

LINACS

Jean-Baptiste Lallement, Veliko Dimov BE/ABP – CERN jean-baptiste.lallement@cern.ch

http://jlalleme.web.cern.ch/jlalleme/Juas2018/

Credits

9 WILEY-VCH

Much material is taken from:

• Thomas Wangler, RF linear accelerators

RF Linear Accelerators

- Nicolas Pichoff from previous CAS school
- Maurizio Vretenar from previous CAS school <u>http://cas.web.cern.ch/cas/</u>
- Alessandra Lombardi from previous JUAS school

Before starting

- Please, ask questions.....
 - During the lecture.
 - During the tutorial.
 - Feel free to contact me later.
- We will put together many concepts already seen : Relativity, Electromagnetism, RF, Transverse and Longitudinal beam dynamics...

Organization of the Lecture

Schedule 2018	Monday Jan 22 nd	Tuesday Jan 23 rd	Wednesday Jan 24 th	Thursday Jan 25 th	Friday Jan 26 th
09:00	Longitudinal Dynamics	Longitudinal Dynamics	Longitudinal Dynamics	Longitudinal Dynamics	Linear imperfections
	lecture	lecture	lecture	lecture	lecture
10:00	E. Métral/B. Salvant	E. Métral/B. Salvant	E. Métral/B. Salvant	E. Métral/B. Salvant	H. Bartosik
10:15	Coffee Break	Coffee Break	Coffee Break	Coffee Break	Coffee Break
	Longitudinal Dynamics lecture	Longitudinal Dynamics lecture	Longitudinal Dynamics lecture	Longitudinal Dynamics lecture	Linear imperfections lecture
11:15	E. Métral/B. Salvant	E. Métral/B. Salvant	E. Métral/B. Salvant	E. Métral/B. Salvant	H. Bartosik
	Longitudinal Dynamics lecture	Longitudinal Dynamics lecture	Longitudinal Dynamics lecture	Longitudinal Dynamics lecture	Non-linear effects lecture
12:15	E. Métral/B. Salvant	E. Métral/B. Salvant	E. Métral/B. Salvant	E. Métral/B. Salvant	H. Bartosik
	WORKING LUNCH	BREAK	BREAK	BREAK	BREAK
14:00	Linear imperfections lecture	Linear imperfections lecture	Linacs lecture	Linacs tutorial	Non-linear effects lecture
15:00	H. Bartosik	H. Bartosik	J-B. Lallement	J-B. Lallement	H. Bartosik
	Linear imperfections lecture	Linear imperfections lecture	Linacs lecture	Linacs tutorial	Non-linear effects lecture
16:00	H. Bartosik	H. Bartosik	J-B. Lallement	J-B. Lallement	H. Bartosik
16:15	Coffee Break	Coffee Break	Coffee Break	Coffee Break	Coffee Break
	The neutrino physics programme	Free-Electron Lasers Seminar	Linacs lecture	Linacs tutorial	Non-linear effects lecture
17:15	Alain Blondel CERN & U. of Geneva	E. Prat	J-B. Lallement	J-B. Lallement	H. Bartosik
11.15					

Organization of the Lecture

- 3 hours + 3 hours tutorial
- Lecture

Part1: Introduction to Linacs.Part2: Cavities and structures.Part3: Beam dynamics.Part4: Bonus

Tutorial

Several problems to better understand and put in practice the different concepts.

Part1: Introduction

- What is a LINAC
- A bit of history
- Why a LINAC
- Principle of RF LINACs

What is a LINAC

• LINear ACcelerator : A device where charged particles acquire energy moving on a linear path.

$$m.\frac{d^2\vec{z}}{dt^2} = q.\left(\vec{E} + \frac{d\vec{z}}{dt} \times \vec{B}\right)$$

Acceleration related to the sum of the forces

$$\frac{d\vec{p}}{dt} = q.\left(\vec{E} + \frac{d\vec{x}}{dt} \times \vec{B}\right)$$

Momentum

$$\frac{dW}{dt} = \frac{d\vec{z}}{dt} \cdot \frac{d\vec{p}}{dt} = q \cdot \frac{d\vec{z}}{dt} \cdot \left(\vec{E} + \frac{d\vec{z}}{dt} \cdot \vec{B}\right)$$

Energy gain !

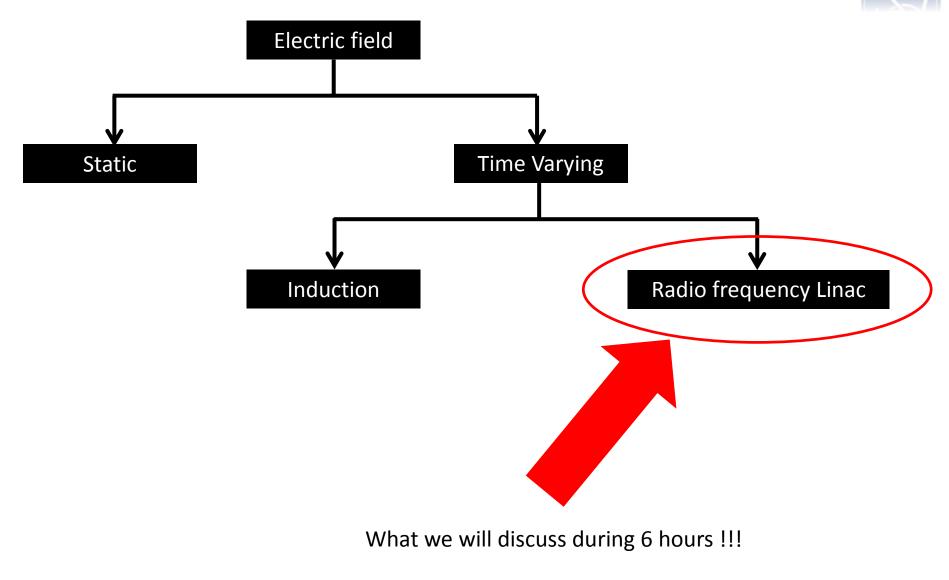
Energy gain thanks to the electric field.

What is a LINAC

• LINear ACcelerator : A device where charged particles acquire energy moving on a linear path.

 $\left(\vec{E} + \frac{d\vec{z}}{dt} \times \vec{B}\right)$

Type of the accelerated Particles


- Charge
- Mass

Mainly:

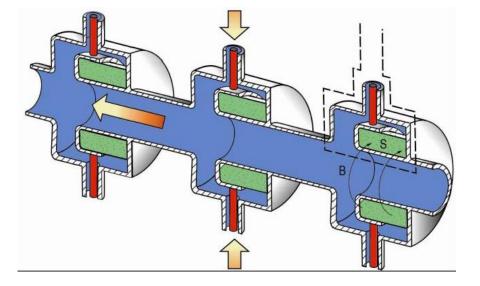
Electrons Protons and light ions Heavy ions Type of the accelerating sturcture

- Electric field for acceleration
- Magnetic field for focusing/bending

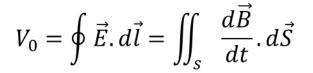
Different type of LINACs

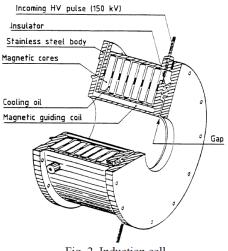
Example of a static Linac

Constant potential difference (electric field) Energy gain in [eV]

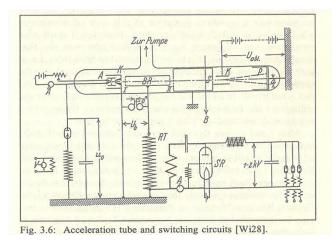

Acceleration limited to few MeV (electric field breakdown)

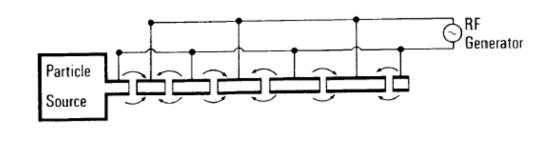
Still used in very first stage of acceleration


Picture : 750 kV Cockcroft-Walton Linac2 injector at CERN from 1978 to 1992.

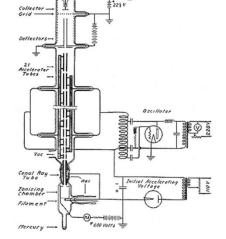

Principle of the induction linac

H.V. coaxial feeding cables cell body I electric ground accelerating gap I b Ē I b E E E (2) A varying magnetic field can generate an electric field.


The first Radio Frequency Linac

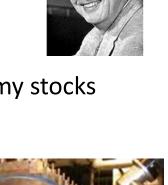


Acceleration by time varying electromagnetic field overcome the limitation of static fields.


First RF linac design and experiment – Wideroe Linac in 1928 K beam – 2*25 kV = 50 keV

First working Linac – Berkeley in 1931 Hg beam – 30*42 kV = 1.26 MeV

• Development of Radar technology during the WW II.

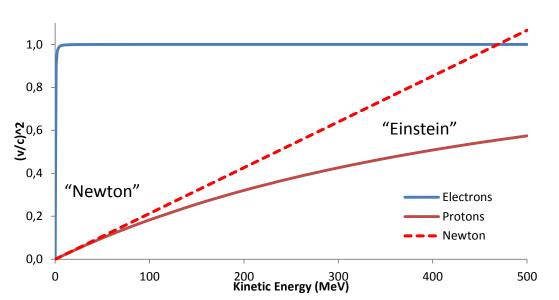

• Competences and components in the MHz-GHz range.

From Wideroe to Alvarez

Big Jump in RF technology – 40's

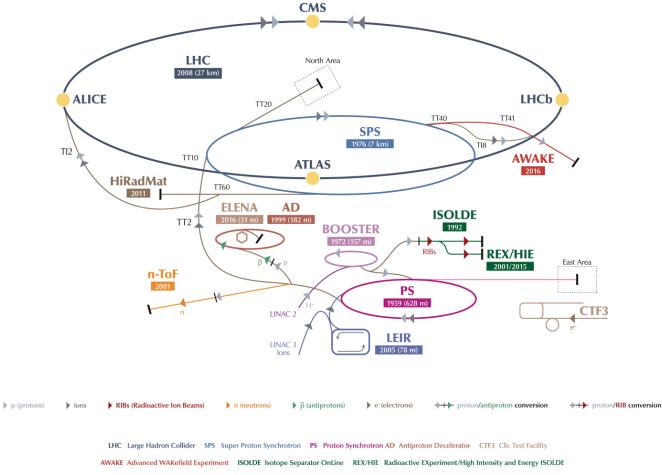
- Drift tubes inside a cavity resonator
- After WW II, 2.000 transmitters at 202.56 MHz from US army stocks
- First Drift Tube Linac in 1955 from 4 to 32 MeV.

Bases of modern RF linac technology !!!


Why LINACs

	LIN	SYNCHROTRON	
Particle	Low Energy	High Energy	High Energy
Protons, lons	Injector to synchrotrons, stand alone applications. Synchronicity with the RF fields in the range where velocity increase with energy.	Production of secondary beams (n, v, RIB,) Higher cost/ MeV than synchrotrons High average beam current (repetition rate, less resonnaces, easier beam loss)	Very efficient when velocity is constant (multiple crossing of RF gaps). Limited current (repetition frequency, instabilities)
Electrons	Conventional e- linac Simple and compact	Linear colliders No energy loss due to synchrotron radiation – smaller beam size. Only option for high energy.	Ligth sources Can accumulate high beam intensities.

Why LINACs

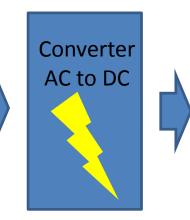

Electons mass 511 keV Proton mass 938.27 MeV (1836 time e- mass) At 3 MeV, $\beta_{e-} = 0.99$, $\beta_{p+} = 0.08$ At 500 MeV, $\beta_{p+} = 0.76$

Introduction

A Linac is a perfect structure to adapt to non-relativistic particles

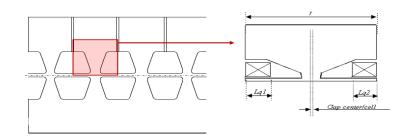
Why LINACs

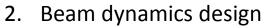
LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials


A Linac is a perfect structure to adapt to non-relativistic particles

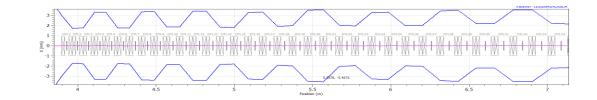
Linacs-JB.Lallement-JUAS 2018

RF acceleration



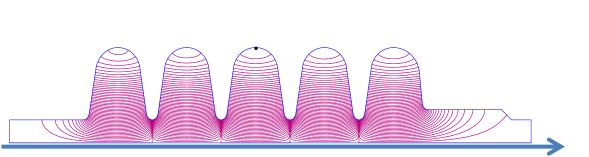

From RF to acceleration

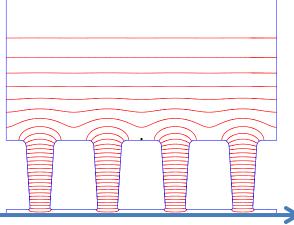
Designing an RF LINAC



- 1. Cavity design
 - Control the field pattern inside the cavity
 - Minimize the Ohmic losses on the walls/maximize the stored energy

- Control the timing btw field and particles
- Insure that the beam is kept in the smallest possible volume during acceleration


From RF to acceleration

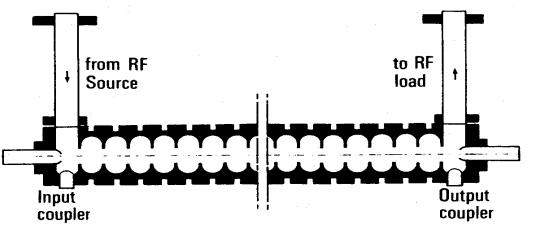

Electric field in a cavity

- JUAS 2018 n be
- Assuming that the solution of the wave equation in a bounded medium can be written as

$$E(x, y, z, t) = E(x, y, z). e^{-j\omega t}$$
Function of space
Function of time
Oscillating at freq. $\omega/2\pi$

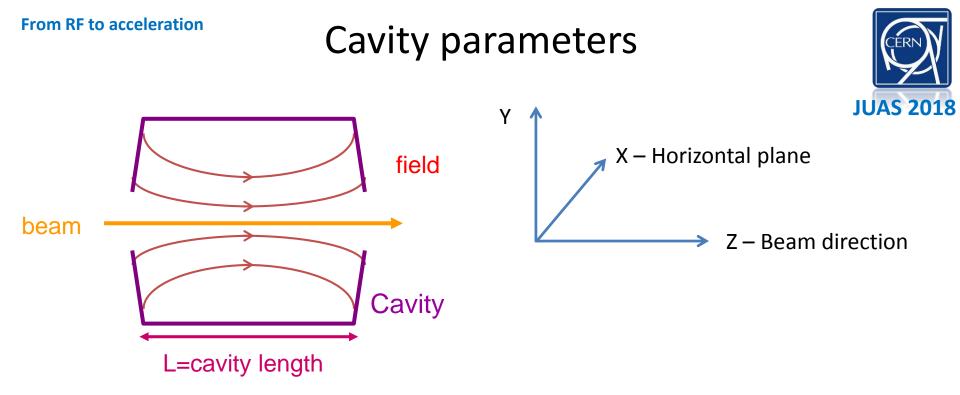
• First step in cavity design: Concentrating the RF power on the beam path in the most efficient way. Tailor E(x, y, z) by choosing the appropriate cavity geometry

From RF to acceleration One word on travelling wave cavities



These cavities are essentially used for acceleration of ultra-relativistic particles. The longitudinal field component is:

$$E_{z}(r,z,t) = \sum E_{n}(r) \cdot e^{j(\omega t - k_{n}z)}$$


 $E_n(r) \cdot e^{j(\omega t - k_n z)}$ is a space harmonic of the field, given by the cavity periodicity

Particle whose velocity is close to the phase velocity of the space harmonic exchanges energy with it. Otherwise, mean effect is null.

Constant cell length does not allow synchronism Structures are long without space for transverse focusing

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Average electric field: E_0 measured in V/m.

Average electric field on <u>beam axis</u> in <u>the direction of the beam propagation</u> at a given moment in <u>time when E(t) is maximum</u>.

$$E(x, y, z, t) = E(x, y, z). e^{-j\omega t}$$

x=0, y=0, z from 0 to L (cavity length)

$$E_0 = \frac{1}{L} \int_{0}^{L} E(0,0,z) dz$$

Measure how much field is available for acceleration Depends on the cavity shape, resonating mode and frequency

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Shunt impedance

Shunt impedance (per unit of length): **Z** measured in Ω/m .

Defines the ratio of the average electric field squared (E_0^2) to the power (P) per unit of length (L) dissipated on the walls surface.

$$Z = E_0^2 \cdot \frac{L}{P} \quad or \ Z = E_0^2 \cdot \frac{dL}{dP}$$

Measure how well we concentrate the RF power in the useful region. Independent on the field level and cavity length. Depends on cavity mode and geometry.

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Quality factor: **Q** dimension-less.

Defines the ratio of the stored energy (U) to the power lost on the wall (P) in one RF cycle (f = frequency).

$$Q = \frac{2\pi . f}{P} . U$$

Q is a function of the geometry and of the surface resistance of the cavity material.

Examples at 700 MHz

Superconducting (niobium): Q=10¹⁰ (depends on temperature) Normal conducting (copper): Q=10⁴ (depends on cavity mode)

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Filling time

Filling time: t_F measured in sec. Two different definition for traveling or standing wave.

• For TW: Time needed for the electromagnetic energy to fill the cavity of length L

• For SW: Time it takes for the field to decrease by 1/e after the cavity has beam filled.

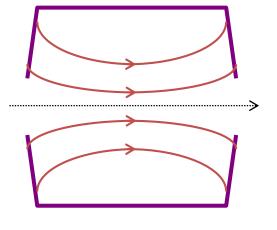
$$t_F = \frac{2Q}{\omega}$$

How fast the stored energy is dissipated to the wall

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Transit time factor

Transit time factor: **T** dimension-less.


Defines the ratio of the energy gained in the time varying RF field to that in a DC field.

T is a measure of the reduction in energy gain caused by the sinusoidal time variation of the field in the gap.

$$E(x, y, z, t) = E(x, y, z). e^{-j\omega t}$$

Energy gain of a particle with charge q on axis at phase $\varphi.$

$$\Delta W = \int_0^L q E_z(0,0,z). e^{-j(\omega t + \phi)} dz$$

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Transit time factor

Assuming a constant velocity thru the cavity (<u>approximation!!!</u>), we can relate position and time via

$$Z = v.t = \beta c.t$$

We can write the energy gain as

$$\Delta W = q. E_0. L. T. \cos(\phi)$$

And define transit time factor as

$$T = \frac{\int_{-L/2}^{L/2} E_z(z) \cdot e^{-j\left(\frac{\omega z}{\beta c}\right)} dz}{\int_{-L/2}^{L/2} E_z(z) \cdot dz} = \frac{\int_{-L/2}^{L/2} E_z(z) \cdot e^{-j\left(\frac{\omega z}{\beta c}\right)} dz}{E_0 L}$$

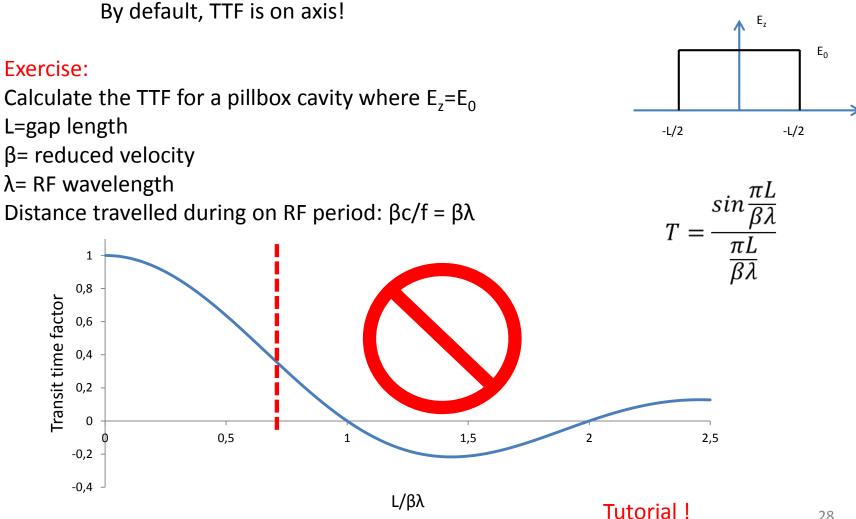
T depends on the particle velocity and on the gap length. It does not depend on the field.

- Average electric field 1.
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Exercise:

1

0,4


0

Transit time factor

Transit time factor

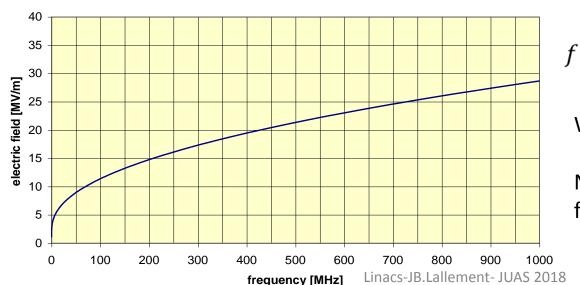
NB: TTF depends on x and y (distance for the beam axis in cylindrical symmetry.

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor
- 6. Effective shunt impedance

Effective shunt impedance: **ZT**².

More practical for accelerator designers who want to maximize the particle energy gain per unit power dissipation.

$$ZTT = (E_0 T)^2 \cdot \frac{L}{P}$$


While the shunt impedance measures if the structure design is optimized, the effective shunt impedance measures if the structure is optimized and adapated to the velocity of the particle to be accelerated.

Limit to the field in a cavity

- Normal conducting
 - Heating
 - Electrical peak surface field (sparking)
- Super conducting
 - Quenching
 - Magnetic field on the surface (in Niobium max 200 mT)

The Kilpatrick sparking criterion Normal conducting – Large gap

Normal conducting

Kilpatrick field

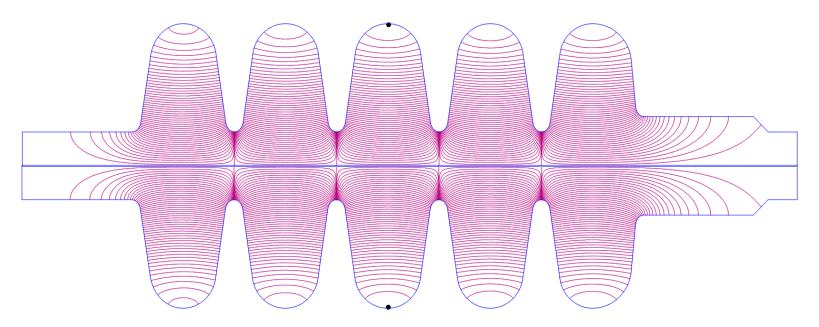
$$f = 1.64 * E^2 * \exp\left(\frac{-8.5}{E}\right)$$

W.D. Kilpatrick in the 50's


Nowadays, the peak surface field up to 2 Kilpatrick

Tutorial !

Example of cavities


Summary of Part1

First step to accelerating is to fill a cavity with electromagnetic energy to build a resonant field. In order to be the most efficient, one should:

- Concentrate the field in the beam area
- Minimize losses of RF power
- Control the limiting factors to put energy into the cavity

The is achieved by shaping the cavity in the appropriate way

