Programming for Big Data Processing

Hai Jin

National Engineering Research Center for Big Data Technology and System (NERC-BDTS)
School of Computer Science and Technology
Huazhong University of Science and Technology
Wuhan, 430074, China
What is big data?

A massive volume of both structured and unstructured data that is too large to process with traditional database and software techniques.

- 34K likes every minute
- It deals with 3-4 PB data every day
- 1 billion active user
- It generates 12TB data daily
- 200 million users generate 230 million tweets daily
- 2 million search every minute
- It deals with 20 PB data every day
Application of big data analytics

Smart healthcare

Manufacturing

Traffic control

Trading analytics
Tools for handling big data analytics

Traditional System
ex. RDBMS

Created to handle Big Data

Big Data Tools
ex. Hadoop

Not able to handle Big data
Outline

- Programming for batch data processing
- Programming for graph processing
- Programming for stream processing
PROGRAMMING FOR BATCH DATA PROCESSING
Outline

- Background of batch data processing
- Programming model for batch data processing
- MapReduce framework
Batch data processing

- Big data analytics usually contain tasks that perform batch data processing
 - Tasks that can be executed offline without user interaction
 - It process all data records in batch
 - Tools for batch processing of big data

- Challenge
 - Data placement, computation overhead

- Solution
 - Parallel execution on clusters with thousands of machines
 - Moving processing unit to the data
Big data placement

1. Moving data to the Processing Unit (Traditional Approach)
2. Moving Processing Unit to the data (MapReduce Approach)
Parallel batch data processing

- Divide the input data into pieces
- Distribute the pieces on nodes and manage the data with distributed file system
- Parallel process of data piece on each node
- Aggregate the results
Challenges for programmers

- Data placement
 - Data division, redundancy
- Computing parallelization
 - Synchronization between processes, consistency
- Communication
- Fault tolerant
- Load balancing
Solution

A general abstraction for special-purpose applications

- Express the various simple computation
- Hide the details of parallelization, such as fault-tolerance, data distribution, and load balancing
- Provide powerful interfaces to users
- Programmers can implement the application code without considering the messy parallelization details
- Automatic parallelization and distribution of large-scale computation

A general programming interface for various special-purpose applications is required!
Outline

- Background of batch data processing
- Programming model for batch data processing
- MapReduce framework
Programming model for batch data processing

- Inspired by primitives of Lisp and other functional languages
- Most of our computations can be represented by a map and reduce operator to each logical record in the input dataset
 - The map and reduce operator are interfaces for programmers
- We can develop a general framework **MapReduce** for batch data processing
 - Provide the powerful map/reduce interface for programmers
 - Deal with parallelization details transparently and automatically
Program model

- Read a lot of data
- **Map**: extract something you care about from each data record
- Shuffle and sort the data
- **Reduce**: aggregate, summarize, filter, or transform the intermediate data
- Write the final results

Users can change the definition of map and reduce to fit different problems
Program model
Map/reduce abstraction for large-scale data

- Divide the large-scale input dataset into splits
- Distribute all splits on machines
- Perform map operator on each split
- Shuffle and sort intermediate results
- Perform reduce operator on each sorted results
 - Aggregate the intermediate results
- Generate final output

Programmers only need to specify the map and reduce operator without considering other details.
Map/reduce operators

Programmers specify two primary functions

- map \((k, v) \rightarrow (k', v')\)
- reduce \((k', [v']) \rightarrow (k'', v'')\)
- All \(v'\) with the same \(k'\) are sent to the same reducer (shuffle)
Map/reduce abstraction for large-scale data
Word count solution

```plaintext
Map
a,a,b,
b,c,d,d
  ↓
a,2 b,2
  ↓
a,2 b,2
  ↓
a,7 b,7

Map
a,b,b,
c,c,d
downstream
  ↓
a,1 b,2
c,2 d,1
downstream
  ↓
a,2 b,1
c,2 d,1
downstream
  ↓
C,6 d,6

Map
a,a,b,
c,c,d
downstream
  ↓
a,2 b,1
c,2 d,1
  ↓
C,1 d,2

Map
a,a,b,b,c,d,d
downstream
  ↓
a,2 b,2
c,1 d,2
  ↓
C,1 d,2
```

Word count solution

// Pseudo-code for "word counting"
map(String key, String value):
 // key: document name,
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int word_count = 0;
 for each v in values:
 word_count += parseInt(v);
 Emit(key, AsString(word_count));
Outline

- Batch data processing
- Programming model for batch data processing
- MapReduce framework
Functions of MapReduce framework

- Programmers specify the map/reduce operators, MapReduce framework should handle
 - Data distribution
 - Split data for multiple workers, move processes to data
 - Synchronization
 - Shuffle intermediate data
 - Fault tolerance
 - Detect failed machines and automatically restart, recover the failed tasks
 - Scheduling
 - Load balancing, detect stragglers
 - Scalability
 - Fast growing dataset, extension of machines
Architecture of MapReduce framework

- One master, many workers
- Master assigns map/reduce task to a free worker
- Workers perform the assigned tasks with corresponding input data
- Master schedules the tasks, handles the failed workers
Execution overview of MapReduce framework
Step 1: split input files into shards

- Break up the input data into M pieces (typically 64MB)

Input files

Divided into \(M \) shards
Step 2: fork processes

- Start up many copies of the program on a cluster of machines
 - One master: scheduler and coordinator
 - Lots of workers

- Idle workers are assigned
 - Map tasks (each works on a shard) – there are M map tasks
 - Reduce tasks (each works on intermediate pairs) – there are R reduce tasks
 - R is defined by the user
Step 3: run map tasks

- Map worker reads the input shard assigned to it
- Parse key/value pairs out of the input shard
- Pass each pair to the user-specified map function
 - Produce intermediate key/value pairs
 - Intermediate pairs are buffered in memory
Step 4: create intermediate files

- Intermediate pairs produced by map worker are periodically written to the local disk
 - Partitioned into \(R \) regions by a partitioning function
 - Sort all intermediate pairs by keys
Step 5: sorting

- Reduce worker gets notified by the master about the location of intermediate files for its partition
- Read the data from the local disk of the map workers
- Sorts the data by the intermediate keys
- All pairs with the same key are grouped together
Step 6: run reduce tasks

- Pass the sorted and grouped pairs to the user-specified reduce function
- The output of reduce function is appended to an output file
Step 7: return to user

- When all map and reduce tasks have completed, the master wakes up the user program
 - The output of MapReduce is saved in R files
- The MapReduce call in the user program returns
Coordinate

- A centralized service for MapReduce framework
 - Maintain configuration information of the framework
 - Provide distributed synchronization between processes
 - Guarantee the consistency of the framework
 - Apache Zookeeper, Google Chubby, etc.
Fault tolerance

- **Worker failure**
 - Detect failure via periodic heartbeats
 - Master reschedules the tasks to other workers
 - Re-execute completed and in-progress map tasks
 - Re-execute in-progress reduce tasks
 - Task completion committed through master

- **Master failure**
 - Select a new master
 - Recover the master according to the checkpoint on distribute filesystem
MapReduce implementations

- Google has a proprietary implementation in C++
- Hadoop is an open-source implementation in Java
 - Developed by Yahoo, used in production
 - An Apache project
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, FPGAs, etc.
Ecosystem of Hadoop
PROGRAMMING FOR GRAPH PROCESSING
What is graph?

• A graph is a collection of vertices connected by edges \((G = (V, E))\)

• Edge may be directed (from A to B) or undirected (between A and B)

• Vertices and edges may have properties

Name: “Jane”
Position: “professor”

Type: “teach”
Since: 2019-03-26

Name: “programming”
Graph processing is universal

- Advertising recommendation
- Social network analysis
- Network ranking
- Scientific calculation
Graph size is increasing

- Advertising network
 - > 1 M vertices
 - > 100 M edges
 - *Distributed graphLab-2012

- Social media
 - > 1 B vertices
 - > 1 T edges
 - *Facebook Engineering Blog

- Internet
 - > 50 B vertices
 - > 1 T edges
 - *NSA Big Graph Experiment - 2013

- Scientific calculation
 - > 100 B vertices
 - > 100 T edges
 - *NSA Big graph Experiment - 2013
Challenges of graph processing

Data-driven computation
- Computation for graph task is closely related to vertex and edge
- Computation structure is hard to predict before running, hard to parallel

Irregular structure
- Hard to divide the irregular structure of graph with good quality

Poor access locality
- Non-contiguous access for vertex/edge
- Existing caching mechanisms can only accelerate access with good locality

Access/computation ratio is high
- Large number of access lead to CPU waiting
Graph processing vs traditional processing

- **Compute intensive**
 Computation complexity is high, easy to cover memory latency

- **Sequential memory access**
 Data is stored in memory sequentially

- **High data parallelism**
 No complex dependency between different data, convenient for parallel processing

- **Good locality**
 With good spatial and time locality

- **Low computation/access ratio**
 Little computation in each node, hard to cover latency

- **Large random access**
 There is a large number of random access requests across the region

- **Complex data dependency**
 Difficult to explore parallelism, a lot of data conflicts

- **Unstructured distribution**
 Uneven distribution of vertex degree, serious load balancing problems and communication overhead
Graph algorithm

- **Traversal-centric algorithms**
 - Require a specific way to traverse the graph from a particular vertex
 - Have a large number of random access

- **Computation-centric algorithms**
 - A large number of operations in each iteration
 - All nodes participate in each iteration

Traversal-centric algorithms

<table>
<thead>
<tr>
<th>BFS</th>
<th>Dijkstra</th>
<th>Prim</th>
<th>SSSP</th>
<th>Betweenness Centrality</th>
<th>Radii</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>MST</td>
<td>Kruskal</td>
<td>Bellman Ford</td>
<td>Floyd Warshall</td>
<td>SPFA</td>
</tr>
</tbody>
</table>

Computation-centric algorithms

<table>
<thead>
<tr>
<th>A*搜索</th>
<th>PageRank</th>
<th>Connected Component</th>
<th>Ford Fulkerson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union Find</td>
<td>Graph Color</td>
<td>MIS</td>
<td>Triangle Count</td>
</tr>
</tbody>
</table>
Graph storage

Graph Topology

Access efficiency vs Compact ratio

Edge list

Adjacent list

In-edge idx

src idx

CSR (Compressed Sparse Row)
Graph processing frameworks

Programming Model
- **Vertex Centric**: Pregel[^SIGMOD’10]
- **Edge Centric**: X-Stream[^SOSP’13]
- **Path Centric**: PathGraph[^SC’14]
- **Subgraph centric**: Blogel[^VLDB’14]

Graph Partition Strategy
- **Vertex Cut**: Pregel[^SIGMOD ’2010]
- **Edge cut**: PowerGraph[^OSDI’12]
- **Hybrid Cut**: PowerLyra[^EuroSys ’15]

Computation Strategy
- Pull vs push
- Synchronous vs Asynchronous

Typical System
- **Pregel**: SIGMOD 2010
- **PowerGraph**: OSDI 2012
- **GraphChi**: OSDI 2012
Graph programming model

Programming model
- Easy and concise to use
- Flexible to express different graph tasks
- Efficient to fit in computation architecture

Exiting programming model
- Vertex-centric
- Edge-centric
- Path-centric
- Subgraph-centric
Programming model: vertex-centric

Coding graph algorithms as **vertex-centric** programs to process vertices in parallel and communicate along edges

--- "Think as a Vertex" philosophy

Example: **PageRank**

A centrality analysis algorithm to iteratively rank each vertex as a weighted sum of neighbors’ ranks

\[R_i = 0.15 + 0.85 \sum_{(j, i) \in E} \omega_{ij} R_j \]

COMPUTE(`v`)

```
foreach n in v.in_nbrs
    sum += n.rank / n.nedges
v.rank = 0.15 + 0.85 * sum
if !converged(v)
    foreach n in v.out_nbrs
        activate(n)
```
Programming model: vertex-centric

Coding graph algorithms as vertex-centric programs to process vertices in parallel and communicate along edges

-- "Think as a Vertex" philosophy

Example: PageRank
A centrality analysis algorithm to iteratively rank each vertex as a weighted sum of neighbors’ ranks

\[R_i = 0.15 + 0.85 \sum_{(j, i) \in E} \omega_{ij} R_j \]

COMPUTE(v)

```
foreach n in v.in_nbrs
    sum += n.rank / n.nedges
v.rank = 0.15 + 0.85 * sum
if !converged(v)
    foreach n in v.out_nbrs
        activate(n)
```

Gather data from neighbors via in-edges
Programming model: vertex-centric

Coding graph algorithms as vertex-centric programs to process vertices in parallel and communicate along edges

-- "Think as a Vertex" philosophy

Example: PageRank

A centrality analysis algorithm to iteratively rank each vertex as a weighted sum of neighbors’ ranks

\[R_i = 0.15 + 0.85 \sum_{(j, i) \in E} \omega_{ij} R_j \]

Computing (v)

```
foreach n in v.in_nbrs
    sum += n.rank / n.nedges
v.rank = 0.15 + 0.85 * sum
if !converged(v)
    foreach n in v.out_nbrs
        activate(n)
```

Update vertex with new data
Programming model: vertex-centric

Coding graph algorithms as **vertex-centric** programs to process vertices in parallel and communicate along edges

--- "Think as a Vertex" philosophy

Example: PageRank

A centrality analysis algorithm to iteratively rank each vertex as a weighted sum of neighbors’ ranks

\[R_i = 0.15 + 0.85 \sum_{(j, i) \in E} \omega_{ij} R_j \]

COMPUTE(*v*)

- **foreach** \(n \) in \(v.in_nbrs \)
 - **sum** += \(n.rank / n.nedges \)
- \(v.rank = 0.15 + 0.85 \times \text{sum} \)
- **if** !converged(*v*)
 - **foreach** \(n \) in \(v.out_nbrs \)
 - activate(*n*)

Scatter data to neighbors via out-edges
Coding graph algorithms as **edge-centric** programs to process edges in parallel, where edge is the minimum parallel processing unit.

"Think as an Edge" philosophy

Vertex-Centric

for each vertex v
if v has update
 for each edge e from v
 scatter update along e

Edge-Centric

for each edge e
 if e.src has update
 scatter update along e

-- Balanced load for fine-grained parallel processing unit
-- Better locality for sequential access of the edges
Coding graph algorithms as edge-centric programs to process edges in parallel, where edge is the minimum parallel processing unit.

Example: BFS

Edge-Centric Scatter Gather

```
while not done
    for all edges e
        edge_scatter(e)
    for all updates u
        update_gather(u)
```

Edge-Centric Scatter-Gather

- `edge_scatter(edge e)` send update over e
- `update_gather(update u)` apply update u to u.destination

Edge-Centric Scatter Gather for BFS
Coding graph algorithms as **edge-centric** programs to process edges in parallel, where edge is the minimum parallel processing unit.

Example: BFS

Edge-centric Scatter-Gather

```
edge_scatter(edge e)  
send update over e
```

```
update_gather(update u)  
apply update u to u.destination
```

while not done
for all edges e
edge_scatter(e)
for all updates u
update_gather(u)
Coding graph algorithms as *edge-centric* programs to process edges in parallel, where edge is the minimum parallel processing unit.

--- "Think as an Edge" philosophy

Example: BFS

Edge-Centric Scatter - Gather

Edge-Centric Scatter

```plaintext
edge_scatter(edge e)
```
send update over e

Update Gather

```plaintext
update_gather(update u)
```
apply update u to u.destination

while not done
for all edges e
  ```plaintext
  edge_scatter(e)
  ```
for all updates u
  ```plaintext
  update_gather(u)
  ```
Programming model: edge-centric

Coding graph algorithms as **edge-centric** programs to process edges in parallel, where *edge* is the minimum parallel processing unit.

Example: BFS

--- "Think as an Edge" philosophy

Edge-Centric Scatter Gather for BFS
Coding graph algorithms as edge-centric programs to process edges in parallel, where edge is the minimum parallel processing unit.

Example: BFS

Edge-Centric Scatter Gather for BFS
Coding graph algorithms as **edge-centric** programs to process edges in parallel, where edge is the minimum parallel processing unit.

“Think as an Edge” philosophy

Random accesses over edges

Vertex-Centric Scatter Gather for BFS

Transformation

Sequential accesses over edges

Edge-Centric Scatter Gather for BFS
Programming model: path-centric

Computation model

- Scatter or gather: faster method
- Process graph following paths: improve locality
Programming model: path-centric

- In order to achieve it, generate edge travel tree for each graph, then partition tree into multiple parts
- Each partition with forward-visited tree and backward-tree
- Each partition can parallelly executed

1: for each iteration do
2: parfor each p of Partitions do
3: Gather(p);
4: end parfor
5: sync;
6: end for
Programming model: subgraph-centric

Coding graph algorithms as subgraph-centric programs to process vertices/edges via taking subgraph as the minimum parallel processing unit.

-- "Think as a Subgraph" philosophy

- First, it divides the graph data into different subgraphs
- Then, it updates all vertices of each subgraph until the subgraph converges
- Finally, it transmits the updated state information of the subgraph to other subgraphs

- It not only ensures better data locality, but also can transform many high cost global synchronization operations to low overhead local ones.
 - The status information can only be propagated one-hop in each super-step for vertex/edge-centric
 - 7 super-step to converge for vertex/edge-centric
 - 3 super-step to converge for subgraph-centric

Many high cost global synchronization operations
Subgraph-centric Scatter Gather for CC
Vertex-Centric Scatter Gather for CC
Programming model: subgraph-centric

Coding graph algorithms as **subgraph-centric** programs to process vertices/edges via taking subgraph as the minimum parallel processing unit.

-- "Think as a Subgraph" philosophy

◆ First, it divides the graph data into different subgraphs.

examples of subgraphs

![Graph diagram](image)

Figure (a) shows the original graph.
Figure (b) divides the set of vertices in the original graph into partitions.
Figure (c) shows examples of subgraphs.
Programming model: subgraph-centric

Coding graph algorithms as **subgraph-centric** programs to process vertices/edges via taking subgraph as the minimum parallel processing unit.

-- "Think as a Subgraph" philosophy

◆ Then, it updates all vertices of each subgraph until the subgraph converges.

TLASG model

Compute(vertex v)
update all vertices of subgraph

block_update(subgraph subg)
while not done
for all vertices v that have updates
compute(vertex v)
apply updates from inbound edges of subgraph

while not done
for all subg that have updates
block_update(subg)
Programming model: subgraph-centric

Coding graph algorithms as subgraph-centric programs to process vertices/edges via taking subgraph as the minimum parallel processing unit.

"Think as a Subgraph" philosophy

Finally, it transmits the updated state information of the subgraph to other subgraphs.

TLASG model

Compute(vertex v)
 update all vertices of subgraph

block_update(subgraph subg)
 while not done
 for all vertices v that have updates
 compute(vertex v)
 apply updates from inbound edges of subgraph
 while not done
 for all subg that have updates
 block_update(subg)
Graph processing frameworks

Programming Model

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Framework</th>
<th>Conference/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Centric</td>
<td>Pregel[SIGMOD’10]</td>
<td></td>
</tr>
<tr>
<td>Edge Centric</td>
<td>X-Stream[SOSP’13]</td>
<td></td>
</tr>
<tr>
<td>Path Centric</td>
<td>PathGraph[SC’14]</td>
<td></td>
</tr>
<tr>
<td>Subgraph centric</td>
<td>Blogel[VLDB’14]</td>
<td></td>
</tr>
</tbody>
</table>

Graph Partition Strategy

<table>
<thead>
<tr>
<th>Cut Type</th>
<th>Framework</th>
<th>Conference/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Cut</td>
<td>Pregel[SIGMOD ’2010]</td>
<td></td>
</tr>
<tr>
<td>Edge cut</td>
<td>PowerGraph[OSDI’12]</td>
<td></td>
</tr>
<tr>
<td>Hybrid Cut</td>
<td>PowerLyra[EuroSys ’15]</td>
<td></td>
</tr>
</tbody>
</table>

Computation Strategy

<table>
<thead>
<tr>
<th>Strategy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull vs push</td>
<td></td>
</tr>
<tr>
<td>Synchronous vs Asynchronous</td>
<td></td>
</tr>
</tbody>
</table>

Typical System

- **Pregel**: SIGMOD 2010
- **PowerGraph**: OSDI 2012
- **GraphChi**: OSDI 2012
Graph partition

Graph is too large to hold in single node memory.

Goal of graph partition

- Balance workload between machines
- Minimize communication
- Maximize the computation efficiency within each machine

Graph partition method

- Edge-cut
- Vertex-cut
- Hybrid-cut
Graph partition: edge-cut

Pregel [SIGMOD’08] and **GraphLab** [VLDB’12]

- Focus on exploiting locality
- **Partitioning**: use edge-cut to evenly assign vertices along with all edges
- **Computation**: aggregate all resources (i.e., messages or replicas) of a vertex on local machine
Natural Graphs are Skewed

Graphs in real-world

- **Power-law** degree distribution (aka Zipf’s law or Pareto)

 “most vertices have relatively few neighbors while a few have many neighbors” — PowerGraph[OSDI’12]

Case: SINA Weibo

- 167 million active users

 #Follower: 77,971,093 76,946,782 … 14,723,818 … 397 … 69 …
Disadvantages of edge-cut

Load balance
- Work imbalance for high degree vertices, as computation, storage, and communication are linear with the degree of vertices

Difficult to partition
- Natural graphs are difficult to partition to minimize the communication, and maximize work balance

Limited parallelism
- No parallelism possible within individual vertices
Graph partition: vertex-cut

PowerGraph [OSDI’12] and **GraphX** [OSDI’14]

- Focus on exploiting parallelism
- **Partitioning**: use vertex-cut to evenly assign edges with replicated vertices
- **Computation**: decompose the workload of a vertex into multiple machines

![Graph partition: vertex-cut diagram](image)
Is vertex–cut perfect for power-law graph?

Locality

- **Low**-degree vertex
 - 397

- **High**-degree vertex
 - 77,971,093

Parallelism

- Evenly parallelize the workloads to avoid load imbalance

Conflict

Skewed graphs

- 100-million users each with 100 followers
- 100 users each with 100-million followers

Locality

- make resource locally accessible to hidden network latency
Graph partition: hybrid-cut

Hybrid-cut: differentiate the graph partitioning for low-degree and high-degree vertices

- **Low-cut** (inspired by *edge-cut*): reduce mirrors and exploit locality for low-degree vertices
- **High-cut** (inspired by *vertex-cut*): provide balance and restrict the impact of high-degree vertices
- **Efficiently** combine low-cut and high-cut

Sample Graph

- User-defined threshold

High-master

High-mirror
Graph processing frameworks

Programming Model

- **Vertex Centric:** Pregel[^SIGMOD'10]
- **Edge Centric:** X-Stream[^SOSP'13]
- **Path Centric:** PathGraph[^SC'14]
- **Subgraph centric:** Blogel[^VLDB'14]

Graph Partition Strategy

- **Vertex Cut:** Pregel[^SIGMOD '2010]
- **Edge Cut:** PowerGraph[^OSDI'12]
- **Hybrid Cut:** PowerLyra[^EuroSys '15]

Computation Strategy

- **Pull vs push**
- **Synchronous vs Asynchronous**

Typical System

- **Pregel:** SIGMOD 2010
- **PowerGraph:** OSDI 2012
- **GraphChi:** OSDI 2012
Message passing: push model

Push updates to the neighbors

- Selectively schedule to reduce computation
- Lead to the write-write conflict on a destination vertex from multiple sources

```c
parallel_for (int vSrc = 0; vSrc < numVertices; ++vSrc) {
    if (!frontier.contains(vSrc)) continue;
    for (int d = 0; d < vertex[vSrc].outdegree; ++d) {
        const int vDst = vertex[vSrc].outneighbor[d];
        if (converged.contains(vDst)) continue;
        atomicCAS(vertex[vDst].value, compute(vertex[vSrc].value, vertex[vDst].value));
    }
}
```

Push-based message implementation

Ref. Genimi (OSDI 2016), Grazella (PPoPP 2018)
Message passing: pull model

Get update from incoming neighbors

- Do not have the write-write conflict
- Scan all incoming neighbors can incur redundant computation since some nodes may not active

```
parallel_for (int vDst = 0; vDst < numVertices; ++vDst) {
    if (converged.contains(vDst)) continue;
    for (int s = 0; s < vertex[vDst].indegree; ++s) {
        const int vSrc = vertex[vDst].inneighbor[s];
        if (!frontier.contains(vSrc)) continue;
        vertex[vDst].value =
        compute(vertex[vSrc].value, vertex[vDst].value);
    }
}
```

Pull-based message implementation

Ref. Genimi (OSDI 2016), Grazella (PPoPP 2018)
Schedule model

Synchronous vs Asynchronous

<table>
<thead>
<tr>
<th>Properties</th>
<th>Sync</th>
<th>Async</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Regular</td>
<td>Irregular</td>
</tr>
<tr>
<td>Convergence</td>
<td>Slow</td>
<td>Fast</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Favorites</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>I/O-intensive</td>
<td>CPU-intensive</td>
</tr>
<tr>
<td>Execution Stage</td>
<td>High Workload</td>
<td>Low Workload</td>
</tr>
<tr>
<td>Scalability</td>
<td>Graph Size</td>
<td>Cluster Size</td>
</tr>
</tbody>
</table>

Ref. PoweSwitch PPoPP 2015
Schedule model: sync model

Scheduling:

Machine A

Current iteration active vertex

next iteration active vertex

Pseudocode

\[
\text{while} \ (\text{iteration} \leq \text{max}) \ \text{do} \\
\quad \text{if } V_a == \emptyset \ \text{then break} \\
\quad V'_a \leftarrow \emptyset \\
\quad \text{foreach } v \in V_a \ \text{do} \\
\quad \quad A \leftarrow \text{compute}(v) \\
\quad \quad V'_a \leftarrow V'_a \cup A \\
\quad \quad V_a \leftarrow V'_a \\
\quad \text{iteration} \ \text{++}
\]

Ref. PoweSwitch PPoPP 2015
Schedule model: sync model

Advantages of synchronous model
1. Batching massages which improves of network utilization
2. Better for algorithm with much communication needed
3. With light computation for each node

Disadvantages of synchronous model
1. Uneven convergence problem
2. Straggler problem
3. Not suitable for some algorithms, eg. Graph Coloring and Clustering based on Gibbs Sampling

Ref. PoweSwitch PPoPP 2015
Schedule model: async model

Scheduling:

Internal State (e.g. Machine A):

Pseudocode

while \((V_a \neq \emptyset)\) do

\(v = \text{dequeue}(V_a)\)

\(A \leftarrow \text{compute}(v)\)

\(V'_a \leftarrow V'_a \cup A\)

signal across machines
Schedule model: async model

Advantages of asynchronous
1. Speedup convergence
2. Better for CPU-bound algorithm

Disadvantages of asynchronous
1. Lock cost caused by vertex contention
2. Asynchronous model sends messages frequently, and CPU frequently encapsulates TCP/IP packets, which wastes the utilization of CPU

Ref. PoweSwitch PPoPP 2015
Graph processing frameworks

Programming Model

- **Vertex Centric:** PregelSIGMOD'10
- **Edge Centric:** X-StreamSOSP'13
- **Path Centric:** PathGraphSC'14
- **Subgraph centric:** BlogelVLDB'14

Graph Partition Strategy

- **Vertex Cut:** PregelSIGMOD '2010
- **Edge cut:** PowerGraphOSDI'12
- **Hybrid Cut:** PowerLyraEuroSys '15

Computation Strategy

- Pull vs push
- Synchronous vs Asynchronous

Typical System

- **Pregel:** SIGMOD 2010
- **PowerGraph:** OSDI 2012
- **GraphChi:** OSDI 2012
Graph processing system

- In-memory single-node graph system
 - Ligra, GraphMat, Polymer

- Out-of core single-node graph system
 - GraphChi, TurboGraph, X-Stream, PathGraph, GridGraph, FlashGraph

- Distributed graph system
 - Pregel, PowerGraph, GraphLab, GraphX, PowerSwitch, PowerLyra, Gemini

- Graph system on accelerator
 - GPU based, e.g. CuSha, WS, Gunrock, IrGL, Groute
 - FPGA based
 - ASIC based
 - NVM based
Pregel

- Large scale graph-parallel processing platform developed by Google
- Utilize BSP (bulk synchronous parallel) model

BSP model

Superstep 1
Superstep 2
Superstep 3

Barrier 1
Barrier 2
Barrier 3

Task1
Task2
Task3

Task1
Task2
Task3

Task1
Task2
Task3

Barrier 1
Barrier 2
Barrier 3
Pregel

- Large scale graph-parallel processing platform developed by Google
- Utilize BSP (bulk synchronous parallel) model
- Vertex-Programs interact by sending messages

```plaintext
Pregel_PageRank(i, messages) :

// Receive all the messages
total = 0
foreach (msg in messages) :
    total = total + msg

// Update the rank of this vertex
R[i] = 0.15 + total

// Send new messages to neighbors
foreach (j in out_neighbors[i]) :
    Send msg(R[i] * w_{ij}) to vertex j
```

Ref: Malewicz et al. [PODC’09, SIGMOD’10]
Pregel

- Large scale graph-parallel processing platform developed by Google
- Utilize BSP (bulk synchronous parallel) model
- Vertex-Programs interact by sending messages.
- Iteration until convergence

Maximum value example for Pregel
PowerGraph

Introduce GAS programming model

Gather (Reduce)
Accumulate information about neighborhood

User Defined:
- $\text{Gather}(\bullet) \rightarrow \Sigma$
- $\Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3$

Apply
Apply the accumulated value to center vertex

User Defined:
- $\text{Apply}(\bullet, \Sigma) \rightarrow \bullet'$

Scatter
Update adjacent edges and vertices.

User Defined:
- $\text{Scatter}(\bullet) \rightarrow \bullet'$

Update Edge Data & Activate Neighbors
PowerGraph

Edge-cut for power-law graph

- **Program For This**
- **Run on This**

- **Split High-Degree vertices**

Cut high-degree vertex can balance workload

Image node can reduce communication between node
GraphChi

- Challenges for distributed graph computation
 - Partitioning a graph is difficult (especially for power law graphs)
 - Distributed graph processing incurs too much communication cost

- Could we compute big graphs on a single machine?

- **GraphChi**: Single-node out-of-core graph processing system
 - **Goal**: maximize sequential disk access while loading graph into memory (500x speedup for disk sequential vs random)
 - **Method**: Execute on individual subgraphs once a time with parallel sliding window (PSW), load subgraphs efficiently from disk
GraphChi

PSW: parallel sliding window

- Vertices are partitioned into interval, each corresponds to a shard on disk
- **A shard on disk** include all in-edges for all vertices in corresponding interval

- Edges in a shard are sorted by source vertices
- Bring benefit for date access from disk
- Incur much preprocessing cost
GraphChi

- Slide window to process one intervals with shard one by one
GraphChi

• Processing workflow for one interval (eg. Processing Interval 1)

Step 1: Load all in-edges from shard 1 into memory for vertices of interval 1

(1 sequential disk read)

Fig. Execution interval 1 (with vertices 1, 2)
GraphChi

• Processing workflow for one interval (eg. Processing Interval 1)

Step 1: Load all in-edges from shard 1 into memory for vertices of interval 1

Step 2: Load all out-edges in memory form other shards for vertices of interval 1

(P-1 sequential reads)

Fig. Execution interval (vertices 1, 2)
GraphChi

• Processing workflow for one interval (e.g., Processing Interval 1)

Step 1: Load all in-edges from shard 1 into memory for vertices of interval 1

Step 2: Load all out-edges in memory from other shard for vertices of interval 1

Step 3: Update-function is executed on interval’s vertices (vertex 1, 2).

(verticies-centric processing)
GraphChi

- Processing workflow for one interval (eg. Processing Interval 1)

Step 1: Load all in-edges from shard 1 into memory for vertices of interval 1

Step 2: Load all out-edges in memory from other shard for vertices of interval 1

Step 3: Update-function is executed on interval’s vertices (vertex 1, 2)

Step 4: Commit to disk, updates are written back to disk (p sequential disk write)
GraphChi

- Processing workflow for one interval (eg. Processing Interval 2)

Step 1: Load all in-edges from shard 2 into memory for vertices of interval 2

Step 2: Load all out-edges in memory form other shard for vertices of interval 2

Step 3: Update-function is executed on interval’s vertices (vertex 3, 4)

Step 4: Commit to disk, update are written back to disk (p sequential disk write)
PROGRAMMING FOR STREAM PROCESSING
Outline

- Stream data and stream applications
- Real-time stream processing
- Ecosystems and programming models
What is stream?
What is stream?

- A stream is a **continuous and unbounded sequence of data elements** made available over time.

Stream data in big data era

- Volume, continuous and unbounded
- Variety, changes quickly
- Velocity, high speed incoming
- Value, needs to be processed in near real-time
Stream applications

“11 - 11”

(Didi) Real-time Traffic Monitoring

Market Transaction

Hot Search Topics Ranking
Outline

- Stream data and stream applications
- Real-time stream processing
- Ecosystems and programming models
Common stream architecture

- Collect data from a variety of data sources
- Make data streams available for consumption
- Real-time stream processing

Diagram showing data flow from various sources to a broker and then to analysis.
Data model - Tuples

- A tuple is the basic data element that can be processed independently.

- Each tuple can be represented as a list of values. ($t = <value_1, value_2, value_3,...>$)

```json
{
    "user_id": 17055506,
    "timestamp": 1421777578,
    "status": "Hello world!"
}
```
Stream application can be modeled as a Directed Acyclic Graph (DAG)

- **Vertex**: a simple operator which executes common user defined function, e.g., map, filter, reduce, join,…
- **Edge**: routing tuples between vertices

A simple example: Twitter Word Count
Stream processing exploits **pipeline parallelism** and **task parallelism** by using **DAG model**.

Stream processing system can generate multiple **instances** for each operator to achieve high **data parallelism**.
Tuples grouping and dispatching

- Tuples are partitioned into different groups and dispatched to different instances of operators.

- Grouping strategies
 - Key Grouping: hash based partitioning
 - Shuffle Grouping: round-robin
 - All Grouping: broadcast
 - Global Grouping: all to one
 - Others
Programming: step by step

1. Read input streams from data sources and generate a sequence of tuples
 - Kafka, HDFS, Flume, ...

2. Build the DAG for a stream application

3. Specify the degree of parallisms for each operator and the data grouping strategies
 - Depending on different platform APIs

4. Submit the program to the cluster
 - Deployment
 - Fault Tolerant
 - Dashboard
 - ...

Development part for programmers

Managed by platforms

Transparent to programmers
Outline

- Stream data and stream applications
- Real-time stream processing
- Ecosystems and programming models
Ecosystems

Open Source Stream Processing Frameworks

- Apache Storm
- Apache Apex
- Heron
- akka
- Apache Spark
- Flink
- Apache Kafka
- Apache Flume
- Apache Nifi
- Apache Gearpump
- Apache Ignite
- Beam
- Pulsar
- Edgent
Two different programming models

- **Continuous dataflow**: process tuples one by one
 - Apache Storm
 - Apache Flink

- **Micro-batch**: process tuples in small batches
 - Spark Streaming
Apache Storm

- Storm is a classic **continuous dataflow** based distributed stream processing system developed by Twitter. It has many variations such as JStorm in Alibaba.
DAG model: topology

- Two kinds of components
 - **Spout**: read streams from sources and generates tuples
 - **Bolt**: execute a simple user defined function for tuples

- Each spout and bolt can generate multiple instances as multiple tasks and partition them in different nodes
Use case: word count on Storm

Topology Building

```java
TopologyBuilder tb = new TopologyBuilder();
```

```
tb.setSpout("TweetSpout", kafkaSpout(), 4);
```

```
```

```
```

Specify the degree of parallelism

User defined functions

Specify the grouping strategies
Apache Flink

- Flink is one of the most popular continuous dataflow based distributed stream processing system, which can also support big data batch processing.
Flink's DAG model is almost like that in Storm, which contains one source operator, one sink operator and multiple transformation operators.

- Transformation can be user defined functions or many pre-defined operations provided by Flink API, e.g., flatmap, map, reduce, windows, ...
Use case: word count on Flink

```java
DataStream<String> lines = env.addSource(
    new FlinkKafkaConsumer<>(...));
DataStream<Event> events = lines.map((line) -> parse(line));
DataStream<Statistics> stats = events
    .keyBy("id")
    .timeWindow(Time.seconds(10))
    .apply(new MyWindowAggregationFunction());
stats.addSink(new RollingSink(path));
```
Spark Streaming

- Spark Streaming is an extension of the core Spark API, it is a classical micro-batch based distributed stream processing system.
The basic data abstraction of Spark Streaming is **discretized streams**

- Tuples in a fixed interval (e.g., 1s) are partitioned into a small batch, and transformed to RDD by using Spark engine.
DAG model: RDD transformations

Spark Streaming executes RDD transformations for each small batch of tuples and generates batches of results.
Word count on Spark Streaming

- Essentially the same as batch processing

```java
JavaRDD<String> textFile = sc.textFile("hdfs://...");
JavaPairRDD<String, Integer> counts = textFile
    .flatMap(s -> Arrays.asList(s.split(" ")).iterator())
    .mapToPair(word -> new Tuple2<>(word, 1))
    .reduceByKey((a, b) -> a + b);
counts.saveAsTextFile("hdfs://...");
```