Beam dynamics for cyclotrons

Bertrand Jacquot & F.Chautard

GANIL, Caen, France

aboratoire commun CEA/DSM

Fixed energy

Variable energy

Superconducting

Normal conducting

compact cyclotrons

Separated sectors (ring cyclotrons)

Synchrocyclotrons

OUTLINE

Chapter 1 : theory

- Principle
- Basic equation
- Longitudinal dynamics
- Transverse dynamics

Chapter 3 : design

- Design strategy
- Tracking
- Simulations

Chapter 2 : specific problems

- Longitudinal dynamics
- Acceleration
- Injection
- Extraction

Chapter 4 : -Theory vs reality (cost, ,tunes,isochronism,...) Exemples -Medical cyclotron -Reseach facility Chapter 1 : part a

CYCLOTRON HISTORY

The Inventor, E. Lawrence, get the Nobel in Physics (1939) (first nuclear reactions without alpha source)

•brilliant idea (E. Lawrence, Berkeley, 1929) : RF accelerating field is technically complex and expensive.

So Let 's use only 1 RF cavity, but many times

A device is put into a magnetic field, curving the ion trajectories and only one electrode is used several times.

3

What is a CYCLOTRON ?

•RF accelerator for the ions :

from proton A=1 to Uranium A=238

- Energy range for proton 1MeV -1GeV (γ~1-2)
- Circular machine : CW (and Weak focusing)
- Size Radius=30cm to R=6m
- RF Frequency : 10 MHz -60 MHz APPLICATIONS : Nuclear physics
 - (from fundamental to applied research)
 - : Medical application
 - Radio Isotopes production (for PET scan,....) Cancer treatment
- Quality : Compact and Cost effective

Useful concepts for the cyclotrons

Cyclotron coordinates

- r Radial = horizontal
- z Axial = vertical
- θ « Azimuth » = cylindrical angle

MeV/A= kinetic energy unit in MeV per nucleon

5

A : nucleons number

- Z: protons number
- Q : charge state : 0+,1+,2+,....

Principle B: the trajectories

A compact cyclotron in reality

Magnet (Bz) : 1) Yoke 2) poles 3) coils

RF cavities 4) Dee

Electrostatic Deflector

Radial probes

useful tool to check the acceleration

Trajectory in uniform B field

$$\frac{d(\gamma \ m\vec{\mathrm{v}})}{dt} = \vec{F}$$

Let's consider an ion with a charge q and a mass m circulating at a speed v_{θ} in a uniform induction field $B_{.=(0,0,Bz)}$ The motion equation can be derived from the Newton's law and the Lorentz force F in a cylindrical coordinate system (er,e θ ,ez):

Trajectory in uniform B field

$$R = \frac{B\rho}{B_z} = \frac{\gamma \ mv}{qB_z}$$
Frevolution = $\frac{v}{2\pi \ R} = \frac{1}{2\pi} \frac{qB}{\gamma \ m}$

$$I$$

$$\omega_{rev} = 2\pi \ F_{rev} = \hat{\theta} = \frac{d\theta}{dt} = \frac{v_{\theta}}{R} = \frac{qB}{\gamma \ m}$$

$$\omega_{rev} = \frac{qB}{\gamma m}$$

Centrifugal force = Magnetic force

$$\gamma \frac{m \mathbf{v}_{\theta}^2}{R} = q \mathbf{v}_{\theta} B_z$$

Let's accelerate ions, in a constant vertical field Bz

The Radius evolves with P/q :

$$R(t) = \frac{\gamma \, mv}{qB_z} = \frac{B\rho}{B_z}$$

For *non relativistic* ions (low energy) $\Rightarrow \gamma \sim 1$

In this domain, if $B_z = const \Rightarrow \omega = const$ $\omega_{rev} = \frac{qB_z}{\gamma m} \approx const$ same ΔT for each Turn

So, it is easy to synchronize an Accelerating cavity (RF)

having a "D" shape, with accelerated ions

$$V = V_0 \cos(\omega_{RF} t)$$

$$\mathbf{\omega}_{RF} = \mathbf{h} \ \mathbf{\omega}_{rev}$$

h = 1, 2, 3, ... called the RF harmonic number (integer)

Harmonic number h=FRF/Frevolution

Isochronism condition: The particle takes the same amount of time to travel one turn : (constant revolution frequency ω_{rev} =const)

and with $\omega_{rf} = h \omega_{rev}$, the particle is synchronous with the RF wave.

In other words, the particle arrives always at the same RF phase in the middle of the accelerating gap.

14

Longitudinals with relativistic particles

With Bz = constant, relativistic γ increases AND Θ rev decreases

Transverse dynamics in the cyclotrons

$$\omega_{rev} = \frac{qB_z(R)}{\gamma(R) m} = const$$

Isochronism condition (Iongitudinal)

We will show that that isochronism have a bad consequence on vertical oscillations

Cyclotrons Tutorials 1

•An isochronous cyclotron uses a RF cavity at 60 MHz at the RF harmonic h=3

a. Compute the time needed to perform one turn T_{rev} for the accelerated ions.

b. Compute the average field Bz needed to accelerate a proton beam (in a non relativistic approximation)

Cyclotrons Tutorials 2

•Demonstrate than in a uniform circular motion , the radial acceleration is

 $a_{r} = |V^{2} / R|$.

Nota : You can use parametric equations

 $X(t) = R \cos(\omega t)$ $Y(t) = R \sin(\omega t)$

ion trajectory in cyclotrons

Steenbeck 1935, Kerst and Serber 1941

We will use cylindrical coordinates (er, $e\theta$, ez)

We will show that In Radial plane (horizontal)

radius(t) = $\mathbf{R}(t) + \mathbf{X}_0 \cos(v_r \omega_{rev} t)$

Radial tune v_r

In the Vertical (axial) plane

 $\mathbf{z}(\mathbf{t}) = \mathbf{z}_0 \cos(\mathbf{v}_z \, \boldsymbol{\omega}_{\text{rev}} \, \mathbf{t})$

<u>axial tune</u> v_z 3 slides to compute $v_z = v_r$

Transverse dynamics with Bz(R)

cylindrical coordinates (er, eθ, ez) and define x a small orbit deviation with Bz=Bz(r) (not constant)

$$\vec{\mathbf{r}} = [R + x(t)] \cdot \overrightarrow{er} + z(t) \cdot \overrightarrow{ez}$$

 $Bz(R) = \gamma(R) B_0$ Isochron field = R⁻ⁿ B_0

Uniform Circular motion x=0

Motion Eq. With **x**≠ 0 ?????

$$m\frac{\overrightarrow{d(\mathbf{v})}}{dt} = m\frac{d^2(\mathbf{r})}{dt^2} = ?$$

Radial dynamics with B_z(R) (No RF)

- Taylor expansion of the field B_z around the median plane:
- definition of n(R) $Bz = B_0 R^{-n}$

n =field index (Bz is never uniform)

SO
$$B_z = B_{0z} + \frac{\partial B_z}{\partial x}x + ... \approx B_0(1 - n\frac{x}{R})$$

with
$$n = -\frac{R}{B_0} \frac{\partial B_z}{\partial R}$$

•How evolves an ion, in this non uniform Bz : r(t) = R + x(t) $m\gamma \frac{d^2 \vec{r}}{dt^2} = -q \mathbf{v} \times \mathbf{B}$ r = R(1 + x/R)

$$m\gamma\left(\frac{\cdot \cdot}{x} - \frac{\mathbf{v}_{\theta}^{2}}{R}\left(1 - \frac{x}{R}\right)\right) = -q B_{0z}\left(1 - n\frac{x}{R}\right) \mathbf{v}_{\theta}$$

and
$$\omega_{rev} = \frac{qB_{0z}}{\gamma m} = \omega_0 \approx \frac{v_{\theta}}{R}$$

After simplification :

Harmonic oscillator with the frequency

$$\omega_r = \sqrt{1-n} \, \omega_0$$

Horizontal stability condition (Vr real) :

n < 1

n <1 : Bz could decrease//or increase with the radius R

Horizontal stability is generally easy to obtain

Horizontal stability condition (vr real) :

Harmonic oscillator with the frequency

$$\ddot{x} + [v_r \omega_0]^2 x = 0$$
 $v_r = \sqrt{1-n}$

Vr Radial tune

 $\mathbf{x}(\mathbf{t}) = \mathbf{x}_0 \cos(\mathbf{v}_r \, \boldsymbol{\omega}_0 \, \mathbf{t})$

Horizontal stability if n < 1 $\sqrt{r^2 = 1 - n} > 0$

n<0 : isochronism condition Bz should increase n<1 : stability condition ($Vr^2 > 0$)

 $\mathbf{r}(t) = \mathbf{R}_0(t) + \mathbf{x}_0 \cos(\mathbf{v}_r \, \boldsymbol{\omega}_0 \, t)$

Vertical dynamics with B (r) **3** (**r**) $\mathbf{v} \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_r & \mathbf{e}_z & \mathbf{e}_\theta \\ \cdot & \cdot & \cdot \\ r & z & r\theta \\ B_r & B_z & B_\theta \end{vmatrix}$ Vertical motion in the non uniform Bz(r) $m\gamma \frac{d^2 z}{dt^2} = F_z = q (\mathbf{v} \times B)_z = -q(\mathbf{r} B_{\theta} - \mathbf{r} \theta B_r)$ $Bz = B_0 r^{-n}$ Because $\nabla \times B = 0$ $\frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r} = 0$ $B_r = -n \frac{B_{oz}}{r} z$ $[\ddot{z} + [v_{z}\omega_{0}]^{2} z = 0$ Motion equation Harmonic oscillator with the frequency $V_{\tau} = \sqrt{n}$ Vertical stability condition : n >0 (vz real) $v_{z}^{2} = n > 0$

NOT COMPATIBLE WITH ISOCHRONISM

$$\mathbf{Z}(\mathbf{t}) \sim \mathbf{z}_0 \exp(-\mathbf{i} \ \mathbf{v}_z \ \mathbf{\omega}_{rev} \mathbf{t}) = \mathbf{z}_0 \exp(+|\mathbf{v}_z| \mathbf{\omega}_{rev} \mathbf{t})$$

Unstable oscillations in Z

27

= exponential growth =beam losses

Tunes : $v_r & v_z$ oscillations around reference trajectory

$$\mathbf{r}(t) = \mathbf{R}_0(t) + \mathbf{x}_0 \cos(\mathbf{v}_r \, \boldsymbol{\omega}_{rev} \, t)$$

 v_r :Number of radial oscillations per cyclotron turn in horizontal (radial) plan $v_r^2 = 1-n$ stable oscillations

$$\mathbf{Z}(t) = \mathbf{z}_0 \cos(\mathbf{v}_z \, \boldsymbol{\omega}_{\text{rev}} \, t) = \mathbf{z}_0 \cos(\mathbf{v}_z \, \theta)$$

$$v_z^2 = n < 0$$
 unstable oscillations $v_z^{(v_z = i | v_z|)}$

$$z(t) \sim z_0 \exp(\pm |\nu_z| \omega_{rev} t)$$

Vertical stability \neq Isochronism

Azimuthally Varying Field ("AVF") Vertical weak focusing : $B_Z = f(R,\theta)$

• $F_z \sim \langle q v_r, B_\theta \rangle$: Vertical focusing

Isochronism n<0 : B_Z(R) increase with R

<u>Vertical stability</u>: $B_{Z(R)}$ Defocus + $B\theta$ Focus Bz should oscillate with θ to compensate the instability

• Vertical force Fz , with component $\mathbf{B}\boldsymbol{\theta}$

Chapter 1 Azimuthally varying Field (AVF) an additive focusing vertical force $\langle Fz \rangle = q \langle v_r \rangle B_{\theta} \rangle$

B_{θ} created by:

Succession of high field and low field regions : $B_z = f(R,\theta)$

- B_{θ} appears around the median plane
 - valley : large gap, weak field
 - Hill : small gap, strong field

31

Chapter 1 Azimuthally varying Field (AVF) Exemple : 30 MeV compact proton cyclo. 4 straight sectors

C30 poles and valleys

-2 RF cavities Inserted in the valleys

= 4 accelerating gaps

4 Hills + 4 Valleys