Cyclotrons

Chapter 4 : theory versus reality

- Cyclotron versus synchrotron or linac
- Kf limitation (focusing limitation)
- Isochronism and Phase measurement
- Isochronism $2^{\text {nd }}$ approach
- Resonances and tunes in a cyclotron
- Research applications
- Medical applications

Cyclotron vs other RFaccelerators

Cyclotrons	Radius not constant	Frf constant:CW (isochronous)	lons limit $\gamma<2$
Synchro-cyclotrons	not constant	not constant pulsed, Frf (t)	lons
Synchrotrons	constant	not constant pulsed Frf (t)	lons, electrons no limits for γ, limit $€$
Linacs	constant	constant	lons, electrons
limit $€$			

LINAC versus cyclotron

Max Energy for Superconducting Cyclotrons not limited by ($\mathrm{B} \times$ Rextraction)

We can demonstrate that isochronism imply $n(R)=\left(1-\gamma^{2}\right)<0$

Stability: isochronous field condition compensated by Flutter ($B(R, \theta)$)

$$
v_{z}^{2}=\left[1-\gamma^{2}\right]+\frac{N^{2}}{N^{2}-1} F\left(1+2 \tan ^{2} \varepsilon\right)>0
$$

At high energy $:\left[1-\gamma^{2}\right]\left[\begin{array}{ll}0 \\ \vdots\end{array}\right]$ the max energy is not given by $K b \sim 48$ (B.Rextraction) ${ }^{2}$ but K_{f} the so-called "focusing factor":

- Focusing limitation (stronger than B limitation)

$$
\left[\frac{E}{A}\right]_{\max }=K f \cdot\left\{\frac{Q}{A}\right\}^{2}<K b \cdot\left\{\frac{Q}{A}\right\}^{2}
$$

$\mathrm{Kb} \sim 48$ (B.Rextract) ${ }^{2}$

Phase measurement: $n(R)$ check and field correction : ΔB

Relative phase Beam vs RF

Beam not in phase with RF:B field not OK

$$
B_{z}(R) \neq \quad B_{z 0} / \sqrt{1-\left(R \omega_{r e v}\right)^{2} / c^{2}}
$$

$$
\mathrm{Bz}(\mathrm{R}) \text { not correct }
$$

Beam vs RF

Correction of $\mathrm{B}: \mathrm{B}(I+\Delta I)$
$\mathrm{Bz}(\mathrm{R})+\Delta \mathrm{Bz}$

Phase measurement: Isochronism

6

Isochronism \& Phase measurement

Measuring $B(R)$ or $n(R)$ is difficult, While the $\Phi(R)$ is more sensitive

Radial probes

usefull tool for acceleration, precession study

Current measurement loeam=F(R): Radial probe

Check of the acceleration \& extraction

Current measurement with a Radial probe A full check of the dynamics

Radial probes with
2 diagnostics :
-1 small finger
-1 large plate

Current on small finger of the radial probe
(B field was not OK)

Finger current
Good resolution in r (turn separation)

Tune v_{r} measurement
 with radial probes

Turn separation δr gives v_{r} :

$$
v_{r}=\sqrt{1-n}+. .
$$

$$
\mathrm{r}(\mathrm{t})=\langle\mathrm{R}(\mathrm{t})\rangle+\mathrm{X}_{0} \cos \left(\mathrm{~V}_{\mathrm{r}} \omega_{0} \mathrm{t}\right)
$$

$$
\omega_{0} \mathrm{t}=\mathrm{PHASE}=\theta
$$

$$
\omega_{0} \Delta \mathbf{t}=360^{\circ}=1 \text { turn }
$$

Precession: $\delta r=\delta r a c c+X_{0} \cos \left(V_{r} \omega_{0} t\right)$

Back to dynamics and resonances at high energy

During the acceleration, V_{r} and V_{Z} change because $V_{r, Z} \propto B(r)$
The plot of V_{r} vs V_{z} is called the working point diagram.
Like any oscillatory phenomenon, the amplitude of a betatronic motion can grow uncontrolled whenever an external source excites it with its own frequency.

$$
\ddot{x}+v_{r}^{2} \omega_{0}^{2} x=0
$$

Several kind of radial resonances

$$
\mathrm{X}(\mathrm{t})=\mathrm{X}_{0} \cos \left(\nu_{\mathrm{r}} \omega_{0} \mathrm{t}\right)=\mathrm{X}_{0} \cos \left(\mathrm{v}_{\mathrm{r}} 2 \pi \text { Nturn }\right)
$$

can be excited with field defects, injection angle (unwanted) with field bump, injection angle (desired)

What happens with P field perturbations on 1 turn

$$
\ddot{z}+\left[v_{z} \omega_{0}\right]^{2} z=\Delta \cos \left(P \omega_{0} t\right)
$$

Search a particular solution

$\underline{z / \Delta}$ diverge at $v z=P$ (integer)

$z(t)$ is very sensitive to any perturbation Δ (not good: instabilities = beam losses)

With P field perturbations on L turns

$$
\mathrm{z} / \Delta \text { diverge at } \mathrm{L} . \mathrm{V} \mathrm{z}=\mathrm{P} \text { (integer) }
$$

Resonances

Systematic resonances: This resonance occurs as the betatronic frequency is a multiple of the "geometrical frequency" of the cyclotron. In this case, any kick given to the particle because of its particular position will be experienced again and again.

$$
\left(K \cdot v_{r}=P\right) \quad / / \quad\left(L \cdot v_{z}=P\right)
$$

Coupling resonances

Under proper circumstances and frequency ratios, the 2 oscillators can be coupled and the energy stored in one motion, transferred to the other. These are coupling resonances $\left(\mathbb{K} \cdot v_{r}+L \cdot v_{z}=P\right)$.

$$
K \cdot v_{\mathbf{r}}+L \cdot v_{z}=\mathbf{P} \quad K, L \text { and } P \text { integer }
$$

The particle's working point curve should avoid or cross as fast as possible those lines.

Tunes and resonances at Triumf (Canada) (H^{-}cyclo, $\mathrm{Kb}=520 \mathrm{MeV}$, 6 sectors)

$$
\mathrm{K} \cdot \mathrm{v}_{\mathrm{r}}+\mathrm{L} \cdot \mathrm{v}_{\mathrm{z}}=\mathrm{P}
$$

$|\mathrm{K}|+|\mathrm{L}|$ is called the resonance order $(1,2,3 \ldots)$

Effect on the crossing of the resonance $2 . v_{r}=3$ (order 2)

Radial Oscillations: 2. $v_{r}=3$

Cyclotrons in the world

Some research laboratories with Cyclotron(s)

Some of the Research Facility in the world using cyclotrons

GANIL Facility (Caen, Fr) 5 cyclotrons + a new Linac

-Nuclear physics
-Atomic physics
-Solid state
-Radiobiology

- Irradiation for industry

1 compact cyclo $\mathrm{Kb}=265$
For radioactive ions

2 Separated Sectors cyclotrons

RIBF (Tokyo, Japan) :

Uranium beam ${ }^{238} \mathrm{U}^{88+}$ @ $345 \mathrm{MeV} / \mathrm{A}$ cw
Mode (1): RILAC + RRC + (stripper2) + fRC + (stripper3) + IRC + SRC

RIBF (Japan) : SRC (K=2600 MeV)

the largest cyclotron in the world Superconducting Ring Cyclo

Completed November 2005 - the 140 -ton cold mass cooled to 4.5 K .

TREND in Nuclear physics : Physics at RIBF (Tokyo)
Create Unknown "exotic" nuclei by nuclear fragmentation or by fission

Exotic Nuclei (Very large proton-neutron
asymmetries)

- half life measurement

PSI :K=590 MeV ring cyclotron Pbeam= 1Mwatt

2) Extraction : Watch the beam losses !

A Flat top RF cavity has been added to reduce losses: $\operatorname{VRF}=\operatorname{Cos}(\omega t)-\alpha \cdot \cos (3 \omega t)$

Standard cavity :

$$
V_{R F}=\cos \left(\omega_{R F} t\right)
$$

Flat top cavity

$$
\cos \left(\omega_{R F} t\right)-\cos (3 \omega t)
$$

Some Commercial Cyclotrons : manufacturers

IBA (Belgium)		Cost estimate 2008
Cyclone $5 / 10$	proton/D	1 Meuros
Cyclone $9 / 18$	H-/D-	1.5 Meuros
Cyclone 30	H-/D-	\ldots.
ProteusOne 250 MeV	p synchro-cyclo superconducting	
C70	p/D or H-/D-	

Commercial Cyclotron

Radioisotope production ($5-20 \mathrm{MeV}$)
Radiotracer ${ }^{18}$ F*: «Beta+ » emitter Fluorine 18

$$
\mathrm{T}_{1 / 2} \quad=109.7 \mathrm{~min}
$$

${ }^{18} \mathrm{~F}^{*} \Rightarrow{ }^{18} \mathrm{O}+$ positon + neutrino

Production With cyclotrons
Proton $10-20 \mathrm{MeV}+{ }^{18} \mathrm{O} \Rightarrow{ }^{18} \mathrm{~F}^{*}+\mathrm{n}$

Injection of ${ }^{18} \mathrm{~F}^{*}$ TEP camera

Ring of Photon
Detectors Detectors

Reconstruction

Cyclone 10/5 Mev

$=10 \mathrm{MeV}$ proton
$=5 \mathrm{MeV}$ D
cyclone 3D

CYCLONE 18/9 (IBA) : $\mathbf{H}^{-} 18 \mathrm{MeV}$

Designed for medical applications (radiotracers production)

Internal PIG source, \mathbf{H}^{-}stripping extraction
$\mathrm{Kb}=18 \mathrm{MeV}$
Fixed energy ;
4 straight sector 50°
$=1.35$ Tesla
Hill //valley gap $3 \mathrm{~cm} / / 67 \mathrm{~cm}$ fixed Frf $=42 \mathrm{Mhz}$

2 Dee $=30^{\circ}, 32 \mathrm{kV}$
Harmonic $\quad h=2(p), 4(D)$
Internal source
Rextraction= 0.46 m
Bpmax=0.46x 1.35=0.62 T.m

Commercial Cyclotron : proton therapy ($230-250 \mathrm{MeV}$)

Commercial Cyclotron : For proton therapy (230 MeV)

Photon:
(Radiotherapy) A Dose in the whole body

Protons :
Better than
Radiotherapy (photons)
Dose inside the tumor

Bragg Peak

Brain tumor treatment with protons

Eyes tumor treatment

Proton therapy (230 MeV)

-Energy variation with degrader

Scanning the tumors :

With energy variations induce by a degrader

Proton therapy (230 MeV) Energy variation with degrader + Rotating gantry

Optimal dose delivery Scan the tumors :

Depth variation in patiuent body:
Tumor scanning

END

References \& Acknowledgements :

F. Chautard, Juas 2015
M. Craddock lecture on Cyclo //FFAG
W.Joho lecture on PSI facility
S. Brandenburg lecture on beam optics
P. Heikinnen, CAS Jyväskylä 1992, CERN 94-01 (1994) "Cyclotrons" and "Injection and Extraction"
T. Stammbach, CAS La Hulpe, 1994, CERN 96-02 (1996) "Introduction to Cyclotrons"
... \& Many others

Cyclotron Summary : with formulas

Isochronous cyclotron $=$ constant revolution frequency

$$
\begin{array}{lc}
\begin{array}{cc}
\omega_{r e v}=\frac{q B_{z}(R)}{\gamma(R) m}=\text { const } & \begin{array}{c}
\text { field index } n<0 \\
B z(R)=<B_{0}>R^{-n}
\end{array} \\
\langle R\rangle=\frac{B \rho}{\left\langle B_{z}\right\rangle}=\frac{\gamma m v}{\left.q<B_{z}\right\rangle} & \omega_{r e v} h=\omega_{R F}
\end{array} \quad E / A=K b \cdot(Q / A)^{2}
\end{array}
$$

Vertical stability in isochronous cyclotron $B z=F(R, \theta)$ requires Azimuthal Field Modulation (N sectors)

$$
\ddot{z}+\left[v_{z} \omega_{\text {revolution }}\right]^{2} z=0 \quad v_{z}^{2}=\mathrm{n}+\ldots<0
$$

$$
z(t) \sim z_{0} \exp (-i \quad V z \omega t) \quad: \text { vertical tune } V z ; \text { real for stability }
$$

$$
V_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F_{l}\left(1+2 \tan ^{2} \varepsilon\right)>0
$$

Few other slides for questions......
juas
Isochronous fied $B(R)$ = good field index $n(R)$

$$
n=-\frac{R}{B_{0 z}} \frac{\partial B_{z}}{\partial R} \quad \Longleftrightarrow \frac{d B}{B}=-n \frac{d R}{R}
$$

$$
B \rho=.<R>=\frac{p}{q}
$$

Longitudinal dynamics lecture

Bz Azimutal modulations are not sufficient It is a (Focusing) limit for high energy isochronous cyclotron

Max Energy for Superconducting Cyclotrons not limited by ($B \times$ Rextraction)

Because of the focusing limitation due to the Flutter dependence on the B field, the max energy is not given by $K b \sim 48$ (B. Rextraction) ${ }^{2}$
but K_{f} the so-called "focusing factor":

$$
\left[\frac{E}{A}\right]_{\max } \neq \quad K b \cdot\left\{\frac{Q}{A}\right\}^{2}
$$

vertical oscillation+ isochronous field condition

$$
v_{z}^{2}=\left[1-\gamma^{2}\right]+\frac{N^{2}}{N^{2}-1} F\left(1+2 \tan ^{2} \mathcal{E}\right)>0
$$

- Focusing limitation (stronger than B limitation)

$$
\left[\frac{E}{A}\right]_{\max }=K f \cdot\left\{\frac{Q}{A}\right\}^{2}<K b \cdot\left\{\frac{Q}{A}\right\}^{2}
$$

$\mathrm{Kb} \sim 48$ (B.Rextract) ${ }^{2}$

Tutorial

The axial oscillations of ion beams in a isochronous cyclotron is described by Where the vertical tune should respect $\quad V z^{2}>0$,

$$
\ddot{z}+\left[v_{z} \omega_{0}\right]^{2} z=0
$$

a. Why? (1)
b. Give a particular solution of the differential equation when $V z^{2}<0$ (1)
c. What is the axial physically $v z$

Answer

a.Otherwise the beam is unstable (beam size increase exponentially)

$$
z(t) \sim Z 0 \exp (+1-i \text { vz wt) }
$$

b. $z(t)=Z 0 \exp (+/-|v z| w t)$
c. Vz correspond to number of oscillations per turn for beam not injected at the reference orbit.

An exotic cyclotron = the FFAG

FFAG ="Fixed-Field Alternating-Gradient"
A kind of synchro-cyclotron

- pulsed beam

$$
F_{\mathrm{rf}}=\mathrm{f}(\mathrm{t})
$$

- not Isochronous
- focusing DFD or FDF
with alternating magnet High repetition Rate ($100 \mathrm{~Hz}-1 \mathrm{kHz}$)

Large momentum acceptance

R\&D an exotic cyclotron =FFAG

FFAG =Fixed-field alternating-gradient: Higher repetition rate than a synchrotron

2 coupled FFAG $=150 \mathrm{MeV}$ proton in Kyoto

R\&D for : - Accelerator Driven System (nuclear reactor)

- muon acceleration

Cyclotron Summary : with pictures

$\mathrm{Kb}=30 \mathrm{MeV}-200 \mathrm{MeV}$
Compact cyclotrons (with Hills //Valleys) Straight or Spiralled sectors

$$
\mathrm{Kb}=300-600 \mathrm{MeV}
$$

« Ring cyclotrons »:

$$
\begin{aligned}
& \text { harmonics =h bunches by turn } \\
& \omega_{\mathrm{rf}}=\mathbf{h} \omega_{\mathrm{rev}} \quad \omega_{\mathrm{rev}}=\frac{q B_{z}}{\gamma m}
\end{aligned}
$$

Straight or Spiralled
Separated sectors

$300-600 \mathrm{MeV}$ protons

The Cyclotron Family

isochronous
cyclotron
(Azimuthally
Varying Field)
$B z(R, \theta)=$ NOT uniform
Frev = Constant
FRF= constant

Isochronous

$$
\omega_{r e v} h=\omega_{R F}
$$

Compact cyclotrons (with Hills //Valleys) Straight or Spiralled sectors

Ring cyclotrons :
Straight or Spiralled
Separated sectors

Separated sector cyclotron

Synchrocyclotrons

$$
\omega_{\text {rev }}(R) \cdot h=\omega_{R F}(t)
$$

Not
Isochronous

