Motivation

- Since the application of neutron technology in a broad field, the neutrons dose are required to be monitored efficiently. Especially, some harsh environments including Fukushima Daiichi nuclear power plant and high-intensity accelerators such as SuperKEKB produce mixed radiation field.
- There is an urgent need to design a neutron detector that is resistant to high-intensity radiation and can reject high levels of background rays.

- **Advantage**: low leakage current, low capacitance, high electron-hole mobility, radiation resistance, excellent timing resolution
- **Drawback**: low Charge collection efficiency (CCE), low energy resolution

Comparison of Diamond and Silicon Characteristic

<table>
<thead>
<tr>
<th>Properties</th>
<th>Silicon</th>
<th>Diamond</th>
<th>Benefit of Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandgap (eV)</td>
<td>1.12</td>
<td>5.47</td>
<td>Low Leakage Current</td>
</tr>
<tr>
<td>Breakdown Field [MV/cm]</td>
<td><1</td>
<td>~20</td>
<td>High Field Operation</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td>11.9</td>
<td>5.7</td>
<td>Small Detector</td>
</tr>
<tr>
<td>Electron Mobility [cm/Vs]</td>
<td>1350</td>
<td>1900-3800</td>
<td>Capacitance, Less Noise</td>
</tr>
<tr>
<td>Hole Mobility [cm/Vs]</td>
<td>480</td>
<td>2300-4500</td>
<td>Faster Charge Collection</td>
</tr>
<tr>
<td>Thermal Conductivity [W/cmK]</td>
<td>1.5</td>
<td>20</td>
<td>Better Heat Dissipation, Less Noise</td>
</tr>
</tbody>
</table>

- The diamond detector is an ideal choice for monitoring neutron flux and dose in comparison to silicon detector.

Simulation

PHITS (Particle and Heavy Ion Transport code System)

What it can do:

- Transport and collision of nearly all particles over wide energy range in 3D phase space with magnetic field & gravity
- 10^4 eV to 1 TeV/u neutron, proton, meson, baryon, electron, photon, heavy ions

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Deposition Energy [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5μm</td>
<td>500μm</td>
</tr>
<tr>
<td>30μm</td>
<td></td>
</tr>
<tr>
<td>500μm</td>
<td></td>
</tr>
</tbody>
</table>

The simulated deposition energies on diamond detectors with difference thickness for ^137Cs gamma-rays.

- The sensitivity and deposit energy decreased with decreasing the detector thickness.
- The pile-up events will be less impact.
- The maximum deposition energies were significantly less than the expected deposition energies from the neutron-induced ^6Li(n,t)α reaction: Et= 2.73 MeV, Eα= 2.05 MeV.

Diamond Detector:

- Material: sCVD diamond
- Size: 4.5 mm x 4.5 mm
- Thickness: 140 μm
- Thermal-neutron converter: ^6LiF (95% enrichment)
- Active area: 10 mm²

Experimental Setup and Result

- I–V characteristic of the sCVD diamond detector.
- CCE of the sCVD diamond detector.
- TCT pulse for charge carrier in diamond

Experimental Setup:

- Power Supply of Detector: Keithly 2450
- Power Supply of Amplifier: Tektronics P6120A
- Vacuum Chamber
- Diamond

Conclusion

- The deposition energies on diamond detectors with difference thickness for ^137Cs gamma-rays were simulated.
- We did performance tests on the diamond detector.

Acknowledgement: Thanks to SOKENDAI and KEK for supporting me to attend the INFIERI Summer School

†: xxqing@post.kek.jp

The results of the simulations and experiments are made by diamond detector research cooperation group, KEK.