Beam dynamics for cyclotrons

Bertrand Jacquot \& F.Chautard
GANIL, Caen, France

compact cyclotrons

Fixed energy
Separated sectors (ring cyclotrons)
Synchrocyclotrons

OUTLINE

Chapter 1 : theory

- Principle
- Basic equation
- Longitudinal dynamics
- Transverse dynamics

Chapter 2 :specific problems

-Longitudinal dynamics

- Acceleration
- Injection
- Extraction

Chapter 3 : design

- Design strategy
- Tracking
- Simulations

Chapter 1 : part a

CYCLOTRON HISTORY

The Inventor, E. Lawrence, get the Nobel in Physics (1939) (first nuclear reactions without alpha source)
 -brilliant idea (E. Lawrence, Berkeley, 1929) : RF accelerating field is technically complex and expensive.

So Let 's use only 1 RF cavity, but many times

A device is put into a magnetic field, curving the ion trajectories and only one electrode is used several times.

What is a CYCLOTRON?

-RF accelerator for the ions :
from proton $\mathrm{A}=1$ to Uranium $\mathrm{A}=238$

- Energy range for proton $1 \mathrm{MeV}-1 \mathrm{GeV}(\gamma \sim 1-2)$
- Circular machine : CW (and Weak focusing)
- Size Radius $=30 \mathrm{~cm}$ to $\mathrm{R}=6 \mathrm{~m}$
- RF Frequency : $10 \mathrm{MHz}-60 \mathrm{MHz}$

APPLICATIONS: Nuclear physics
(from fundamental to applied research)
: Medical application
Radio Isotopes production (for PET scan,....)
Cancer treatment
Quality : Compact and Cost effective

Useful concepts for the cyclotrons

$$
B \rho=\frac{P}{q}=\frac{\gamma m \cdot v}{q}
$$

$$
E_{K}=(\gamma-1) \cdot m c^{2}
$$

 $\nabla \times B=0$

Cyclotron coordinates
r Radial $=$ horizontal
z Axial $=$ vertical
θ «Azimuth» $=$ cylindrical angle
$\mathrm{MeV} / \mathrm{A}=$ kinetic energy unit in MeV per nucleon

Ions :

$$
{ }_{Z}^{A} X^{Q}
$$

A : nucleons number
Z: protons number
Q : charge state : $0+, 1+, 2+, \ldots .$.

Principle :the hardware

Principle B: the trajectories

A compact cyclotron in reality

Radial probes useful tool to check the acceleration

Monitoring beam with a Radial Probe

Radial probe: $\quad I=F$ (Radius)
Radius in the cyclo $=f($ Turn Number $)$

Turn separation : $\delta \mathbf{r}=\mathrm{R}($ turn N$)-\mathrm{R}($ turn $\mathrm{N}-1)$

Trajectory in uniform B field $\frac{d(\gamma m \overrightarrow{\mathrm{v}})}{d t}=\vec{F}$

Let's consider an ion with a charge \boldsymbol{q} and a mass \boldsymbol{m} circulating at a speed \boldsymbol{v}_{θ} in a uniform induction field $\boldsymbol{B} .=(0,0, B z)$
The motion equation can be derived from the Newton's law and the Lorentz force \boldsymbol{F} in a cylindrical coordinate system (er,e e, ez):

$$
\frac{d(\overrightarrow{\mathrm{v}})}{d t}=\vec{a}=\frac{d^{2}(R . \overrightarrow{e r})}{d t^{2}}=-\left[\|\overrightarrow{\mathrm{v}}\|^{2} / R\right] \cdot \overrightarrow{e_{r}}
$$

$$
\begin{aligned}
& \frac{m \mathrm{v}^{2}}{R}=-q \mathrm{v}_{\theta} B_{z} \\
& \mathrm{v}_{\theta}=R \stackrel{\bullet}{\theta}
\end{aligned}
$$

$$
\frac{d \vec{p}}{d t}=\vec{F}=q(\overrightarrow{\mathrm{~V}} \times \vec{B})=-q \mathrm{v}_{\theta} B_{z} \overrightarrow{e_{r}}
$$

$$
R=\frac{\gamma m v}{q B_{z}}
$$

Trajectory in uniform B field

$$
R=\frac{B \rho}{B_{z}}=\frac{\gamma m \mathrm{v}}{q B_{z}}
$$

$\sqrt{\square}$

$$
\omega_{\text {rev }}=2 \pi F_{\text {rev }}=\dot{\theta}=\frac{d \theta}{d t}=\frac{\mathrm{v}_{\theta}}{R}=\frac{q B}{\gamma m}
$$

$$
\omega_{\text {rev }}=\frac{q B}{\gamma m} \quad \begin{array}{r}
\text { Centrifugal force }=\text { Magnetic force } \\
\gamma \frac{m \mathrm{v}_{\theta}^{2}}{R}=q \mathrm{v}_{\theta} B_{z}
\end{array}
$$

Let's accelerate ions, in a constant vertical field Bz
The Radius evolves with P/q :

$$
R(t)=\frac{\gamma m v}{q B_{z}}=\frac{B \rho}{B_{z}}
$$

For non relativistic ions (low energy) $\Rightarrow \gamma \sim 1$
In this domain, if $B z=$ const $\Rightarrow \omega=$ const
$\omega_{\text {rev }}=\frac{q B_{z}}{\gamma m} \approx$ const same $\Delta \mathrm{T}$ for each Turn
So, it is easy to synchronize an Accelerating cavity (RF) having a "D" shape, with accelerated ions

$$
V=V_{0} \cos \left(\omega_{R F} t\right)
$$

$h=1,2,3, \ldots$ called the RF harmonic number (integer)

Harmonic number h=FRF/Frevolution

$$
\mathbf{h}=\mathbf{1} 1 \text { bunch by turn } \omega_{\mathrm{rf}}=\mathbf{h} \omega_{\mathrm{rev}}
$$

Isochronism condition: The particle takes the same amount of time to travel one turn : (constant revolution frequency $\omega_{\text {rev }}=$ const)
and with $\omega_{\mathrm{rf}}=\mathrm{h} \omega_{\mathrm{rev}}$, the particle is synchronous with the RF wave.

In other words, the particle arrives always at the same RF phase in the middle of the accelerating gap.

Longitudinals with relativistic particles

With $\mathbf{B z}=$ constant, relativistic γ increases AND Wrev decreases

$$
\omega_{r e v}=\frac{q \cdot B_{z}(r)}{\gamma(r) m}
$$

Isochronism condition fulfilled if
$\mathrm{Bz}(\mathrm{r}) / \gamma(\mathrm{r})=$ CONSTANT

Transverse dynamics in the cyclotrons

$$
\omega_{\text {rev }}=\frac{q B_{z}(R)}{\gamma(R) m}=\text { const }
$$

Isochronism condition
(longitudinal)

$$
\underbrace{B z=B z(R)} \sim \gamma
$$

We will show that that isochronism have a bad consequence on vertical oscillations

Cyclotrons Tutorials 1

-An isochronous cyclotron uses a RF cavity at 60 MHz at the RF harmonic $\mathrm{h}=3$
a. Compute the time needed to perform one turn Trev for the accelerated ions.
b. Compute the average field Bz_{z} needed to accelerate a proton beam
(in a non relativistic approximation)

Cyclotrons Tutorials 2

-Demonstrate than in a uniform circular motion , the radial acceleration is

$$
\mathbf{a}_{\mathrm{r}}=\left|\mathbf{V}^{2} / \mathbf{R}\right| .
$$

Nota : You can use parametric equations:

$$
\begin{aligned}
X(t) & =R \cos (\omega t) \\
Y(t) & =R \sin (\omega t)
\end{aligned}
$$

Then compute the velocity and the acceleration. Demonstrate that the acceleration is radial
Nota
$\omega t=\theta$
$\omega=\mathbf{d} \theta / \mathbf{d t}$

ion trajectory in cyclotrons

 Steenbeck 1935, Kerst and Serber 1941We will use cylindrical coordinates (er, e θ, ez)

We will show that

In Radial plane (horizontal)

$$
\operatorname{radius}(t)=R(t)+\mathbf{x}_{0} \cos \left(v_{r} \omega_{r e v} \mathbf{t}\right)
$$

Radial tune v_{r}
In the Vertical (axial) plane
$\mathrm{z}(\mathrm{t})=\mathrm{z}_{0} \cos \left(\mathrm{v}_{\mathrm{z}} \omega_{\mathrm{rev}} \mathbf{t}\right)$
axial tune $v_{z} \quad 3$ slides to compute $v_{z} \& v_{r}$

Transverse dynamics with Bz(R)

cylindrical coordinates (er, e日, ez) and
define x a small orbit deviation with $\mathrm{Bz}=\mathrm{Bz}(\mathrm{r})$ (not constant)

$$
\overrightarrow{\mathbf{r}}=[R+x(t)] \cdot \overrightarrow{e r}+z(t) \cdot \overrightarrow{e z}
$$

Circular orbit

$$
\begin{aligned}
B z(R) & =\gamma(R) \quad B_{0} \quad \text { Isochron field } \\
& =R^{-n} B_{0}
\end{aligned}
$$

Uniform Circular motion $x=0$ Motion Eq. With $x \neq 0$?????

$$
m \frac{d(\overrightarrow{\mathbf{v}})}{d t}=m \frac{d^{2}(\mathbf{r})}{d t^{2}}=?
$$

Radial dynamics with $\mathrm{Bz}(\mathrm{R})$ (No RF)

- Taylor expansion of the field B_{z} around the median plane:
- definition of $n(R) \quad B z=B_{0} R^{-n}$

SO

$$
B_{z}=B_{0 z}+\frac{\partial B_{z}}{\partial x} x+\ldots \approx B_{0}\left(1-n \frac{x}{R}\right)
$$

$$
\text { with } \quad n=-\frac{R}{B_{0}} \frac{\partial B_{z}}{\partial R}
$$

-How evolves an ion, in this non uniform $\mathrm{Bz}: r(t)=R+x(t)$

$$
m \gamma \frac{d^{2} \vec{r}}{d t^{2}}=-q \mathbf{v} \times \mathbf{B} \quad r=R(1+x / R)
$$

$$
\frac{d^{2}(r \cdot \overrightarrow{e r})}{d t^{2}}=\left(\ddot{x}-\frac{\mathrm{v}_{\theta}^{2}}{r}\right) \overrightarrow{e r}+2 \ddot{x} \ddot{e}_{r}
$$

radial motion (er)

$$
\begin{gathered}
=\left[\ddot{x}-\frac{\mathrm{v}_{\theta}^{2}}{R}\left(1-\frac{x}{R}\right)\right] \overrightarrow{\mathrm{er}}+2 \dot{x} \cdot \overrightarrow{\mathbf{e}_{\boldsymbol{\theta}}} \\
\nearrow
\end{gathered}
$$

$$
\frac{1}{r}=\frac{1}{R\left(1+\frac{x}{R}\right)} \approx \frac{1}{R}\left(1-\frac{x}{R}\right)
$$

$$
m \gamma\left(\ddot{x}-\frac{\mathrm{v}_{\theta}^{2}}{R}\left(1-\frac{x}{R}\right)\right)=-q \mathbf{v}_{\theta} B_{0 z}\left(1-n \frac{x}{R}\right)
$$

$m \gamma\left(\stackrel{\bullet}{x}-\frac{\mathrm{v}_{\theta}^{2}}{R}\left(1-\frac{x}{R}\right)\right)=-q B_{0 z}\left(1-n \frac{x}{R}\right) \cdot \mathrm{v}_{\theta}$

After simplification :

$$
\text { and } \omega_{r e v}=\frac{q B_{0 z}}{\gamma m}=\omega_{0} \approx \frac{\mathrm{v}_{\theta}}{R}
$$

$$
\ddot{x}+\omega_{0}^{2} \cdot(1-n) x=0 \Rightarrow
$$

$$
\ddot{x}+\left[v_{r} \omega_{0}\right]^{2} x=0
$$

$$
v_{r}^{2}=(1-n)
$$

Harmonic oscillator with the frequency

$$
\omega_{r}=\sqrt{1-n} \omega_{0}
$$

Horizontal stability condition (Vr real) :

$\mathrm{n}<1$
$\mathbf{n}<\mathbf{1}$: Bz could decrease//or increase with the radius R

Horizontal stability is generally easy to obtain

Horizontal stability condition (v_{r} real) :

Harmonic oscillator with the frequency

$$
\begin{array}{ll}
\ddot{x}+\left[v_{r} \omega_{0}\right]^{2} x=0 & v_{r}=\sqrt{1-n} \\
\mathbf{x}(\mathbf{t})=\mathbf{x}_{\mathbf{0}} \cos \left(v_{r} \omega_{0} t\right) &
\end{array}
$$

Vr Radial tune

Horizontal stability if $\mathbf{n}<\mathbf{1}$

$$
V r^{2}=1-n>0
$$

$\mathrm{n}<0$: isochronism condition Bz should increase
$\mathrm{n}<1$: stability condition ($\mathrm{Vr}^{2}>0$)
$r(t)=R_{0}(t)+x_{0} \cos \left(V_{r} \omega_{0} t\right)$

Vertical dynamics with $B(r)$

Vertical motion in the non uniform $B z(r)$

$m \gamma \frac{d^{2} z}{d t^{2}}=F_{z}=q(\mathrm{v} \times B)_{z}=-q\left(r B / \theta-r \dot{\theta} B_{r}\right)$

$$
\mathbf{v} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{e}_{r} & \mathbf{e}_{z} & \mathbf{e}_{\theta} \\
\dot{r} & \dot{z} & r \\
B_{r} & B_{z} & B_{\theta}
\end{array}\right|
$$

$$
B z=B_{0} r^{-n}
$$

Because $\quad \nabla \times \mathrm{B}=0 \quad \frac{\partial B_{r}}{\partial z}-\frac{\partial B_{z}}{\partial r}=0$

$$
B_{r}=-n \frac{B_{o z}}{r} z
$$

Motion equation

$$
\ddot{z}+\left[v_{z} \omega_{0}\right]^{2} z=0
$$

Harmonic oscillator with the frequency

$$
v_{z}=\sqrt{n}
$$

Vertical stability condition: n >0 (vz real)

$$
v_{z}^{2}=n>0
$$

NOT COMPATIBLE WITH ISOCHRONISM

Watch the vertical oscillations !!

Isochronism condition :
$\mathrm{n}<0 \quad: \mathrm{Bz}(\mathrm{R}) \sim \mathrm{R}^{-\mathrm{n}}$:increase with R

Vertical tune

$$
v_{z}=\sqrt{n} \quad n<0
$$

$$
\frac{\ddot{z}+\left[v_{z} \omega_{0}\right]^{2} z=0}{\mid v_{z}=i \sqrt{|n|}}
$$

Isochronism condition will induce Unstable oscillations

$$
\mathbf{z}(\mathbf{t}) \sim z_{0} \exp \left(-\mathrm{i} \quad v_{z} \omega_{\mathrm{rev}} \mathbf{t}\right)=\mathbf{z}_{0} \exp \left(+\left|v_{z}\right| \omega_{\mathrm{rev}} \mathbf{t}\right)
$$

Unstable oscillations in Z
= exponential growth =beam losses

Tunes: $v_{r} \& v_{z}$

oscillations around reference trajectory

$$
\mathbf{r}(\mathbf{t})=\mathbf{R}_{0}(\mathbf{t})+\mathbf{x}_{\mathbf{0}} \cos \left(v_{\mathrm{r}} \omega_{\mathrm{rev}} t\right)
$$

ν_{r} :Number of radial oscillations per cyclotron turn in horizontal (radial) plan
$v_{r}^{2}=1-n$ stable oscillations

$$
\mathbf{z}(\mathbf{t})=\mathrm{z}_{0} \cos \left(\mathrm{v}_{\mathrm{z}} \omega_{\mathrm{rev}} t\right)=\mathrm{z}_{0} \cos \left(\mathrm{v}_{\mathrm{z}} \theta\right)
$$

$v_{z}^{2}=n<0$ unstable oscillations $\mathrm{Num}_{\mathrm{z}}^{2}$

$$
\begin{gathered}
\left(v_{z}=\mathrm{i}\left|v_{z}\right|\right) \\
\mathbf{z}(\mathbf{t}) \sim \mathbf{z}_{0} \exp \left(\pm\left|v_{z}\right| \omega_{\mathrm{rev}} \mathbf{t}\right)
\end{gathered}
$$

Vertical stability \neq Isochronism

Isochronism condition

(longitudinal)

$$
B=B z(R)
$$

$$
\omega_{\text {rev }}=\frac{q B_{z}(R)}{\gamma(R) m}
$$

Bz should increase with $R\left(B z=B_{0} R^{-n} \quad n<0\right)$
$\sqrt{\text { Nuns }}$

B θ component needed ($F z=-q$ Vr $B \theta$) : «AVF » Cyclo

Azimuthally Varying Field ("AVF") Vertical weak focusing : $B z=f(R, \theta)$

$$
\bullet \mathrm{F}_{\mathrm{z}} \sim<q \mathrm{v}_{\mathrm{r} .} \mathrm{B}_{\theta}>\text { : Vertical focusing }
$$

Like edge focusing in dipole magnet :
Bz variation can produce vertical forces

Isochronism $\mathrm{n}<0$: $\mathrm{Bz}(\mathrm{R})$ increase with R
Vertical stability: Bz(R) Defocus + B θ Focus
Bz should oscillate with θ to compensate the instability

Chapter 1 Azimuthally varying Field (AVF) an additive focusing vertical force $\left\langle\mathrm{Fz}>=\mathrm{q}<\mathrm{v}_{\mathrm{r}} . \mathrm{B}_{\theta}>\right.$

\underline{B}_{θ} created by:

Succession of high field and low field regions: $B z=f(R, \theta)$

- B_{θ} appears around the median plane
- valley : large gap, weak field
- Hill : small gap, strong field

Hill valley Hill valley

Azimuthally varying Field (AVF)
Exemple : 30 MeV compact proton cyclo. 4 straight sectors

C30 poles and valleys

-2 RF cavities Inserted in the valleys
$=4$ accelerating gaps

4 Hills + 4 Valleys

