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Introduction

� These lectures assume knowledge of :

� The 2nd order differential equations of motion 

in ‘hard-edge’ field models for various 

elements with a momentum deviation,

� The solutions to the differential equations,

� The solutions expressed in terms of matrices, 

� The use of matrices to track ions though a 

lattice with respect to a curvilinear co-

ordinate system that follows the central orbit 

thus providing physical co-ordinates for 

individual ions that are easy to understand,

� Thin (zero thickness) quadrupole and higher 

order lenses

� The closed-orbit perturbation equation for 

small dipole errors. 

� Skew quadrupole lenses.
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‘Twiss’ functions

� One of the historical mysteries in 
accelerators is how the ‘Twiss’ functions 
got their name.  Twiss was once asked to 
elucidate this problem and he claimed 
there was no paper that made the link to 
him.

� There are two ways of looking at Twiss
functions:

� The first is to regard them as a parametric way 
of expressing the motion equation and its 
solution. This interpretation makes the bridge 
from tracking single ions to the wider view of 
calculating beam envelopes.

� The second is to regard them as purely 
geometric parameters for defining ellipses and 
hence beam envelopes.  Dropping the strict 
correspondence to individual particles can lead 
to some interesting extensions such as the 
inclusion of scattering.
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Twiss and the transverse motion 

equation

� The general motion equation has the form,

where z can be either x or y.

� Start by parameterising the coordinate z as,

where s is the distance along the equilibrium orbit, A
and B are constants depending on the starting 
conditions, ββββ(s) is the betatron amplitude function 
and σσσσ is the integration variable representing 
distance.

� The phase, µµµµ(s) of the pseudo oscillation is given by,

The above parameterisation is done with hindsight. Refs 
[1.1] and [1.2] give the historical background and explain 
how to come to this point.  However, a separate 
derivation/definition of ααααz, ββββz, and γγγγz will be given in 
Lecture 6.
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Twiss & transverse motion 

continued

� To complete this description, the derivative 
of ββββ(s) is added to the set of relations,

and

� Notes:
� The phase shift for 1 turn in a ring divided by 

2ππππ is known as the tune, Q:

� αααα, ββββ and γγγγ are distinguished from the relativistic 
parameters by a suffix for the plane, but this is 
later dropped for brevity.

� Equations (1.1) to (1.6) are so widely used that 
they need to be committed to memory.

( ) (1.4)      
d

d

2

1

s
s z

z

β
α −=

( ) (1.5)       
1

2

z

z
z s

β
α

γ
+

=

( )
(1.6)          d 

1

2

1

2
Circ.

Turn 1 z,
z σ

σβππ

µ
∫==

z

Q



JUAS18_01- P.J. Bryant  - Lecture 1
Twiss functions Slide6

Basic Twiss equation

� Substitution of equation (1.2) into (1.1) 
yields a differential equation for √√√√ββββz(s)
that is more complicated than the original 
motion equation, which at first sight seems 
a poor deal,

(To derive this you will need the ααααz function.)

� Equation (1.7) is rarely used, but it is 
necessary to know that it exists.  There 
will be two applications given in Lectures 
2 and 6.

� Today, we will take the approach of 
comparing the matrix equations to the 
equivalent Twiss equations.  This leads to 
a whole battery of new equations, but they 
appear so often that they eventually 
become familiar.
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General Twiss transfer matrix

� Re-express equation (1.2) as,

where A and B are different constants and the 

suffix ‘z’ has been dropped for brevity.

Differentiation gives,

� The constants A and B can be replaced using the 

initial conditions at s = s1, µµµµ = 0,

� To get the general transfer matrix from position 

s1 to position s2, write the phase advance from s1

to s2 as ∆∆∆∆µµµµ, so that,
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Twiss transfer matrix for a single 

turn in a ring or for a matched cell

� When equation (1.8) is applied to a full turn in a 

ring or to a matched cell, the input conditions 

equal the output conditions, that is αααα =αααα1=αααα2 ,     

ββββ =ββββ1=ββββ2 and ∆∆∆∆µµµµ = 2ππππQ, so that,

� Remember Q is known as the tune and is the 

number of betatron oscillations around a ring.

� We will see in the next section that equation (1.9) 

allows us to unambiguously solve for αααα, ββββ and γγγγ
in terms of the matrix coefficients, at least for a 

ring.

� We will treat transfer lines much later because 

they require some further thought.
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Solving Twiss in a ring

� A lattice program can proceed as follows:

� List all the elements in the lattice.

� Calculate the transfer matrices of all elements.

� Multiply all the matrices to obtain the single-
turn matrix.

� Compare this matrix to equation (1.8) and solve 
for αααα, ββββ and γγγγ using,

� To step round the lattice, pre-multiply by the 
matrix of the next element after the observation 
point and post multiply by the inverse of the 
same matrix.
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Solving for Q and µµµµ

� Let Q = 2nπ π π π + q, where n is an integer.

� Equation (1.10) allows you to solve for sin(2ππππQ).

� Tan(2ππππQ) or cos (2ππππQ) can also be found easily.

� This allows you to find q (the fractional part), 

but NOT n (the integer part).

� To find the integer number of oscillations around 

a ring, or the total phase shift through a long 

line, it is necessary to step through the lattice 

with steps of less than 2ππππ and to sum up for the 

total.

� This can be done in a number of ways but, with 

the information given so far, use the previous 

slide to find αααα, ββββ and γγγγ at all elements in the ring 

and then use equation (1.8) to cross each element 

to find the ∆∆∆∆µµµµ values.
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Dispersion

� To complete the parameterisation of the particle 
motion we need to include the motion of off-
momentum ions using,

� D(s) is known as the dispersion function.

� An analytic derivation of the dispersion function 
is possible, but it is usual to rely on lattice 
programs for numerical listings of D(s) and its 
derivative with distance D´(s).

� The dispersion function is found in much the 
same way as was done for αααα and ββββ.

� For rings, the cyclic condition is imposed,

where the matrix is for one turn and the input 
and output values of D(s) and D´(s) are equated.
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Dispersion continued

� The dispersion and its derivative at the point of 

evaluation of the matrix can be solved as,

� Having found the dispersion vector at one point, s0, 

it is simple to tabulate the values at all intermediate 

points in the ring by either stepping the single-turn 

matrix round as was already described, or by 

tracking the vector through the structure from the 

known point, s0, to a new point, s1, by,
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Typical output from a lattice 

program

The dispersion function (D) and the derivative of the 

dispersion function (dD/ds) are usually listed and 

included graphically with the Twiss parameters to give 

a complete description of the beam.
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Phase space

� Returning to equation (1.2) substituted with (1.3), 

� Differentiating gives,

� If these two equations are used to plot a graph for 
(z, z') for µµµµ = 0 to 2ππππ, one gets an ellipse.

� In the case of a ring or matched cell, the periodicity 
imposes equality on the input and output αααα and ββββ
values.  This means that the particle returns after 
each turn or transit to the same ellipse but at 
phases µµµµ1=B, µµµµ2=B+2π2π2π2πQ, µµµµ3=B+4ππππQ, ….., B+n2ππππQ
and so on.
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Motion invariant

� The elimination of the phase advance from 

equations (1.14) and (1.15) yields an invariant of 

the motion,

� This is known as the Courant & Snyder Invariant.

� The motion invariant, A2, equals the (area/ππππ) of 

the ellipse described by the betatron motion in 

phase space.  When referring to a single ion, this 

area is sometimes called the single-particle 

emittance, although this is strictly incorrect (see 

later slide on emittance).

� All ions in the beam will have a value for this 

invariant (area/ππππ) and follow similar ellipses.
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Liouville’s theorem

� Liouville states that phase space is 

conserved.

� Primarily, this refers to 6-dimensional phase 

space (x-x´, y-y´ and s-dp/p). When the 

component phase spaces are uncoupled, the 

phase space is conserved within the 2-

dimensional and/or 4-dimensional spaces.

� The invariant of the motion in the uncoupled 

x-x´or y-y´ spaces is another way of saying the 

phase space is conserved.

� Phase space is not conserved if ions change, 

e.g. by stripping or nuclear fragmentation, or 

if non-Hamiltonian forces appear e.g. 

scattering or photon emission. 
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Transferring Twiss functions

� We have calculated the Twiss functions from the 
single-turn matrix of a ring and shown how to 
step round the ring to make a table of the 
functions.

� We have shown that the Twiss functions define an 
ellipse in phase space and the area of this ellipse is 
a constant of the motion.

� Thus, between two points,

Note this trick of equating the invariant at 2 
points for examination questions.

� A trajectory at the two points is related by the 
transfer matrix T(s1 →→→→ s2), which on this occasion 
is more conveniently written in the inverse form 
from points 2 to 1, as,

Note that the modulus is unity so that the inverse 
is simplified.  Remember this for questions.
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Transferring Twiss functions 

continued

� Equation (1.18) can be used to substitute for        
(z1, z′1) on the right hand side of (1.17).  After 
regrouping the terms, expressions for αααα2, ββββ2 and γγγγ2
can be found in terms of αααα1, ββββ1 and γγγγ1.  These 
results are usually written in the form of a 3 ××××3 
matrix (Ref. [1.3]),

� Special case.  In a drift space, t11 = t22 = 1, t12 = llll
and t21 = 0, so that,

Starting from the centre of a low-ββββ insertion 
αααα1=0 , ββββ1=ββββ* and γγγγ1=1/ββββ1

Thus low-ββββ insertions are associated with high ββββ-
values on each side because llll must provide 
sufficient space for a physics experiment.

Note this is often exploited for questions.
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Emittance

� The emittance of a beam is related to the phase-space 
area that it occupies and is therefore related to the 
motion invariants of the constituent ions (see earlier 
slide).

� A practical definition of emittance requires a choice 
for the limiting ellipse that defines the phase-space 
area of the beam. Usually this is related to some 
number of standard deviations of the beam 
distribution, but it could also be the overall ellipse 
that includes all ions or some fraction of the ions.  
The definition is best included in the name e.g. ‘the 
95% emittance equals…’ or ‘the 1-sigma emittance
is…’.

� A further problem of definition is whether the 
emittance is the phase-space area or the phase-space 
area divided by ππππ. Since the literature mixes these 
two definitions, it is better to express the emittance
with the ππππ apparent, that is 30ππππ ×××× 10-6 [m rad] or      
30 ×××× 10-6 [π π π π m rad] . In this way, the user sees that 
the ππππ is included, but can easily remove it, if desired.

� In these lectures:

Geometric emittance, εεεε = Phase-space area

BUT ππππ will be apparent in the numerical values or 
definitions.  We write geometric emittance to 
distinguish it from the normalised emittance that 
comes later.
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Beam envelopes and Acceptance

� Referring back to equation (1.14),

� The amplitude of the oscillation of an ion is given 
by,

� If we talk of a beam, then the envelope or beam 
half-width is given by,

where εεεε is the emittance. This is a useful formula.

� The beam envelope or width is subject to the 
same definition problems as the emittance.  So, 
for example, the beam envelope calculated with 
the 1-sigma emittance will be the 1-sigma 
envelope, the beam envelope calculated with the 
95% emittance will be the 95% beam envelope 
and so on.

� The area (or area/ππππ) of the largest phase-space 
ellipse that can pass through a lattice is know as 
the acceptance.  This is a description of the lattice 
and not the beam.
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Typical output from a lattice 

program

In the horizontal plane, the inner pair of lines define 
the dispersion width and the outer lines the betatron
width.  In the vertical plane, the dispersion is zero and 
only the betatron width is visible.
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Geometry of the phase-space ellipse

Practical emittance definition that defines the ellipse:
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Transfer lines

� It was mentioned earlier that transfer lines 

were in some way different to rings.

� The lack of periodicity in a transfer line 

removes the constraint that the Twiss

functions at the exit must equal those at 

the entry and consequently the Twiss

functions are undefined unless the user 

supplies the values at some reference point, 

e.g. at the exit from a ring (where the 

functions are known) which is the entry to 

the transfer line.

� Understanding this difference and the 

implications can take some time, so be 

patient.
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Transfer lines continued

A single ion in phase space provides insufficient 

information to associate it with one unique set of 

Twiss functions (see Figure).  Without additional 

information, a single point can be equally well 

represented by any of an infinite number of sets of 

Twiss functions (i.e. families of ellipses).  Once an 

arbitrary choice has been made for the Twiss

functions, a unique emittance can always be found 

that places the single ion on just one ellipse in that 

family.  This arbitrary set of parameters can then 

be tracked through the lattice and will always 

represent the ion’s motion correctly.
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Transfer lines continued

� A collection of ions in phase space will, ‘subject 

to interpretation’, define a unique set of Twiss

parameters and an emittance that together 

define the beam.

� One can always impose a statistical solution on 

the phrase ‘subject to interpretation’ by making 

a least squares fit of an ellipse to the ion 

distribution.

Distribution of particles 

typically between 108 to 

1011 in number

2-sigma ellipse fitted 

to distribution

Area of ellipse is defined 

as the 2-sigma emittance

of the beam
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What happens when a transfer line 

meets a ring?

� In transfer lines, the ellipse always “belongs” to the 

beam, or at least the user’s interpretation of what 

the beam should be.  The Twiss parameters should 

be marked in some way to show this, but this is 

rarely done.

� In a ring, the matched ellipse “belongs” to the lattice

because it is defined by the periodicity.

� If now a beam ellipse, that is not equal to the 

matched ellipse, is injected into a ring and observed 

at the same position in the ring over several turns, 

it will turn with regular angular steps inside the 

matched ellipse (see Figure below).

� In this situation, the beam has a mismatched ellipse

and the ring is effectively behaving like a long 

transfer line that has a repeating structure.
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Debunching and filamentation

� After a few thousand turns the structure of the 

mismatched ellipse will start to be lost and the beam 

will fill the matched ellipse.  The matched ellipse 

corresponds to the Twiss parameters as derived 

earlier for a ring.  These parameters “belong” to 

the lattice and always impose themselves on any 

beam that circulates in the ring for many turns.

� Two processes spread out the ions in the 

mismatched ellipse to fill the matched ellipse.

� A momentum spread, however small, introduces a 

spread in the revolution frequency that destroys the 

initial distribution.  This is a debunching effect. 

� There is always some non-linearity that correlates 

tune value with amplitude.  This effect, called 

filamentation, distorts the initial ellipse into an “S”

(see Figure).  As the tails grow longer they grow 

narrower.  From the mathematician’s viewpoint, 

phase-space area is conserved (Liouville’s theorem), 

but for all practical purposes filamentation is a loss 

of phase-space density and an increase in emittance.
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Chromaticity

� Chromaticity refers to effects caused by a 
momentum dependence.  The name arises because 
the momentum/energy of an ion is closely 
analogous to the frequency (and hence the colour) 
of light in classical optics.

� The dispersion function that arises from the 
differential bending in dipoles for ions of different 
momenta is strictly a chromaticity effect, but it is 
not referred to as such.

� The effect arising from the differential focusing 
with momentum causes the betatron phase 
advance or tune in a ring to change with 
momentum.  This is generally known as the 
chromaticity and can be defined in two ways:

� The first definition is the more widely used, but 
the second definition is liked for its symmetry.

� The next level of chromaticity is the variation of 
the Twiss αααα and ββββ with momentum.  This is 
treated by formulating a so-called w-vector (see 
last lecture).  There is also a suite of routines in 
the lattice program WinAGILE on the CD-ROM.
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