Modeling for Surface Background in PandaX–II Detector

Dan Zhang (2nd year doctoral student in the Dept. of Phys., UMD)
PandaX collaboration, danavagor@gmail.com

Abstract:
This work models the surface backgrounds in the energy window (0-10 keV) for WIMP search in the PandaX-II detector. The surface backgrounds in this region are dominant by the β decay of 210Pb ($T_{1/2}=22.2$ y), which is the daughter of 222Rn, a noble-gas radioisotope in the 238U decay chain. Due to charge loss effect of surface events, their ionization-to-scintillation ratio mixed with nuclear recoils, leading to undistinguishable backgrounds in the region of interest. Because the mechanism for the charge loss remains unknown, a data-driven model is developed to estimate the surface backgrounds.

Method:
Estimate the background from the wall leakage into the fiducial volume with the probability distribution function (PDF) of the surface backgrounds.
- Define the soft wall for different Z and azimuth angle.
- Modeling radial part, p_r.
- Smooth p_r with kernel density estimator (KDE).

Soft wall construction:
- Soft wall: the median position of the reconstructed events for 214Po daughters (green), 214Pb, and 214Bi.
- r_p, the distance to wall is defined according to 214Po, 214Bi data with p_l from 214Po data to blind the WIMP search data.

Result:
The wall model is checked with Run 10 data of PandaX-II (77.1 days live-time).

Conclusion:
The wall models for different position reconstruction algorithms are consistent with each other. This work will allow us to include more xenon into data analysis as we can estimate the amount of surface events.

Acknowledgement:
PandaX-II project has been supported by a 985-III grant from Shanghai Jiao Tong University, grants from the National Natural Science Foundation of China, and a grant from the Ministry of Science and Technology of China.

Main Reference: