 0.180 0.224 0.161 0.012 0.288 0.204 0.211 0.183 0.288 

Ave 0.414 0.202 0.198 0.138 0.359 0.401 0.444 0.308 0.491 



Ultra-Low Crosstalk Fused Taper Type Fan-in/Fan-out
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Coupling loss and XT of the fabricated Fi/Fo with 8 m-long 7-core TA-MCF

Ultra-low crosstalk under -63 dB, insertion loss about 0.2 dB.
L. Gan, M. Tang et al., OFC 2019.

Vanishing core fiber as bridge fiber for tapering process
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Borui Li, Zhenhua Feng, Ming Tang, et al., CLEO-EURO, CI_2_3, 2015.

Borui Li, Zhenhua Feng, Ming Tang, et al., Opt. Express 23, 10997-11006 (2015)

58.7km MCF;10 wavelength;

DS: 300 Gb/s QPSK-OFDM;

US: 5 Gb/s OOK;

MB: 20 Gb/s QPSK;

DS: 6 outer cores

IM/DD;

US: Tunable laser;

MB: inner core

coherent Rx;

Tunable lasers are used in the ONU side,

Relatively simple modulation formats 

with limited capacity.

Disadvantages:

SDM/WDM hybrid optical access network
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US: Adaptive Modulation

DS:16QAM-OFDM

MB: PDM-QPSK

Zhenhua Feng, Borui Li, Ming Tang, et al., PIERS 2015.

Zhenhua Feng, Borui Li, Ming Tang, et al., IEEE Photonics Journal, 2015, 7(4):1-9.
All the ONUs served by the same subset OLT must 

share the same wavelength for US transmission, in 

a TDMA or OFDMA manner.

WSDM PON with adaptive modulation Using  RSOA
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DS transmission

◆ Odd channels are intensity modulated by 1.25GBaud/s OFDM-QPSK signals (the real rate is

1.0286Gbit/s), split by 1:8 and injected into one of the MCF’s outer cores.

US transmission

◆ Even channels are injected into the MCF’s inner core. After the MCF transmission, one wavelength

is filtered by a WSS and launched into the RSOA for US modulation and amplification.

◆ 16 wavelengths with 25GHz

channel spacing from the optical

frequency comb generator (OFCG)

seeded by an ECL centered at

1549.59nm are selected by a

WDM 400GHz de-multiplexer.

◆ the carriers are split into the even

and odd channels by a 25/50GHz

inter-leaver.

1Gb/s per ONU bidirectional symmetric WDM-SDM optical access network 

over 20-km MCF!

Bidirectional symmetric WDM-SDM access network
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Direct detection

Complexity, Latency, Power consumption

Reach, Data Rate, Receiver Sensitivity

Coherent detectionSHCD

LO 
Extraction

C
o
h

er
en

t 
H

y
b

ri
d

Signal

LO

I

Q

Self-homodyne coherent detection

Cost-efficient, 

high sensitivity and 

20~100 km reach

Access/Metro 

Network

✓ Lower cost without using tunable LO laser

✓ Simplified RX DSP without frequency 

offset and phase noise compensation (lower 

latency and power consumption)

✓ Relaxation on the requirement of expensive 

narrow-linewidth lasers

SHCD: Tradeoff between cost and performance 
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(a) Polarization interleaving method:

 half of spectral efficiency

(b) Optical carrier extraction technique:

 Narrow band optical filter

 Poor performance due to noisy LO

(c) LO delivery via SDM channels:

☺ Large channel counts

☺ Negligible spectral efficiency penalty

☺ Easier LO seperation 

☺ Perfect uniformity between spatial channels

☺ Controllable delay between signals and LO

(a)
(b) (c)

Fiber 

Type

Reach

(km)

Data rate 

per 𝝀 (Gb/s)
Signal REF

19 core-

fiber
10.1 10

SP-

QPSK

Opt. Exp.

21(2),2013

2-mode 

fiber
55 40

DP

OFDM-

QPSK

Opt. Exp.

23(25),2015

MCF based scheme is suitable for large 

capacity optical access network! 

Implementation of SHCD



Proposed architecture for SDM-SHCD access 

◆ Inner core for LO delivery, the other N cores for signals transmission

◆ M wavelengths to support mxN ONUs

◆ SHCD is implemented in the ONUs for downstream transmission

◆ Bidirectional transmission is possible, but we only demonstrated 

downstream experiment in this work



Experimental Setup
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◆ Four wavelength channels with 100-GHz spacing

◆ 25Gbaud PDM-OFDM-16QAM singles per wavelength

◆ Constant amplitude zero auto-correlation (CAZAC) precoding is used for 

baseband OFDM generation and demodulation

◆ Conventional ICR typically for 100Gb/s PDM-QPSK

◆ PC is used before the ICR on the LO path for polarization alignment

◆ Two types of lasers are used. ECL with linewidth of ~100 kHz, and DFB with 

linewidth of ~10 MHz

◆ 15-m SMF for optical path equalization on LO tributary only in case of 10 

MHz linewidth DFB laser 
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(a) comparison between traditional intradyne detection and SHCD, (b) influence of 

carrier frequency offset and phase noise compensation in SHCD

⚫ Single channel of 100kHz linewidth ECL transmission;

⚫ Negligible performance degradation compared with Intradyne detection; 

⚫ CFO and PN compensation DSP  can be eliminated in SHCD!



Transmission performance of SHCD
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(a) Single wavelength SHCD transmission over 7-core fiber, (b) 4 wavelength WDM SHCD 

transmission over core 7.

⚫ Single channel and 4 channels of 100kHz linewidth ECLs transmission;

⚫ Negligible BER performance variation among different fiber cores and wavelength 

channels; 

⚫ Receiver sensitivity of 200Gb/s per wavelength CO-OFDM-16QAM is about -22 dBm.

⚫ Total downstream capacity is 4.8 Tb/s (200Gb/s/𝜆 × 4𝜆 × 6 core).



SHCD using 10MHz linewidth DFB
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It is feasible to employ cost-efficient ~10MHz linewidth DFB lasers in 200Gb/s/𝜆
transmission system, suitable for cost sensitive access scenarios.

Tolerance to laser linewidth in single wavelength SDM based SHCD system

Less than 2dB power 

penalty using DFB!

Phase noise 

compensation further 

reduces this penalty
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Research Progress on SDM based Access Network

 Overveiew of our previous work on MCF based IM/DD access network.

 Proposal and experimental demonstration of self-homodyne coherent detection 

based WDM-SDM optical access.

 Ultra-large downstream capacity  (4.8 Tb/s) is realized with good compromise 

between transmission performance and system cost/complexity.



Real time large capacity MCF based Intra--Datacenter 
Communication Networks

70

0.13 μm BiCMOS technology, multiplexing 4 lanes up to 25 Gbps signals into a serial 100 Gbps

6-tap analog feedforward equalizer (FFE)

R. Lin, J. M. Tang, and J. Chen, "Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over multicore fiber for 

intra-datacenter communication networks," Opt. Express, vol. 26, pp. 10519-10526, 2018.

Research 
Institutes of 
Sweden
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NRZ&EDB transmissions over all the 7 cores of the 1 km MCF

(a) Frequency response of the b2b optical link and different cores of 1 km MCF, (b) BER of 
real-time 100 Gbps EDB signal measurement for b2b and different cores after 1 km MCF 
transmission, eye diagrams of b2b (c) NRZ signal and (d) EDB signal measured for optical 
b2b, eye diagram of (e) NRZ signal and (f) EDB signals measured at core 7 after 1 km MCF 

transmission.
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NRZ&EDB transmissions over all the 7 cores of the 10 km MCF

The real-time and DSP-free SDM system covers the short-to-medium reach 
optical communication, indicating its potential for providing high-speed intra-DCI.



Long wavelength SM-VCSEL + MCF
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Pang, Xiaodan, et al. "7×100 Gbps PAM-4 Transmission over 1-km and 10-km Single Mode 7-core 
Fiber using 1.5-μm SM-VCSEL." OFC 2018, M1I.4.

S. Spiga et al., "Single-Mode High-Speed 1.5-µm 
VCSELs," J. Lightwave Technol. 35(4), 727-733 (2017)

PAM-4 Transmission over Single Mode 7-core Fiber using 1.5-μm SM-VCSEL



PAM4 B2B & transmissions over all the 7 cores of the 1 km MCF
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PAM4 transmissions over all the 7 cores of the 10 km MCF + DCM
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Van Kerrebrouck J, Zhang L, Lin R, et al. 726.7-Gb/s 1.5-µm Single-Mode VCSEL Discrete Multi-Tone Transmission 
over 2.5-km Multicore Fiber”, OFC, 2018: M1I. 2.

1.5-µm Single-Mode VCSEL Discrete Multi-Tone Transmission
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Linear and Non-linear equalization for the link

77

77

Equalization

• Linear equalization

• Non-Linear equalization (NLE)

• Volterra series

• 2nd and partially 3rd-order terms

• Recursive least square (RLS)

Nonlinear effects in link

• VCSEL nonlinear behaviors

• DMT large peak-to-average

ratio (PAPR)

• Inter-subcarrier mixing in

square-law photodiode



DMT over 2.5/10km 7-core MCF
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Core Nr.
Net Data Rate (Gbit/s)

#1 #2 #3 #4 #5 #6 #7 Total

2.5-km MCF 103.7 105.0 105.0 102.1 103.6 103.6 103.6 726.6

10-km 
MCF

w/o 
Chow

70.9 70.9 68.5 70.7 72.3 68.5 68.5 490.3

with 
Chow

82.5 72.1 71.4 83.1 74.9 70.1 79.0 533.1

Achieved net data rates with 2.5-km/10-km 7-core MCFs.

HD-FEC 

BER=3.8e-3
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MCF LPG Array enabled SDM signal switching and multicasting

WDM wavelength multicasting

Silicon-based switch MEMS based coupling

• Yan Wang, et al. JLT 2005
• Yunhong Ding, et,al, Scientific Reports, 2016
• L. E. Nelson, et al, JLT 2014

SDM core-to-core switch and multicasting



Transmission spectrums of long period
grating group in seven cores with grating
pitch equals to 510μm. (a) center core
transmission spectrum; (b)-(g) outer 6 cores
transmission spectrums; (h) supercontinuum
light injected into the center core and
measured in one of the outer cores.

MCF-long period gratings (LPG) by strain relaxation: programmable
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• LPGs in MCF as an competitive 

approach to implement the power 

coupling between cores with low loss;

• The broadband transmission spectra of 

LPGs enable the signal coupling 

between selective cores



82

LPG array fabricated
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IMDD transmission system：

CO-OFDM transmission system：

28GSam/s×4×2=224Gb/s for single wavelength, and 1.12Tb/s for 5 WDM channels
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1. C-band 5 wavelength Tb/s signal, 1:2 inter core multicasting；
2. No signal degradation after inter-core coupling

CO-OFDM inter-core casting：
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Reconfigurable Inter-Core Switching Within the Multicore Fiber

Wang Ruoxu, Wu Qiong, Tang Ming, OFC 2018: W2A.38. (top scored paper)
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Background: distributed optical fiber sensing

Sensing fiber

Distributed optical fiber senor

Backscattered light

Pump pulse along the sensing fiber

Temperature, strain, vibration, etc.

☺ Meter or even sub-meter scale spatial resolution;

☺ Tens or even hundreds of kilometers sensing range.

DOFS
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Distributed optical fiber sensing techniques

Phase sensitive optical 
time-domain reflectometry 
(Φ-OTDR)
Optical frequency-domain 
reflectometry (OFDR)
Polarization optical time-
domain reflectometry       
(P-OTDR)

Rayleigh scattering Raman scattering

Raman optical time-
domain reflectometry 
(ROTDR)

Brillouin scattering

Brillouin optical time-domain 
reflectometry/ analyzer
(BOTDR/A)

Brillouin optical correlation-
domain reflectometry 
/analysis                    
(BOCDR/A)

Wavelength

Rayleigh

Brillouin

Raman

Anti-Stokes Stokes

T+ε T+ε 

T 

Raman

Brillouin
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Challenges and difficulties of traditional DFS

• Cross sensitivity issue;

• Multi-parameter measurement;

• Dynamic and static measurement;

• Signal processing technique
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SDM：Artificial physical channel

Space-division multiplexing ：

Different spatial cores of multi-core 

fiber;

Different spatial modes of few-mode 

fiber

Winzer, Peter J. "Spatial multiplexing in fiber optics: the 10x scaling of metro/core capacities." Bell Labs Technical Journal, 2014, 19: 22-30.

Space-division multiplexing 
+

Distributed fiber sensing

New implementation methods, 

new solutions and new applications
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MCF based distributed optical fiber sensors

Zhiyong Zhao, Marcelo A. Soto, Ming Tang, and Luc Thévenaz, "Distributed shape sensing 
using Brillouin scattering in multi-core fibers," Opt. Express 24, 25211-25223 (2016)
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  = − −

◼ Bending induced strain at any point is 

determined by:

◼ The strain along the tangential direction at 

the bending point leads to BFS shift：
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 = − −

◼ Long range and distributed bending and 3-D shape sensing
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◼ Distributed bending sensing with long sensing range has been demonstrated;

◼ Fully 3-D shape sensing is validated by using BOTDA in MCF.

Fiber length: 1 km

Zhiyong Zhao, Marcelo A. Soto, Ming Tang, and Luc Thévenaz, "Distributed shape sensing 
using Brillouin scattering in multi-core fibers," Opt. Express 24, 25211-25223 (2016)

Frenet-Serret formulas
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MCF based distributed optical fiber sensors

◼ Temperature and strain discriminative measurement by using

➢ BOTDA in a heterogeneous MCF

➢ SDM hybrid ROTDR and BOTDR using MCF

Opt. Express 25, 20183-20193 (2017)

◼ Large dynamic range and high 

measurement resolution by using hybrid 

BOTDA and φ-OTDR in MCF 

Opt. Lett. 42, 171-174 (2017)
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◼ Simultaneous DAS and DTS 

measurement through SDM based on 

MCF

OFC, paper W2A.7, 2018.
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◼ Interferometer: Mach-Zehnder interferometer (MZI);

◼ Reflectometer: phase-sensitive optical time-domain reflectometer (φ-

OTDR);

◼ The φ-OTDR is used to locate the vibration and the vibration frequency is 

retrieved by the interferometer, which enables high spatial resolution and large 

frequency response range.

MCF SDM φ-OTDR and MZI for vibration sensing
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◼ The MZI output:
2 2

1 2 1 2 1 2( ) ( ) ( ) 2 ( ) ( )cos( )cos[ ( ) ( )]PI t E t E t E t E t t t   + + −

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, Opt. Express 24, 25211-25223 (2016)

◼ Higher SNR of the measurements

◼ Higher tolerance against external noise

◼ No frequency dead zone

◼ Robust and high reliability, etc.

◼ Higher measurement accuracy

◼ Simpler data processing procedure

◼ Single-end access
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(a) (b)Vibration point

Fiber end

◼ To locate the vibration, consecutive traces are measured and then subtracted from an 

undisturbed reference trace; 

◼ In order to increase the SNR of measurement, the trace has been averaged by 256 

times;

◼ 1 m spatial resolution over 2.42 km sensing range is achieved.

(c) (d)

(b)(a)

◼ The frequency spectrum 

measured by the MZI of the SDM 

hybrid sensing system has high 

SNR;

◼ Repeated vibration 

measurements is performed,  

which verifies the excellent 

reliability of the proposed SDM 

MZI vibration sensor.
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OEIC for optical communications

 Coherent 
receiver: 
CMOS ASIC
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 Faster A/D→11, 28, 56, … Gbaud

 More gates of DSP

 CMOS riding Moore’s Law

OEIC for optical communications
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 Optical DSP ASICs follow current CMOS generations with a delay of about 2-3years

 The CMOS power consumptions scales approximately with its node size, thus each 

process step allows a power reduction of roughly ~30%

 Power consumption of 16nm node size is less than 10-watt per 100Gb/s for data-

center interconnects

OEIC for optical communications
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Reported gate counts for various optical DSP ASICs Required power per 100G for recent transponders and DCOs

 The complexity of current optical DSP ASICs for long-haul applications is in 

the order of 200 million gates and beyond 

 the power required to transmit 100G shows a constant decrease with a rate 

of about 0.64× per year

[1] Frey F, Elschner R, Fischer J K. Estimation of Trends for Coherent DSP ASIC Power Dissipation for different bitrates and 
transmission reaches[C]// Photonic Networks; 18. ITG-Symposium; Proceedings of. VDE, 2017.

OEIC for optical communications
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Spectral efficiency and capacity (for a symbol rate of 32 GBd)

Normalized power dissipation of a 32 GBd ASIC

OEIC for optical communications
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Ultra-High Capacity: 33.6Tb/s

Spectral Efficiency :44.8b/s/Hz

Fiber Distance:5000km
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Conclusion

Power of High-Speed

Worldwide Internet Access 

Depends on the Global

Broadband Optical Fiber 

Telecom Networks;

Communications at 

@

The Speed of Light C
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What’s in the Future?

Emerging Photonics Technologies 

beyond Broadband
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Emerging Photonics Technologies 

beyond Broadband

• Smart Optical Network:
– AI+ optical network

– Monitoring of global fiber network

– Smart city
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• Multi-material Integration
– Silicon-Photonics

– Thin-film LN photonics

– Multi-functional optical fibers
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