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e KQVOG, 0V¢ (TO) 1 deep cold [Arist. Meteor.]
2 shiver of fear [Aeschyl. Eumenid.]

e cryogenics, that branch of physics which deals with the
production of very low temperatures and their effects on matter

Oxford English Dictionary
2d edition, Oxford University Press (1989)

e cryogenics, the science and technology of temperatures below
120 K

New International Dictionary of Refrigeration
4th edition, IIF-IIR Paris (2015)
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Characteristic temperatures of cryogens

Normal boiling Critical point

Cryogen Triple point [K]

point [K] [K]
Methane 90.7 111.6 190.5
Oxygen 54.4 90.2 154.6
Argon 83.8 87.3 150.9
Nitrogen 63.1 77.3 126.2
Neon 24.6 27.1 44.4
Hydrogen 13.8 20.4 33.2
Helium 2.2 (*) 4.2 5.2
(*): A Point
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Useful range of liquid cryogens
& critical temperature of superconductors
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Cooling of superconducting devices

Joint Universities Accelerator School

LHe 4.2 K
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Properties of cryogens compared to water

e —— ke

Normal boiling point

Critical temperature [K] 5.2 126 647
Critical pressure [bar] 2.3 34 221
Lig./Vap. density (*) /7.4 175 1600
Heat of vaporization (*) [J.g71] 20.4 199 2260
Liquid viscosity (*) [uPI] 3.3 152 278

(*) at normal boiling point
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Vaporization of normal boiling cryogens
under 1 W applied heat load

Let h be the enthalpy of the fluid

At constant pressure Q=L,m with L,=hy,,—h;
.. [l.min1]
-1 -1
[mg.s1] [I.h-1] (liquid) (gas NTP)
Helium 48 1.38 16.4
Nitrogen 5 0.02 0.24

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 9
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Amount of cryogens required to cool down 1 kg iron

Assuming perfect heat exchange between iron and the fluid
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Tinitial .
f MFeCFedT = m[Lv + (hgg;?al - hg%a)] ~ m[Lv + Cp (Tfinal — Tsat)]

Tfinal

Latent heat only

Latent heat and

enthalpy of gas
LHe from 290 to 4.2 K 29.5 litre 0.75 litre
LHe from 77 to 4.2 K 1.46 litre 0.12 litre
LN2 from 290 to 77 K 0.45 litre 0.29 litre

Ph. Lebrun
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Phase diagram of helium
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Helium as a cooling fluid

Phase domain Advantages Drawbacks

Saturated He I Fixed temperature Two-phase flow
High heat transfer Boiling crisis
Supercritical Monophase Non-isothermal
Negative J-T effect Density wave instability

Low temperature
He II High conductivity
Low viscosity

Second-law cost
Subatmospheric

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 12
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Typical heat transfer coefficients
at cryogenic temperatures

« Same basic processes as at
temperatures above ambiant, but
large variations in

- absolute values
- dependence on temperature

« These variations can be exploited
for
- cooling equipment
- thermal insulation of cryostats

 Particular importance of two-
phase heat transfer

Qf (ATA) [W/ (m2K)]
1

|
Liquid, forced convection

102 _
Liquid, natural convection
......... Forced convection,
10?7 — T, 938
Natural convection,
g8B 000 s o
10 —
Liquid conduction !
- .,.--""'G:asoonductlon
1 - = _,"
Radiation /
10— : : '
1 10 100
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Heat flux,W/m2

Non-linear heat transfer to liquid cryogens
Pool boiling nitrogen

I
o Maximum -
________ heat flux
S
10
o Nucleate Transition
~ boiling boiling
104
B Minimum . . =
C Feat fluk Film boiling) _
= o
L l®®y 31 g gl Lo L
| 10 102
Wall superheat, K
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Non-linear heat transfer to liquid cryogens
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Pool boiling helium

100C | [
Frederking o
D =.055 cm~l
D= .130 cm.\_\l A
D= .215 cm.|_ ;
100 D=.312 cm
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O Experimental critical heat flux
Predicted critical heat flux )
. Dbt |
10 Breen & Westwater
| Correlation
R [ (RO SN S NP POT N DU (NI (N e ) . pene pave /
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* [ | gt - Film | | |
ola Nucleate ~ ; A Regime
Region . Karagounis Biatiaitin N N
P=l/2 atm. ~~ Lyon,D=1.0 cm
0.1 e = i
(The points of minimum film
Kutateladze boiling are given by either the =~
Correlation correlation of Lienhard &
Wong or of Zuber, et al.)
Q.01
Yeeber
0.001 > A1
0.000i 0.001 0.0l 0.10 ' .0 10 100 1000 10,000 100,000
°K
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Heat conduction in solids

T 2 @f A e Fourier’s law Qcond = k(T)A%
X e Thermal conductivity k(T) [W/m.K]
Q 0N U T
. e Integral form Qcona = %lez k(T)dT

e Thermal conductivity integral f;;zk(T)dT [W/m]

e Thermal conductivity integrals for standard
construction materials are tabulated

[~

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 17
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Thermal conductivity integrals
of selected materials [W/m]

From vanishingly low temperature

up to 20 K 80 K 290 K
OFHC copper 11000 60600 152000
DHP copper 395 5890 46100
1100 aluminium 2740 23300 72100
2024 aluminium alloy 160 2420 22900
AISI 304 stainless steel 16.3 349 3060

G-10 glass-epoxy composite 2 18 153

Ph. Lebrun JUAS 2018 Cryogenics for SC devices
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Non-metallic composite
support post
with heat intercepts

5 K cooling line (SC He)

Aluminium intercept plates
glued to G-10 column

Aluminium strips to thermal
shield at 50-75 K

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 19
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Thermal radiation

Wien’s law

— Maximum of black-body power spectrum

Amax T = 2898 [um. K]

Stefan-Boltzmann’s law

— Black body

— «Gray» body

Qrad =0 AT*
with ¢ = 5.67 10712 W/mZK4

Qrqg =0 AT
with & surface emissivity

— Between «gray» surfaces at temperatures T, and T,

JUAS 2018 Cryogenics for SC devices

Qrad =EdA (T24 _T14)
with E function of &, &, and
geometry of facing surfaces
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Emissivity of technical materials at low temperatures

Radiation from 290 K Radiation from 77 K

Surface at 77 K Surface at 4.2 K
Stainless steel, as found 0.34 0.12
Stainless steel, mech. polished 0.12 0.07
Stainless steel, electropolished 0.10 0.07
Stainless steel + Al foil 0.05 0.01
Aluminium, as found 0.12 0.07
Aluminium, mech. polished 0.10 0.06
Aluminium, electropolished 0.08 0.04
Copper, as found 0.12 0.06
Copper, mech. Polished 0.06 0.02

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 21
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Residual gas conduction

e Two different regimes, depending upon the relative
values of heat transfer distance d and mean free path
of gas molecules A,,,,1ecuie

e Viscous regime

— At higher pressure  A0iecute < d

— Classical conduction  Qyesiguar = A k(T) %

— Thermal conductivity k(T) independant of pressure

e Molecular regime

, — At lower pressure Amotecule > d

> — Kennard’s law Qresiduar = A a(T) QP (T, — Ty)

— Heat transfer proportional to pressure, independant of
spacing between surfaces

- Q depends on gas species

— Accommodation coefficient a(T) depends on gas
species, T;, T, and geometry of facing surfaces

_|
=
ANNVNDEEEINRNRNENNNGNY
_|
N
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Multi-layer insulation
(MLI)

e Complex system involving three heat transfer processes

QMLI = Qrad + Qcontact + Qresidual
— With n reflective layers of equal emissivity, Q,q4~1/(n + 1)
— Due to parasitic contacts between layers, Q,,.:qc¢ iNCreases with layer density

- Qresiauq due to residual gas trapped between layers, scales as 1/n in molecular
regime

— Non-linear behaviour requires layer-to-layer modeling
e In practice

— Typical data available from (abundant) literature
— Measure performance on test samples

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 23
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Typical heat fluxes at vanishingly low temperature
between flat plates [W/m?]

Black-body radiation from 290 K 401
Black-body radiation from 80 K 2.3
Gas conduction (100 mPa He) from 290 K 19
Gas conduction (1 mPa He) from 290 K 0.19
Gas conduction (100 mPa He) from 80 K 6.8
Gas conduction (1 mPa He) from 80 K 0.07
MLI (30 layers) from 290 K, pressure below 1 mPa 1-1.5
MLI (10 layers) from 80 K, pressure below 1 mPa 0.05
MLI (10 layers) from 80 K, pressure 100 mPa 1-2

Ph. Lebrun JUAS 2018 Cryogenics for SC devices
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Cross-section of LHC dipole cryostat

ALIGNMENT TARGET

CROSS SECTION

LHC DIPOLE
@ 4

__—— MAINQUADRUPOLE BUS 8485
HEAT EXCHANGER PIPE
o SUPERINSULATION
SUPERCONDUCTING COLLS
—— BEAMPPE
SHRINKING CYLINDER / ME LYESSEL
o IRONYOKE
VACUUM VESSEL
THERMAL SHIELD
AUKILIARY BUS-8ARS
AUSTENITG STEEL COLLARS
~ BEAMSCREEN
IRON INSERT
— INSTRUMENTATION \WIFES
FILLER PECE
—— DIPOLE BUS-BARS

SUPPORT POST
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LHC cryostat heat inleaks at 1.9 K

M d ACold compressors | —— 1PT242 —O-TT911_ave —+—PT961_ave —O—FT249
easure FT249 4 3 60
1PT242 2
Subcooling : 3 45
heat exchanger & = =
. g PT961_ave |: g O T e e o e e e O O T B’!
Q = m Ah(P’ T) TT911_aVe% A §5 5 IO I! L] LT (L L] LTI L 30 %__:.
S 1 15
/ [ ]
He property tables EHB21 tot \ 0 ‘ ' 0
- 0 0.5 1 1.5 2
. Qem_tot Time [h]
LHC sector (2.8 km)
600
500 +— —
400 — —
On full LHC cold sector (2.8 km) = 300 | B
- Measured 560 W, i.e. 0.2 W/m T oo L B
- Calculated 590 W, i.e 0.21 W/m 100 1| L
(0]
Calc. Meas.
Ph. Lebrun JUAS 2018 Cryogenics for SC devices 26
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e Thermal screening with cold vapour
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Vapour cooling of cryostat necks and supports
with perfect heat transfer

Cross-section A e Assuming perfect heat transfer between solid
and vapour, i.e. Tsp1iq(x) = Tyapor (x) = T(x)

m vapour flow
| ©p(M Qcona = Qpaen + MCy(T)(T — Tharn)

AJ(T) 2= = Qpaen + MCy(T)(T = Thaen)

X Ig/g/ I
o C,(T) specific heat of vapour

e k(T) thermal conductivity of support
e Qp4n Can be calculated by numerical
integration for
Than — different cryogens
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Qbathv LHe— — different values of aspect ratio L/A
— different values of vapour flow

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 28
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He vapour screening of stainless steel neck
between 300 K and 4 K

100000
—0g/s
10000 —0.001 g/s
—0.01g/s
0.1g/s
= 1000 —1g/s
£
<
- 100
10
1
0.1 1.0 10.0 100.0

Heat reaching the liquid bath [W]

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 29
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Vapour cooling of cryostat necks and supports
in self-sustained mode

A particular case of gas cooling is the self-sustained mode, i.e. the vapour flow
is generated only by the residual heat Q,,,, reaching the bath

Then Qpatn = Ly
with L, latent heat of vaporization

Given the general equation A k(T) % = Qpgen + mCy(T)(T — Tpatn)
The variables can be separated and integration yields

A (T k(T)

T Cp(T
L “Thath 1+$(T_Tbath)
v

dT

Qpath =

The denominator of the integrand 1 +
factor of the thermal conductivity k(T)

CPL(T) (T — Tpqe,) acts as an attenuation

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 30
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Reduction of heat conduction by
self-sustained helium vapour cooling

Effective thermal Purely conductive Self-sustained

conductivity integral from regime vapour-cooling
4 to 300 K [W.cm1] [W.cm1]

ETP copper 1620 128
OFHC copper 1520 110
Aluminium 1100 728 39.9
Nickel 99% pure 213 8.65
Constantan 51.6 1.94
AISI 300 stainless steel 30.6 0.92

Ph. Lebrun JUAS 2018 Cryogenics for SC devices
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Vapour cooling of cryostat necks and supports
with imperfect heat transfer

Cross-section A ] o
e Introducing efficiency of heat transfer f

_ between solid and vapour (0 < f < 1)
m vapour flow
Cp(T)
/ b dQ = f 1 Cy(T) dT
xtdx do TrdT e The steady-state heat balance equation
%IV/» becomes
X . T
/ d Ak(T)dT = fmC,(T ar
dx dx| fm Cp(T) dx
T * This non-linear equation needs to be solved
0 by numerical integration
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr bathy LHe

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 32
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Vapor-cooled current leads

Cross-section A e The (imperfect) heat transfer between solid
Current | and vapour can be written
/ dQ = f 1 C,(T) dT
m vapour flow e Introducing electrical resisitivity p(T), the
ﬂ/// | Cp() steady-state heat balance equation reads
2
x+dx /% T+dT d ar dT P(T) I
|do 7 [Ak(T) ] fm G (T) 1 =0
X / T
/ / e Assuming the material follows the
Source: Wiedemann-Franz-Lorenz (WFL) law
k(T) p(T) = Lo T
with £, = 2.45 1078 W. Q. K2
Tbath

L The aspect ratio L/A can be chosen for minimum
""""""""""""""" bathy LHe heat inleak Q,q,, and the minimum heat inleak
does not depend on the material

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 33
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Uncooled 5 [ . ] |
47 W/KA Py |
=3 Material obeying |
- the WFL law
. .

0

—
~N

()] (0 0] O.

&

HEAT LEAK per UNIT CURRENT w,
w

~N

Minimum residual
heat load
3 ) 1.04 W/KA

10 ) | | | -
0.0 0.2 0.4 0.6 0.8 1.0
HEAT TRANSFER EFFICIENCY f
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Beating the WFL law: HTS current leads

e The WFL law essentially states that good
electrical conductors are also good thermal
conductors

o Efficient current leads need good electrical
conductors with low thermal conductivity

e Superconductors are bad thermal conductors
with zero resisitivity

= Build current lead with superconductor up to
temperature as high as possible, i.e. use HTS

Ph. Lebrun JUAS 2018 Cryogenics for SC devices
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Copper
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HTS vs. normal conducting current leads

Resistive

e’Si fic Institite

HTS (4 to 50 K)

Resistive (above)

Heat into LHe [W/KA] 1.1 0.1
Total exergy [W/KA] 430 150
consumption
EIectrlcgl power [W/KA] 1430 500
from grid

Ph. Lebrun JUAS 2018 Cryogenics for SC devices
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Basic thermodynamics of refrigeration

Z T,= 300 K e First principle (Joule) Qo=0;,+W
Qo
| . . Qo - Qi
W - mechanical e Second principle (Clausius) — = =
To T;
work
Q (= for reversible process)
77 P T l .
e Hence W =T, % — Q;
l

e This equation can be written in three different ways

[ W >T,AS; — Q; introducing entropy S defined by  AS; = 9

T;

4 W=0; (;—‘Z — ) where (% — 1) is called the Carnot factor

| W = AE; introducing exergy £ defined by  AE; = ; (? _ )

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 38
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Minimum refrigeration work

o Consider the extraction of 1 W at liquid helium temperature 4.5 K, rejected at
room temperature 300 K

e The minimum refrigeration work is

Winin = Qi (2= 1) =1(32 - 1) = 65.7 W/W

* In practice, the most efficient helium refrigerators have an efficiency n of
about 30% with respect to the Carnot limit

Wmin 65.7 _
Wyeqr = =% = 222 = 220 W/W

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 39
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Refrigeration cycles

-
B e Introducing the temperature-entropy diagram
— Consider the thermodynamic transform from A to B,
A involving heat transfer AQ
— If it is reversible AQ = ffT ds
- AQ is proportional to the area under the curve in
S, entropy the temperature-entropy diagram

e To make a refrigeration cycle, one needs a
substance, the entropy of which depends on

A

TzA T D C some other physical variable than temperature,
e.g.
— Pressure of gas or vapor (compression/expansion)
T,lA — Magnetization of solid (magnetic refrigeration)
; % e Refrigeration cycle ABCD
- AQ, heat absorbed at T,
-S - AQ, heat rejected at T,

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 40
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Temperature [K]
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T-S diagram for helium
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A Carnot cycle is not feasible for helium liquefaction
T3 613 kbar 82 kbar
300 K f-mmmmeee-

e It would need a HP of 613 kbar!

e There exists no true isothermal
compressor

* There exists no true isentropic
compressor or expander

1.3 bar

\ S

3.89 J/g.K 8.07 J/g.K

4.5 K

v

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 42
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A real cycle needs internal heat exchange and para-isothermal compression
|

Practical compressors are adiabatic, need

T 4 aftercooling and if multistage, intercooling
1) i S
Heat exchanger between
HP and LP streams
45K "=
‘ S

v

3.89 J/g.K 8.07 J/g.K

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 43
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Refrigerator Liquefier
Compressor Compressor
HP LP HP < LP !
T,= 300 K- T,= 300 K --
Cold Box Cold Box
T,= 4.5 K- ! T,=4.5 Ky ;
LOAD ‘5l .| LOAD
[He
/ o
T4 T
300 K :
isobar
(1.3 bar)
18.8 J.g! 18.8 J.g*
45K //%\ 45K /\\
at e QY s
<> 4.2
4.2 J.gLK gk
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Thermodynamic equivalence
between refrigeration and liquefaction

What is the equivalent to 1 g helium liquefaction in terms of isothermal
refrigeration at liquid helium temperature T, = 4.5K ?

Wliq = Myiq (To AS — Q1 — R)
with T, = 300K

AS =27.3]/g.K

Q, =18.8]/g

R =1543]/g
hence W, = 6628]

Write that the same work is used to produce isothermal refrigeration at 4.5 K

Wrer = Qu (22— 1) = 6628]

T,
hence Q; = 100]
For refrigerators and liquefiers of the same efficiency

1 g/s liquefaction ~ 100 W refrigeration at 4.5 K

Ph. Lebrun JUAS 2018 Cryogenics for SC devices 45
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Measured refrigeration/liquefaction equivalence
12 kW @ 4.5 K helium refrigerators for LEP 2

11000 EL
10500
7 o/
10000 %VV Thermodynamic equivalence |—
I )|
9000 Q\h‘
\k
8500
E\‘\RE]
\\\
2

8000 = o With wet expander
7500 +— & Without wet expander

Refrigeration capacity @ 4.5 K [W]

7000 .

0 5 10 15
Liquefaction rate [g/s]

0
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Elementary cooling processes on T-S diagram
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Outside Sheet

Parting Sheet

Bar

Heat Transfer Fin

Turning Distributor Fin

Port

Port Distributor Fin

Nozzle

Stream B

Stream A

Header
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Elementary cooling processes on T-S diagram
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Cryogenic
turbo-expander
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Elementary cooling processes on T-S diagram
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Joule-Thomson inversion temperatures

Isenthalps in T-S diagram can
have positive or negative slope,

Maximum inversion

i.e. isenthalpic expansion can temperature [K]
produce warming or cooling _

= inversion temperature Helium 43
Hydrogen 202
Neon 260
Air 603
Nitrogen 623
Oxygen /761

While air can be cooled down and liquefied by JT expansion from room temperature,
helium and hydrogen need precooling down to below inversion temperature by heat
exchange or work-extracting expansion (e.g. in turbines)
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Two-stage Claude cycle
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Claude-cycle helium refrigerators/liquefiers
Air Liguide & Linde

: HELIAL SL HELIAL ML HELIAL LL
- ’g‘.Q.. Max. Liguefaction capacity without LN2 25 L/h 70 L/h 145 L/h
: ~ Max. Liquefaction capacity with LN2 50 L/h 150 L/h 330 L/h
» Compressor electrical motor 55 kW 132 kW 250 kW
% Specific consumption for liquefaction w/o LN2 645 W/W 552 W/W 505 W/W
% Carnot 10% 12% 13%

I

100 - 145 Watt 130 - 190 Watt

210- 290 watt 255-400 wWatt
445 - 640 Watt 560-900 watt
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Process cycle & T-S diagram of LHC
18 kW @ 4.5 K cryoplant
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e LHC 18 kW @ 4.5 K helium cryoplants B

33kW @ 50 Kto 75 K

23 kW @ 4.6 Kto 20K

41 g/s liquefaction

4 MW compressor power
C.O.P. 220-230 W/W @ 4.5 K

Air Liquide

Linde
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ITER 25 kW @ 4.5 K helium refrigerator
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Compressor station
of LHC 18 kW@ 4.5 K helium refrigerator
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Carnot, Stirling and Ericsson cycles

s=const. v=const. p=const.

All «sloping» cycles need
internal heat exchange

For small machines, this
is done by regenerative,
rather than recuperative
heat exchangers

= alternating rather than
continuous operation

—

5

Carnot cycle (1,2,3.4), Stirling cycle (1,2,3',4") and Ericsson cycle (1,2.3".4")
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Operation of a Gifford-
McMahon cryocooler
(Ericsson cycle)
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Two-stage Gifford-McMahon cryocooler

CRYOMECH PT407 & CP970 compressor
~ 0.7W@42K&25W @ 55K
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ekt et Stirling and pulse-tube cryocoolers
Compressor Reservoir
Compressor (Oscillator) volume
i I | I
Displacer g
-« -
war end warm end
Regenerator Regenerator Pulse-tube
o o
RN
cold end cold end
Stirling refrigerator Fulze tube refrigerator
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Mini pulse-tube cryocoolers

ESA MPTC development model — 1W @ 77K

CEA/SBT coaxial PTC-6W @ 80K
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Contents

e Thermometry
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Definition of ITS90 in cryogenic range

Triple points H, Ne O, Ar Hg H,O
| | | L1

Primary thermometers

Pt resistance thermometer

He 4 gas thermometer

He 3 gas thermometer

He vapour pressure

0,1 1 10 100 1000
Temperature [K]
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Primary fixed points of ITS90 in cryogenic range

Fixed point Temperature [K]
H, triple point 13.8033

Ne triple point 24.5561

O, triple point 54.3584

Ar triple point 83.8058

Hg triple point 234.3156
H,O triple point 273.16 (*)

(*) exact by definition
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From temperature sensor to practical thermometer

=== Temperature
Sensor

=..I'I Ge
e R RNFe wire

B8  RhFethin fim

Cernox
Carbon A-B
.. Carbon TVO
4 CBT
1cm
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Practical temperature range
covered by cryogenic thermometers

Chromel-constantan
thermocouple

Au-Fe thermocouple

Pt resistance

curs I

resistance

cCernox

Ge resistance

Temperature [K]
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