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The central orbit is usually simple

� Example racetrack lattice with two 180 degree 
dipoles and various quadrupoles and sextupoles.

� The central orbit passes straight through the 
centres of the lenses and is circular in each 
dipole.

� Lattice programs will calculate the geometry 
after the specification of the elements.

� Some rings and transfer lines can be more 
complicated.  There is a suite of routines in 
WinAGILE on the CD-ROM for calculating the 
more difficult cases.
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Dipole types and edge focusing

� Sector dipole (SBEND)
This ‘shape’ is used in the derivation of the 

motion equation and often appears in older 
machines.

� Rectangular dipole (RBEND)
Modern lattices usually use rectangular dipoles. 

This ‘shape’ excites edge focusing.

� General dipole (SBEND + edge angles)
Some dipoles have edges inclined at special 
angles. These are modeled by a SBEND with 
edge angles. In fact, the SBEND can cover all 
cases and the RBEND is a convenience definition.

NOTE all cases have the same central-orbit 
geometry.

Magnet face is 

perpendicular to

central orbit

θθθθ

Magnet face is 

NOT 

perpendicular to 

orbit
θθθθ

θ/2θ/2θ/2θ/2θθθθ/2
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FODO cell

� The basic FODO cell is the best known and studied 
cell in lattice optics.

� The usual choices for phase advances are 45°, 60°
and 90°.  The 60° cell has the best all-round 
characteristics and is close to the minimum beam 
sizes obtained at ~76°.

� In the above example: ∆∆∆∆µµµµ=60°, kF = -0.1035,               
kD = 0.1035 and Lcell = 20 m.

Note an ‘F quadrupole’ is denoted by a box above 
the axis and a ‘D’ by a box below the axis.  Dipoles 
are denoted by a box extending above and below.
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FODO with dipoles

� The addition of dipoles changes the focusing slightly 
and introduces dispersion.

� In the above example: ∆∆∆∆µµµµx= = = = 60°,  ∆∆∆∆µµµµy=60°,               
kF = -0.0722, kD = 0.0915, θθθθH = 0.2618 rad and       
Lcell = 20 m.  The dipoles are sector bends.

Note.  In a dipole, the 1/ρρρρ2 term focuses only in the 
plane of bending.  This is the total focusing effect in 
a sector dipole.  In rectangular dipoles, the edges 
subtract from the 1/ρρρρ2 term reducing it to zero and 
add focusing to the orthogonal plane.
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A regular ring using a FODO

� Using a simple cell we can make a ring, BUT the 
drift spaces tend to be too short for extraction and 
injection.

Note that the dipoles have been placed in ββββy minima 
to save power.

1 cell

F
F

D
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A ring using a split FODO

� Here the F and D quads are split into 2 units.  
Between the ‘split’ quads, the betatron amplitude 
functions are quasi-constant.

� Unlike the previous lattice, the dipoles sit around  
ββββy max. because in this example the requirements of 
a light source take precedence over the aperture 
and cost of the magnets.

ADONE
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A ring using a doublet

� Another way to make the space in a FODO more 
useful is to move the central quadrupole to one side.  
This effectively creates pairs of quads, or doublets.

� Doublets have been very popular, but they do cause 
large peaks and steep asymmetric slopes in the 

betatron amplitude functions.

GSI medical ring

F  D
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Controlling dispersion

� All the rings shown so far simply repeat a 
standard cell n times to reach 2ππππ of bending.

� This works for plain accelerators and often leads 
to an economical solution in which all 
quadrupoles for example are powered by a 
single power converter.

� In more advanced lattices, we would like to have 
regions with zero dispersion e.g. for RF cavities.  
This is done in small rings by closing the 
dispersion in bumps.  For large rings, see later.

� To close a dispersion bump one needs a phase 
advance of 180° to 360° in the plane of bending.

� This leads to solutions for rings with two, or 
three or four or more closed dispersion bumps 
separated by dispersion-free sections.

� Each closed bump forms a ‘corner’ and the ring 
looks ‘triangular’ or ‘square’ or ‘pentagonal’
and so on.
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Closing a dispersion bump

� Case 1. The half-wavelength bump

Possible where 2 short magnets can provide all of 
the required bending.

� Case 2. Uniformly distributed bending

When the bending is uniformly distributed, the 
dispersion D oscillates about the equilibrium value 
of the matched cell.

� Case 3.  Hybrid

Often the lattice of a small ring will be a mixture 
of the two limiting cases above.

π

s

D

2π
s

D Matched cell value for D
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A ring using a triplet

� A triplet is another possible cell for a ring.  

� In this example, the large horizontal phase advance 
at the centre of the triplet is used to make 3 closed, 
half-wave, dispersion bumps.

� The ‘waist’ in the  vertical betatron amplitude in the 
long straight sections is used for the dipoles.  This 
keeps the aperture requirements and cost down .

AUSTRON
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Characteristics of triplets

� Phase advance

� Thus regions of low-ββββ give large phase advances.

sss d
1

2

1

21

s

s

∫=→ β
µ

ββββx is kept small for large 
phase advance for 

closing dispersion bump

Small ββββy in dipole 
saves money
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Light source lattice

� Chasman-Greene, double-bend achromat, high-
brightness lattice Ref. [2.1]. The aim is to minimise
Dx(s) and ββββx(s) in the dipoles.

� Each cell supports a closed, half-wave, dispersion 
bump.  This example has 4 bumps making a 
‘square’ ring.

NSLS
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Medical machine lattice

� The PIMMS medical machine lattice. 

� This ring has 2 dispersion bumps with distributed 
bending.  Compared to the earlier examples, this 
creates a ‘rounder’ ring.

PIMMS

Superperiod Superperiod
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Large rings

� Large rings, such as the LHC, often have a basic 
FODO cell in the arcs. 

� The overall ring has an n-fold symmetry containing 
the n-arcs and n straight regions in which the 
physics experiments are mounted. 

� Between the arc and the straight region there is the 
so-called dispersion suppressor that brings the 
dispersion function to zero in the straight region in 
a controlled way.  There are several schemes for 
dispersion suppressors (see next slides).  

� The straight regions contain the injection and 
extraction and the RF cavities, which, in an 
electron machine like LEP, can occupy hundreds of 
metres.

� A dispersion-free straight region may also host a 
low-ββββ insertion for physics or a collimation 
insertion.
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Missing-magnet suppressor

� Lattice functions of a missing-magnet, dispersion 
suppressor for a 60° FODO cell.  Note how ββββx and 
ββββy hardly notice the suppression of Dx.

∆µx=60

°

Arc

Zero dispersion 

straight section

2 missing dipoles
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Half-field suppressor

� Lattice functions of a half-field, dispersion 
suppressor for a 60° FODO cell.  The functions ββββx

and ββββy are visibly perturbed by the suppression of 
Dx.

∆µx=60

°

Arc

Zero dispersion 

straight section

Half-field dipoles



JUAS18_02- P.J. Bryant  - Lecture 2
Lattice Design I - Slide18

Dispersion suppressors Ref. [2.2]

� Missing-magnet suppressors for FODO arcs 
(Fquad. + Dipole + Dquad. + Dipole):

� Half-field suppressors for FODO arcs
(N = i, no gap)

Half-field is useful in electron machines as it reduces the 
synchrotron radiation into the experimental region.

Normal arc            Gap            End arc              Straight

(N-i) cells i cells

Suppressor N cells

(L/ρ)/2ρ)/2ρ)/2ρ)/245°04

(L/ρ)/ρ)/ρ)/ρ)/222260°03

(L/ρ)/2ρ)/2ρ)/2ρ)/290°02

End arc 

dipole θθθθ
∆µ∆µ∆µ∆µGapN=i

(L/ρ)/2ρ)/2ρ)/2ρ)/230°224

(L/ρ)/ρ)/ρ)/ρ)/√√√√222245°213

L/ρρρρ60°112

End arc 

dipole θθθθ
∆µ∆µ∆µ∆µiGapN
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Low-ββββ insertion

� Often, it is necessary to make the beam size small in 
both planes.  This requires a so-called low-ββββ
insertion.

� As an example, a doublet has been added after the 
dispersion suppressor on slide 16 to bring both 
betatron amplitudes down to 3 m. 

� This case requires some further numerical 
matching to reduce the peak and further separate 
the doublet quadrupoles.

Arc               Suppressor      Low-ββββ doublet   Low-ββββ point.
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Modules

� The last example invoked numerical matching.

� Although we would like to believe that one can 
just type in what one wants, push the button and 
get a good result, it is better to have some 
strategies.

� Knowledge of some standard modules can be 
useful.

� The most basic module is the 1:1 module that has 
the very simple transfer matrix. 

� This module will return the input values of x and 
x' at the exit.  Thus any beam distribution will 
simply be transported unchanged to the exit.

� What does one have to specify in terms of β, αβ, αβ, αβ, α
and µµµµ to get this matrix?










10

01
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1:1 and 1:-1 modules

� A “1 : 1” module returns the entry beam co-ordinates 
at the exit and the “1:-1” returns the negative values. 

� Take the general transfer matrix, Lecture 1 Eqn (1.8):

� Set ∆∆∆∆µµµµ = 2ππππ , ββββ2= ββββ1 and αααα2= αααα1 to create the 1:1 
matrix.

� Set ∆∆∆∆µµµµ = ππππ , ββββ2= ββββ1 and αααα2= αααα1 to create the 1:-1 
matrix.

� You can create these matrices in a lattice program 
with say 4 or 2 FODO cells with 90° phase advance.  
The module you create would always be 1:1 or 1:-1 
and would always return the input beam to the exit 
accordingly, whatever the input Twiss functions were. 

� For example, if you had made an arc with a closed 
dispersion bump and equal input and output Twiss
functions, then you could join two of these arcs with 
1:1 modules to provide long straight regions.
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Telescope modules

� Since phase space is conserved, it is clear 
that when the beam width increases the 
angular divergence will go down and vice 
versa.

� This can be seen in the telescopic modules 
1:n or 1:-n.  The matrices are of the form:

� Matrices of this type scale the excursion x by 
n and inversely scale the angular divergence 
x′ by 1/n.  The moduli are still unity so phase 
space is conserved. 

� To obtain this type of module put ∆∆∆∆µµµµ = ππππ, or 
∆∆∆∆µµµµ =2 ππππ , ββββ2 =nββββ1 and αααα2 = αααα1.















±

±

n

n

1
0
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Length scaling of a module

� From Lecture 1 Equation (1.7), we had

� It was stated that this equation is rarely used.  Well, 
here is one case.  Let us suppose that you have created 
an ideal 1:1 or 1:-1 module, but it is too long.  How 
can you shorten it and still have the same transfer 
matrix?

� Rewrite equation (1.7) with scaling factors,

� With some re-arrangement,

� By inspection one sees that the equation is unchanged, 
if

Try, 

all ββββ functions and all lengths will be reduced by 20%, 
and all gradients increased by 56%, but phase 
advances and αααα-functions are unchanged.  Thus the 
1:1 or 1:-1 module has the same properties as before.
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Single-turn injection/extraction

� A conventional injection/extraction insertion,

� The ∆∆∆∆µµµµ is ideally 90°.

� If there is a quadrupole between the kicker and 
septum, then it is better to have a defocusing lens 
to benefit from the outward kick.

� It is better to have zero dispersion in order to 
have a narrow beam.

� It is also an advantage to have a large ββββx at the 
kicker.

� If the septum bends in the same plane as the 
kicker then a current-wall septum is needed.  If 
the bend is perpendicular to the first kick then a 
Lambertson septum is needed.
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Septa designs

� Current-wall septum

� Lambertson septum

B
Magnetic shielding

B

Magnetic 

shielding
Main beam
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H minus stripping

This injection ‘cheats’ Liouville, but the beam still

suffers some emittance blowup from scattering in 

the stripping foil.

Inject H minus ions Unstripped H minus ions

Partially stripped H0

Majority of beam 

continues on 

central orbit

Weak dipoles

Main 

dipoles

AUSTRON
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Injection by radiation damping

� Displace central orbit with a fast bump 
towards the septum.

� Inject a pulse.

� Collapse bump before injected pulse returns 
to septum.

� Let synchrotron radiation damp newly 
injected pulse into the core of the beam.
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Multi-turn injection

� Construct a fast 
closed-orbit bump 
that pushes the 
central orbit to the 
septum wall before 
collapsing linearly.

� In this example, the 
fractional tune is 
close to 2/3.  Inject 
say 5 pulses over 5 
turns and collapse 
the bump by ~1/3 of 
the pulse width on 
each turn.  

� The injected pulses 
are well separated 
for clarity.  In 
practice, significant 
losses are accepted 
in order to closely 
pack the dense cores 
of a larger number 
of pulses.

� WinAGILE has an 
expert routine for 
multiturn injection.
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