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compact cyclotrons

Separated sectors (ring cyclotrons)

Synchrocyclotrons
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• Acceleration
• Injection 
• Extraction

-Theory vs reality (cost, 
,tunes,isochronism,...)
Exemples
-Medical cyclotron
-Reseach facility



CYCLOTRON HISTORY

brilliant idea (E. Lawrence,

The Inventor, E. Lawrence,  get the Nobel in Physics 
(1939)  (first nuclear reactions without alpha source )

Chapter 1 : part a

Berkeley, 1929) : RF accelerating
field is technically complex and
expensive.

So Let ‘s use only 1 RF cavity, but
many times

A device is put into a magnetic field,

AC generator
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A device is put into a magnetic field,
curving the ion trajectories and only
one electrode is used several times.



What  is  a CYCLOTRON ?

•RF accelerator for the ions :

from proton A=1 to Uranium A=238
• Energy range for proton 1MeV -1GeV (γ∼1-2)• Energy range for proton 1MeV -1GeV (γ∼1-2)
• Circular machine : CW (and Weak focusing)
• Size Radius=30cm to R=6m

• RF Frequency : 10 MHz -60 MHz
APPLICATIONS : Nuclear physics

( from fundamental to applied research)
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( from fundamental to applied research)

: Medical application
Radio Isotopes production (for PET scan,....)
Cancer treatment

Quality : Compact and Cost effective



Useful concepts for the cyclotrons
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Cyclotron coordinates

r Radial  =  horizontal
z Axial    =  vertical2).1( mcEK −= γ z Axial    =  vertical
θ « Azimuth » = cylindrical angle 

MeV/A= kinetic energy unit in MeV
per nucleon

Ions  :   QA X

θ
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Ions  :   

A : nucleons number

Z: protons number

Q : charge state  : 0+,1+,2+,…..

QA
Z X

0B=×∇
Maxwell equation



Principle :the hardware

H-type 
electro-magnet

Magnet

E = [ V1(t)-V0 ] /d
~ cos( ωt )

Bz

electro-magnet

Accelerating Dee’s

2 Copper boxes  
≠  potential

-half is   V1(t) ~ cos( ωt )

~ cos( ωt )
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-half is   V1(t) ~ cos( ωt )

- half is 
at the ground potentialAC generatorBz



Principle B: the trajectories

Egap

Particles in phase with RF
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R(t)

Turn 1 Turn 2

<R(t)>  # Bρ / <B>

Turn 3



A compact cyclotron in reality

Magnet (Bz) :Magnet (Bz) :
1) Yoke
2) poles
3) coils

RF cavities
4) Dee
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4) Dee

Electrostatic Deflector



Radial probes 
useful tool to check the acceleration

. Radial probe Monitoring beam with a
Radial Probe

Intensity (nA)

Radius

Radial probe  :     I = F(Radius)
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Radius in the cyclo =  f( Turn Number )

Turn separation :  δr =R(turn N) - R(turn N-1) 



Trajectory in uniform B field

Let’s consider an ion with a charge q and a mass m circulating 
at a speed vθ in a uniform induction field B.=(0,0,Bz)
The motion equation can be derived from the Newton’s law and the  Lorentz 
force F  in a cylindrical coordinate system (er,eθ,ez):
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Trajectory in uniform B field
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For non relativistic ions   (low energy) � γ ~ 1
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Let’s  accelerate ions, in a constant vertical  field Bz

The Radius evolves with  P/q :

In this domain, if   Bz =const  � ω=const 

same ∆Τ for each Turnconst
m

qBz
rev ≈=

γ
ω

So, it is easy to synchronize an Accelerating cavity (RF) 
having a “D” shape, with accelerated ions

)(cos0 tVV
RF

ω=
+V

having a “D” shape, with accelerated ions

ωRF = h ωrev

h = 1, 2, 3, … called the RF harmonic number (integer)



Harmonic number h=FRF/Frevolution

h = 1  1 bunch  by turn ωrf = h ωrev

+V

E

upper gap lower gap

+V

E
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-V
E



Isochronism condition: The particle takes the same amount of time 
to travel one turn : (constant revolution frequency ωrev =const)  

and  with ωrf = h ωrev, the particle is synchronous with the RF 
wave.

In other words, the particle arrives always at the same RF phase in the In other words, the particle arrives always at the same RF phase in the 
middle of the accelerating gap.

Turn 1,   2,       3,       4
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Longitudinals with relativistic particles

With  B z = constant , relativistic  γ increases  AND  ωrev decreases

m
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Transverse dynamics
in the cyclotrons
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Isochronism condition Bz =Bz( R)    ~ γ
( longitudinal)
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We will show that that isochronism
have a bad consequence on

vertical oscillations



Cyclotrons Tutorials 1

•An isochronouscyclotron uses aRF cavity
at 60 MHz at the RF harmonic h=3

a. Computethe time needed to perform

one turn Trev for the accelerated ions.

b. Compute the average fieldBz needed
to acceleratea proton beamto acceleratea proton beam

( in a non relativistic approximation )



Cyclotrons Tutorials 2
•Demonstrate than in a uniform circular motion , the radial
acceleration is

ar= |V2 / R| . er Y

Nota : You can use parametric equations : eθ θ

X

X(t) = R cos(ω t )
Y(t) = R sin(ω t )

Then compute the velocity and the acceleration.
Demonstrate that the accelerationis radial

Nota : ω t= θ ω = dθ/dt



ion trajectory in cyclotrons
Steenbeck 1935, Kerst and Serber 1941

We will use cylindrical coordinates (er,  eθ,  ez)

We  will  show that 
In Radial  plane (horizontal)In Radial  plane (horizontal)

Radial tune νr 

In the Vertical (axial)  plane 

radius(t) = R(t)+ x0 cos(νr  ωrev t)

In the Vertical (axial)  plane 

z(t) = z0 cos(νz ωrev t)

axial tune νz 3 slides to compute νz &  νr



Transverse dynamics with Bz(R)
cylindrical coordinates (er,  eθ,  ez)

and 
define x a small orbit deviation with  Bz=Bz(r)  (not constant)

ezer tztxR .][ )()( . ++=r
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x
eθ

R0 r

Bz(R) = γ(R)   B0
= R –n B0

Isochron field

Circular  orbit

Median plane
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Uniform Circular motion x=0

Motion Eq. With x≠ 0  ?????



• Taylor expansion of the field Bz around the median plane:

• definition of  n(R)        Bz =B0 R –n n =field index  (Bz is never uniform)

so                                                                            
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•How evolves an ion, in this non uniform Bz :    r(t)= R+x(t) 
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Harmonic oscillator with the frequency 
01 ωω nr −=
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Horizontal stability condition ( νr real) : n < 1

n <1  :  Bz could decrease//or increase with the radius R

Horizontal stability is generally easy to obtain   



Horizontal stability condition ( νr real) :

[ ] 00
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Harmonic oscillator with the frequency 

nr −= 1ν
νr   Radial tune

x(t) = x cos(ν ω t)

n<0 :  isochronism condition Bz should increase          

n<1   : stability condition ( νr 2 > 0)

Horizontal stability   if  n <1

νr 2 =1-n    > 0

x(t) = x0 cos(νr ω0 t)

n<1   : stability condition ( νr 2 > 0)

r(t) = R0(t)+ x0 cos(νr ω0 t) νr = 1
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Vertical motion in the non uniform B z(r)
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Vertical dynamics with B (r)
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Vertical stability condition :  n  >0  (νz real) 

NOT COMPATIBLE WITH ISOCHRONISM



Watch the vertical oscillations  !! 

n < 0      : Bz(R )~ R-n :increase with RIsochronism condition :

Vertical  tune  

nz =ν

Isochronism condition will induce Unstable oscillations

n < 0
niz =ν

[ ] 02
0 =+ zz zων&&
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z(t) ~ z0 exp( -i νz ωrev t ) = z0 exp(+| νz | ωrev t) 

Unstable oscillations in Z
= exponential growth =beam losses



Tunes :  νr &  νz
oscillations around reference trajectory

r(t) = R0(t)+  x0 cos(νr ωrev t)

νr :Number of radial oscillations per cyclotron turn
νr = 3

z(t) = z0 cos(νz ωrev t) = z0 cos(νz θ)

νr :Number of radial oscillations per cyclotron turn
in horizontal (radial) plan

νr
2 = 1-n   stable oscillations 

2
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νz
2 = n   < 0    unstable oscillations  

(νz = i | νz |)

z(t) ~ z0 exp( ±| νz | ωrev t)



Vertical stability≠ Isochronism

mR

RqBz
rev )(

)(

γ
ω =Isochronism condition            B=Bz( R)  

( longitudinal)

Unstable Vertical oscillations ( Br defocus in z plane)   

Bz should increase with R  (Bz =B0 R -n n<0 )
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Additive Vertical focusing is needed

Bθ component needed (Fz =-q vr Bθ ) : « AVF » Cyclo
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Azimuthally Varying Field (“AVF”)
Vertical weak focusing : Bz = f( R,θ )

Bz = f( R,θ )

•Fz ~  <q vr. Bθ >: Vertical focusing 

0B=×∇

Bθ =g( R,θ )

Like edge focusing in dipole magnet :
Bz variation   

can produce vertical forces
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Isochronism n<0 : Bz(R) increase with  R

Vertical stability  :   Bz(R )  Defocus  +   Bθ Focus
Bz should oscillate with θ to compensate the instability

• Vertical force  Fz , with component  Bθ



Bθ created by:

Succession of high field and low field regions :   Bz = f( R,θ )

Azimuthally varying Field (AVF)
an additive focusing vertical force <Fz>= q<vr . Bθ >

Chapter 1

• Bθ appears around the median plane

• valley : large gap, weak field

• Hill : small gap, strong field
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Hill valley Hill      valleyN=4    sectors



Azimuthally varying Field (AVF) 
Exemple : 30 MeV compact proton cyclo.

4 straight sectors

-2 RF cavities
Inserted in the     

Chapter 1

Inserted in the     
valleys

= 4 accelerating gaps

4 Hills +   4 Valleys

Valley

RF
RF
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4 Hills +   4 Valleys

HILL
RF

HILLValley


