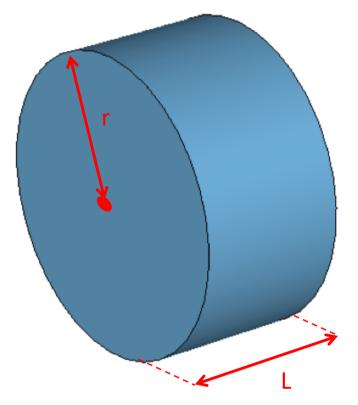


WHY CST?

CST Studio Suite is a software used for the study of electromagnetic fields. It comprises tools for the design and optimization of accelerator devices operating in a wide range of frequencies, from static to optical. Analysis may also include thermal and mechanical effects, as well as circuit simulations.

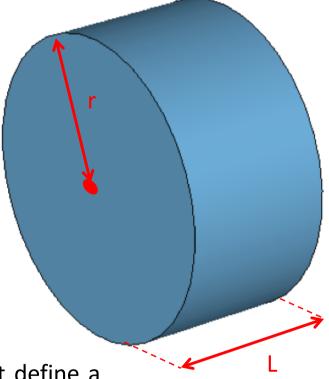

WHAT ARE WE GOING TO DO?

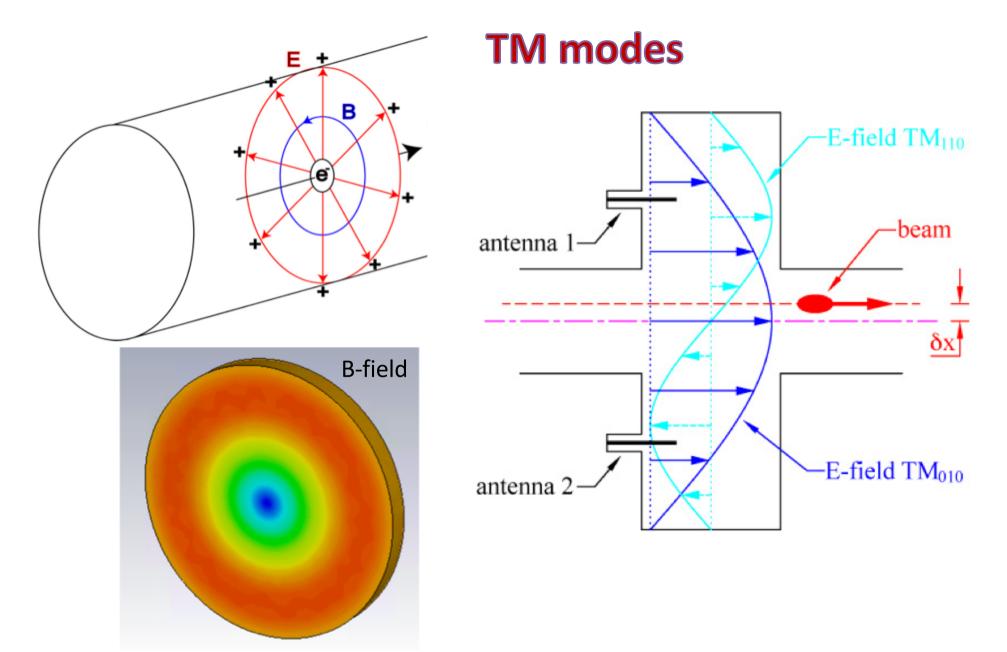
In this tutorial we are going to show, step by step, how to use CST in order to design a <u>pill-box</u> cavity and analyse its electromagnetic field. Particularly we will focus on the <u>resonant modes</u> of the cavity.

SOME REMARKS BEFORE STARTING: WHAT'S A PILL-BOX CAVITY?

A **resonant cavity** or <u>radio frequency</u> (RF) cavity is a special type of <u>resonator</u>, consisting of a closed metal structure that confines <u>electromagnetic</u> fields inside it, storing their energy. They are used to accelerate the particle beam. The structure is either hollow or filled with <u>dielectric</u> material. The electromagnetic waves bounce back and forth between the walls of the cavity. At the cavity's <u>resonant frequencies</u> they reinforce themselves forming <u>standing waves</u> fields.

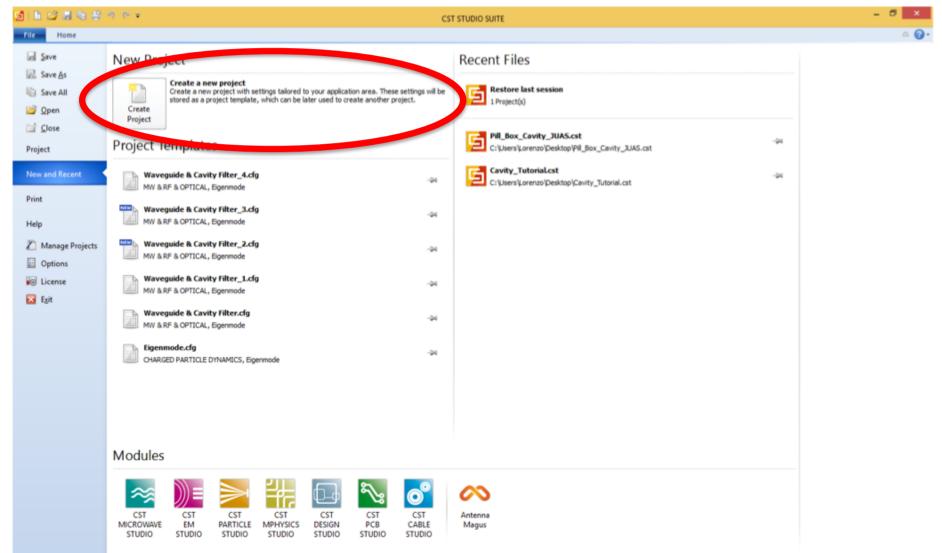
A **pill-box cavity** is a a particular kind of resonant cavity with cylindrical shape.

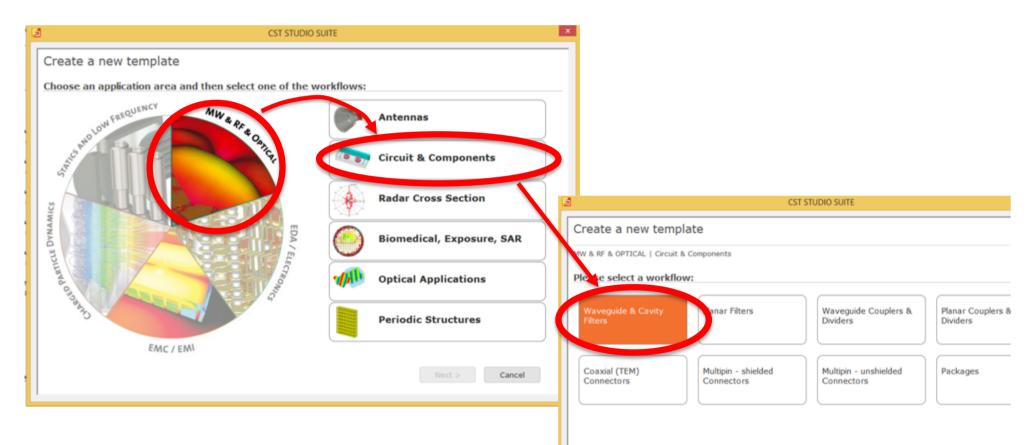



Simulation of a Pill-Box Cavity with CST SOME REMARKS BEFORE STARTING: WHAT'S A PILL-BOX CAVITY?

In order to accelerate the particles that pass throughout the cavity, particular kind of resonant modes are used: the so-called transverse magnetic (TM). These modes have the electric field component directed along the axis of the cylinder, and arise when the cavity is excited with particular frequencies:

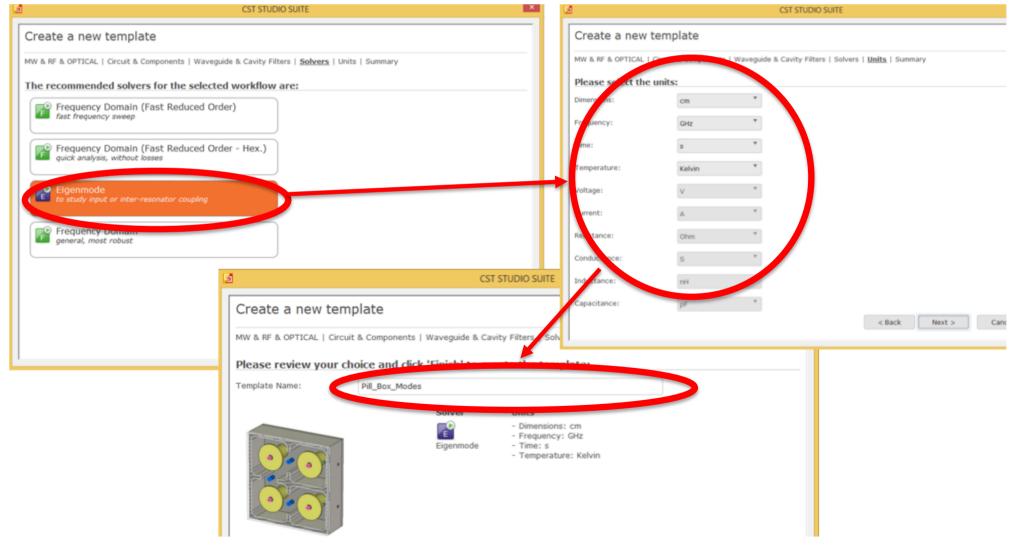
$$f_{nml} = \frac{c}{2\pi} \sqrt{\left(\frac{p_{nm}}{r}\right)^2 + \left(\frac{l\pi}{L}\right)^2}$$


- *c* is the speed of light
- *n,m,l* are the mode numbers. They are integers that define a given TM mode. The most used is n=0 (azimuthal symmetry), m=1 (no nodes of E_z with r), l=0 (constant E_z in the z direction)
- p_{nm} is the m-th zero of the Bessel's function of n-th order
- *r*,*L* are the geometrical dimensions of the cavity

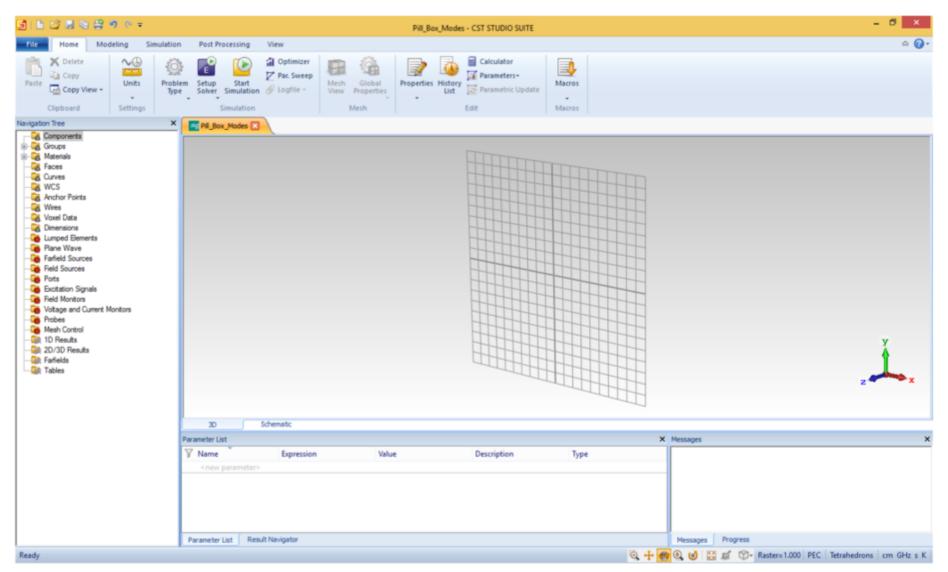

READY TO GO!

Open CST studio suite and select "Create a new Project"

READY TO GO!


Thus let's select MW & RF & Optical -> Circuit & Components -> Waveguides & Cavity Filters

< Back Next >


READY TO GO!

Then we select "Eigenmode". After that we chose the working dimensional units (cm, GHz, s, Kelvin) and name the file as: Pill_Box_Modes

READY TO GO!

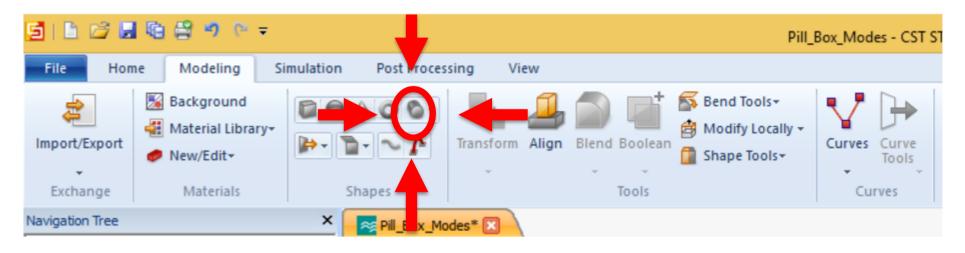
You should now see a screen like this one.

Let's now introduce the geometrical dimension of the Pill Box as parameters. This will allow to modify the entire model in future. It is possible to enter the parameter name, its expression (it could be a value, according to the dimensional units previously selected, or a combination of other parameters), its description and its type.

Type

Length

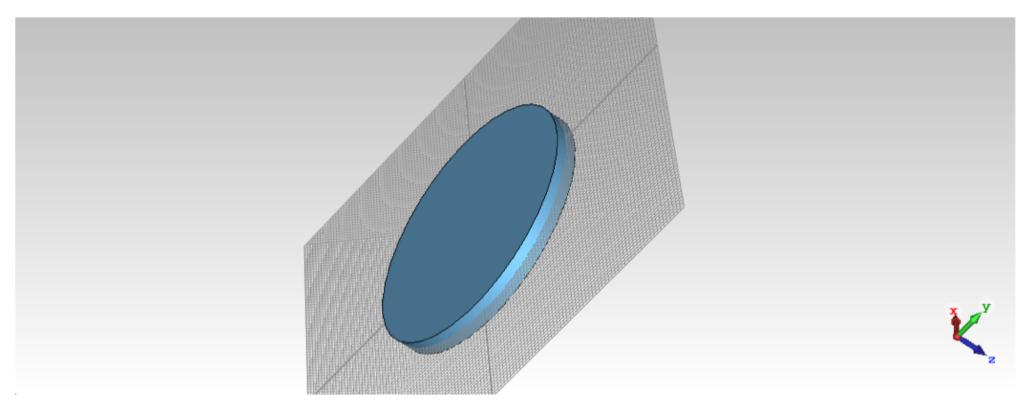
Length


x

v

Now let's click on Modelling item on the top menu

Then let's select the Cylinder

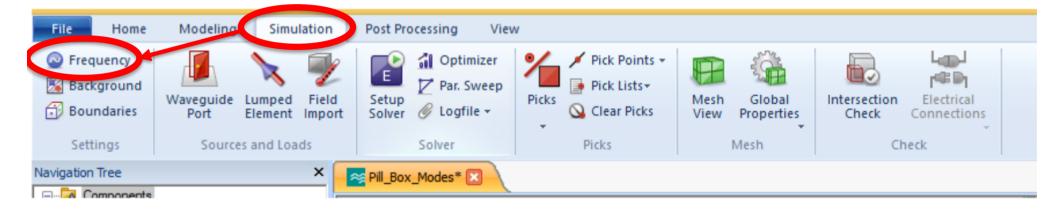

MODELLING

Press esc. You should see the following window.

Cylinder		
me: OK olisi Cancel ientation X Y Image: Z ientation 0 ientation 0	Cylinder Name: Pll_Box	OK
component1 v laterial: /acuum v Help	Orientation OX OY © Z Outer radius: Inner radius: r 0.0 Xcenter: Ycenter: 0 0	Preview X
Fill the Windows as shown	Zmin: Zmax: -L/2 L/2 Segments: 0	

MODELLING

This is our Pill Box!

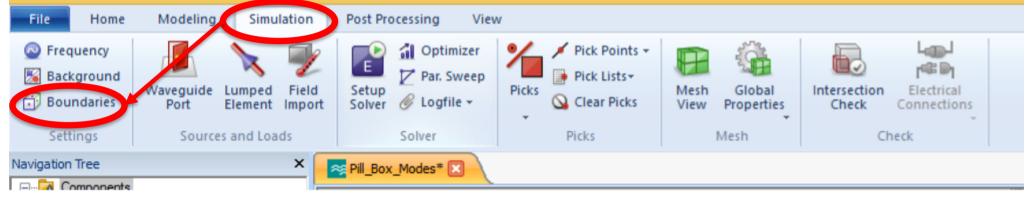


Geometry is done!

ANALYSIS

Let's move to the electromagnetic field simulations.

Click on "Simulations" on the top menu

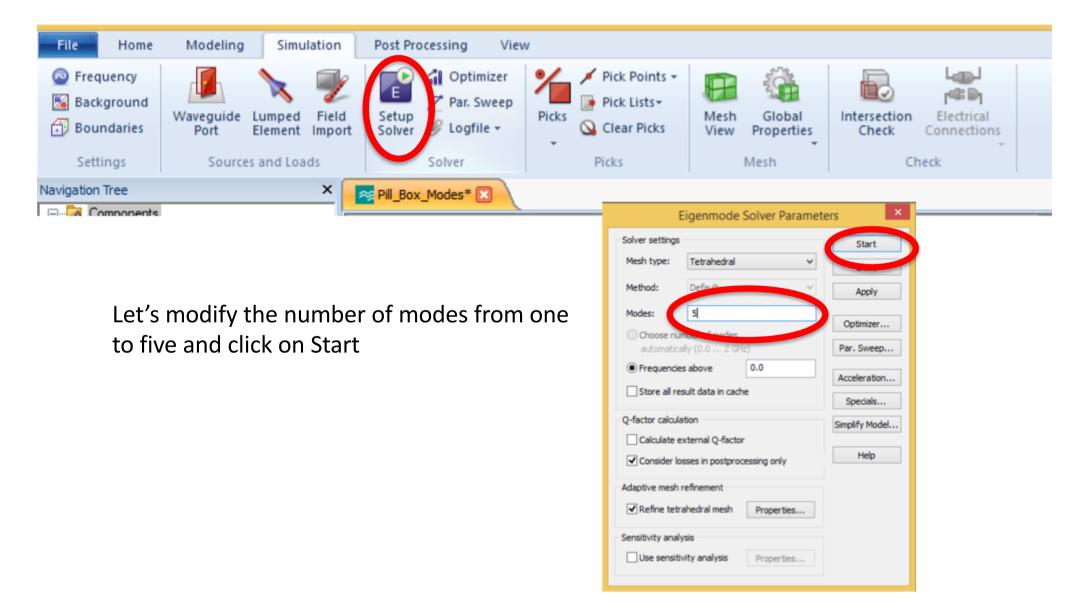


Then select "Frequency". It will appear a window to set the frequency range where you would like to study the field. We consider frequencies it between 0 and 2 GHz

Frequency Range Settings					
Fmin: 0.0 Fmax: 2	OK Cancel Help				

ANALYSIS

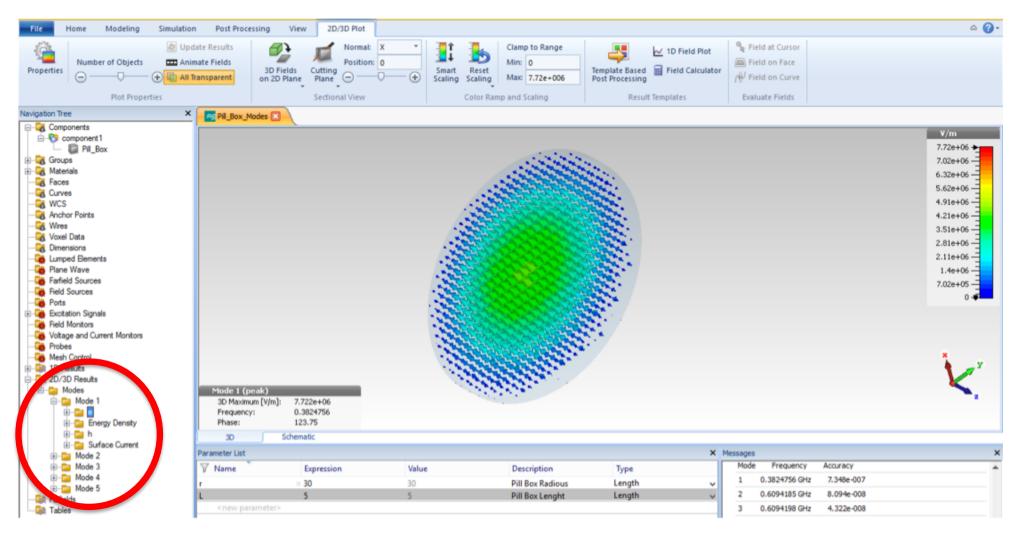
Still from the "Simulation" bar click on Settings -> Boundaries in order to set the boundary conditions



Particularly, in order to find the TM modes let's impose the condition of zero tangential electric field at the wall, as shown below:

Boundary Conditions	Boundary Conditions
Boundaries Symmetry Planes	Boundaries Symmetry Planes
Apply in all directions	Apply in all directions
Xmin: electric (Et = 0) V Xmax: electric (Et = 0) V	Type: electric (Et = 0) V Xmax: electric (Et = 0) V
Ymin: electric (Et = 0) Ymax: electric (Et = 0)	Ymin: electric (Et = 0) Vmax: electric (Et = 0) V
Zmin: electric (Et = 0) V Zmax: electric (Et = 0) V	Zmin: electric (Et = 0) V Zmax: electric (Et = 0) V
Cond.: 1000 S/m Open Boundary	Cond.: 1000 S/m Open Boundary
OK Cancel Help	
Cancer Prep	OK Cancel Help

ANALYSIS


Now we are ready, from the "Simulation" bar click on "Setup Solver"

ANALYSIS

The results are on the navigation tree.

Clicking on the "2D/3D Results" folder we can see the E-field (e), the B-field(h) and some other features for every computed mode. Below the E-field of the mode 1 is reported.

ANALYSIS

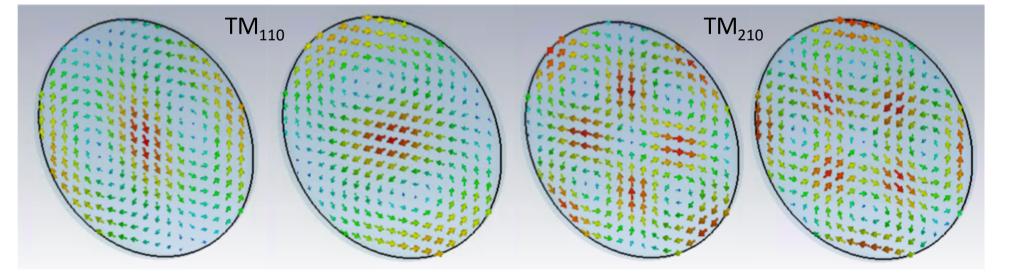
Let's note that CST gives also the mode frequencies

File Home Modeling	Simulation Post Processi	ng View 2D/3D Plot					(2) ه
10	Opdate Results	Normal:	x • 📑 🕯 📑	Clamp to Range	- 1D Field	Plot Pield at Cursor	
Number of Objects	Animate Fields	Position:		Min: 0			
roperties	🕀 🕕 All Transparent	3D Fields Cutting Omegan 2D Plane Plane	Scaling Scale	eset aling Max 7.72e+006	Template Based 📄 Field Ca Post Processing	Field on Curve	
Plot Prope	erties	Sectional View	Col	or Ramp and Scaling	Result Templates	Evaluate Fields	
igation Tree	× Pil_Box_Mod	es 🗵					
Components							V/m
E- Component 1							7.72e+06 +
Groups				and a second			7.02e+06 -
Materials Faces				and the set			6.32 e+ 06 -
Curves					and a second sec		5.62e+06 -
WCS					and the second se		4.91e+06 -
Anchor Points				CHCHC HILL HILL	Sector Sector		4.21e+06 -
Wires Voxel Data					State of the second sec		3.51e+06
Dimensions					and the second sec		2.81e+06
Lumped Elements				ALCON CONS	and the second se		2.11e+06
Plane Wave							1.4e+06
Farfield Sources Field Sources					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.02e+05
Ports							0 🐙
Excitation Signals					State of the second second		
Field Monitors Voltage and Current Monitors							
- Probes							
Mesh Control							× .
1D Results			1.4				
li⊋ 2D/3D Results ia⊣i⊒ Modes	Mode 1 (pea	(1)		1.4. 1.			K K
🖨 🔁 Mode 1	3D Maximum						z
æ 💼 🧧	Frequency:	0.3824756					
⊕- Energy Density ⊕- h	Phase: 3D	123.75 Schematic					
Generation Surface Current Generation Generation	Parameter List)				X M sees	
😥 🔁 Mode 3	V Name	Expression	Value	Description	Туре	Mode Frequency Accuracy	
⊕- 🚞 Mode 4 ⊕- 🚞 Mode 5	r	= 30	30	Pill Box Radious	Length	1 0.3824756 GHz 7.348e-007	
E Fafields	L	5	5	Pill Box Lenght	Length	2 0.6094185 GHz 8.094e-008	
Tables	<new param<="" td=""><td>ieter></td><td></td><td></td><td></td><td>3 0.6094198 GHz 4.322e-008</td><td></td></new>	ieter>				3 0.6094198 GHz 4.322e-008	
						4 0.8167935 GHz 3.173e-007	
						5 0.8167976 GHz 4.486e-007	
		-				Depired schursey limit resched mech s	dantation stonnas
	Parameter List	Result Navigator				Message Progress	

ANALYSIS

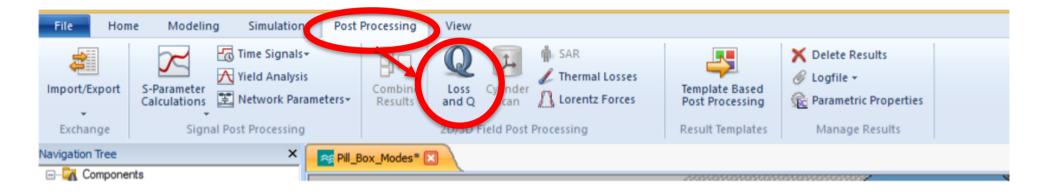
In this simple case we can compare some analytical results with the numerical ones. Let's start with the frequencies. Recalling their expression:

$$f_{nml} = \frac{c}{2\pi} \sqrt{\left(\frac{p_{nm}}{r}\right)^2 + \left(\frac{l\pi}{L}\right)^2}$$


Using the values

	p_{nm}	0	1	2	3	4	5
	1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
	2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
т	3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
	4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
	5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

ANALYSIS


Mode	CST Frequency (GHz)	CST Frequency Accuracy (GHz)	Analytical Frequency (GHz)
TM ₀₁₀ (n=0,m=1,l=0)	0.3824756	7.348e-007	0.3824751
TM ₁₁₀ (n=1,m=1,l=0)	0.6094185	8.094e-008	0.6094131
TM ₂₁₀ (n=2,m=1,l=0)	0.8167935	3.173e-007	0.8167942

NB: the modes TM_{110} and TM_{210} are not azimuthally symmetric and have two states of polarization:

ANALYSIS

CST is also capable of computing the Q-factor of a mode if the material conductivity is known. In order to do this let's click on Post Processing (top menu) -> Loss and Q

-Field data: Mode 1		QIU	ctor Calculati	UII III		- (Calculate	
Material/Solid	Conductivity	Mue	Loss/W	Loss/%	Q			
Cond. Endosure	5.8000e+007	1	0.0000e+000	0	1		Specials	
							Export	
							Help	

Then, from the appearing window:

- select the mode you want to analyse
- Set the conductivity of the cavity material (according to the dimensional units previously selected), copper is by default.
 Finally click on "Calculate"

ANALYSIS

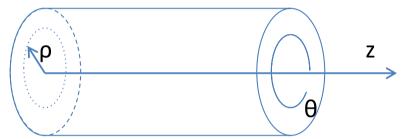
Then, on the Q column, you have the quality factor of the mode.

			Q-Fa	ctor Calculati	on			×
H	H-Field data: Mode 1						~	Calculate
[Material/Solid	Conductivity	Mue	Loss/W	Loss/%	Q	~	Close
	Cond. Enclosure	5.8000e+007	1	1.8902e+005	100	1.2677e+004	۱.	
	Sum			1.8902e+005		1.2677e+004		Specials
								Export
								Help
							~	
[Modify Modify All	. Hide / Unhi	de	Hide/Unh. All				

ANALYSIS

As for the frequencies, we can compare the obtained value of the Q-factor with the computed ones. In order to do this, let's briefly recall some theoretical results for a pill-box. In particular, in cylindrical coordinates, the magnetic and electric fields can be written as (From CERN-94-01-V1, page 253 and following):

$$E_{z} = k_{2}^{2} \cos(k_{1}z) J_{n}(k_{2}\rho) \cos(n\theta)$$


$$E_{\rho} = -k_{1}k_{2} \sin(k_{1}z) J_{n}'(k_{2}\rho) \cos(n\theta)$$

$$E_{\theta} = \frac{nk_{1}}{\rho} \sin(k_{1}z) J_{n}(k_{2}\rho) \sin(n\theta)$$

$$H_{z} = 0$$

$$H_{\rho} = -i \frac{nk}{Z_{0}\rho} J_{n}(k_{2}\rho) \sin(n\theta)$$

$$H_{\theta} = -i \frac{kk_{2}}{Z_{0}} J_{n}'(k_{2}\rho) \cos(n\theta)$$

In order to have the TM modes the following boundary conditions have to be respected:

$$E_{\rho} = E_{\theta} = 0$$
 for $z = 0$ and $z = L$

$$E_z = E_\theta = 0$$
 for $\rho = r$

they lead to:

$$k_1 = \frac{l\pi}{L}, \quad k_2 = \frac{p_{nm}}{r}, \quad k = \frac{2\pi}{c} f_{nml}$$

Here Z_0 is the impedance of free space. The reported field components have a multiplying time dependent term $\cos(2\pi f_{nml}t)$ omitted because of no interest for our purposes.

ANALYSIS

The Q factor is defined as: $Q = 2\pi \frac{\text{Stored energy}}{\text{Energy lost during one period}}$

The stored energy in the cavity volume is given by:

$$W_{s} = \frac{\mu}{2} \int_{V} |H|^{2} dV = \frac{\varepsilon}{2} \int_{V} |E|^{2} dV$$

The energy lost in one period is due to the power dissipated on the walls (Joule effect)

$$P = \frac{1}{2} \int_{V} \frac{|j|^2}{\sigma_c} dV = \frac{1}{2} \int_{S} \frac{|j|^2}{\sigma_c} \delta dS$$

with δ the skin depth evaluated at the resonant frequency of the mode: $\delta = \frac{1}{\sqrt{\pi\mu\sigma_c f_{nml}}}$ After some manipulation the power loss can be written as: $P = \frac{1}{2} \int_{S} R_w |H|^2 dS$ with the surface resistance: $R_w = \frac{1}{\sigma_c \delta}$

The energy lost in one period is the power divided by the resonant frequency

$$W_d = \frac{P}{f_{nml}} = \frac{\pi\mu\delta}{2} \int_S |H|^2 dS$$

ANALYSIS

Finally:

$$Q = \frac{2}{\delta} \frac{\int |H|^2 dV}{\int |H|^2 dS}$$

Considering the TM₀₁₀ mode we get:

$$Q = \frac{L}{\delta} \frac{r}{(r+L)}$$

And considering the values:

 $\begin{array}{ll} L = 0.05 \ [m] & \mu = 4\pi e\text{-7} \ [\text{H/m}] \\ r = 0.3 \ [m] & \delta = 3.3791e\text{-06} \ [m] \\ \sigma_c = 5.8e7 \ [\text{S/m}] & \end{array}$

CST Quality Factor TM ₀₁₀	Analytical Quality Factor TM ₀₁₀
1.2677e+004	1.2683e+004

ANALYSIS

Another factor of interest for a cavity is R, the shunt resistance, (for further analysis about it see the Fritz Caspers lessons in the second course). Its expression is given by (Linac convention):

$$R = 256 \ Q \ \frac{r \sin\left(1.2024 \frac{L}{r}\right)^2}{L}$$

In order to compute it with CST let's go to Post Processing -> Template Based Post Processing

ANALYSIS

Select "2D and 3D Field Results" from the first drop-down menu and then "3D Eigenmode Result" from the second one.

Template Based Postprocessing	×
General Results	
	л –
2D and 3D Field Results	
Filter Analysis General 1D	
MRI Toolbox Misc	Template Based Postprocessing
Optical S-Parameters	General Results
Themal Time Signals	2D and 3D Field Results 🗸
	✓
	Combine Power Loss Combine Results
	- Export 3D Field Result - Import 3D Field Result
	- Mix 3D Fields - Power Flow - 3D Mode
Settings Delete Duplicate Evaluate 🏠 🦊 Delete All Evaluate All	0D Value from 2D Color Map Plot 0D Value from 2D or 3D Plot
	3D Egenmode Result
Abort Close Help	Convert Field Source Monitor Data
	Evaluate Field in arbitrary Coordinates Evaluate Field on Curve
	Evaluate Field on Face Evaluate Field Statistics
	Field by Solid or Material HAC (Hearing Aid Compatibility of Mobile Phone)
	Loss and Q Value from H-Field Loss per Solid or Material (Volume Loss) Peak Field Values from Probes
	Port Properties

ANALYSIS

Then set the value of the appearing window as shown below and press ok.

Marka 3D Eigenmode	Result ×
Result value: Frequency	Modes: eg 1,3,5-10
(Conductivity taken from Results->Lo	ss and Q-Calculation)
Voltage integration Range	Xmax:
0.0	0.0
Z: ✓ max. range 0.0	0.0
Fransit Time Factor	
consider part.velocity bet	a = not used
Sensitivity Analysis	
Design Parameter / Input Deformation Field	~
OK Cancel Help	DrawPoints Logfile

ANALYSIS

You should see the following window, click Evaluate and then you will get the value of the shunt impedance on the "Value" column.

Temp	late Based	d Postprocessing	×			
General Results						
2D and 3D Field Results			~			
Add new postprocessing step						
Result name	Туре	Template name	Value			
1 Shunt Impedance (Pertubation) beta=1 (Mode 1)	0D	3D Eigenmode Result	7.745815257e+005			
Settings.	Delete	Duplicite Evaluate 👔	Delete All Evaluate All			
		Abort	Close Help			

CST Shunt Impedance TM ₀₁₀	Analytical Shunt Impedance TM ₀₁₀
7.745815257e+05 [Ω]	7.719408360e+05 [Ω]