

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies
- ➤ Capacitive *shoe-box* BPM for low frequencies
- > Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

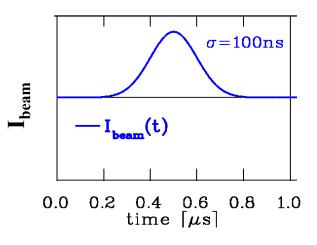
Usage of BPMs

A Beam Position Monitor is an non-destructive device for bunched beams

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored The abbreviation BPM and pick-up PU are synonyms

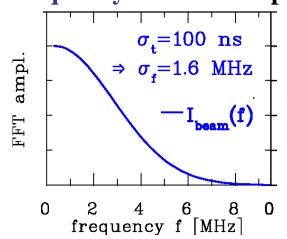
1. It delivers information about the transverse center of the beam

- > Trajectory: Position of an individual bunch within a transfer line or synchrotron
- > Closed orbit: central orbit averaged over a period much longer than a betatron oscillation
- \triangleright Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- \triangleright Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- Fine evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- Feedback: fast bunch-by-bunch damping *or* precise (and slow) closed orbit correction


2. Information on longitudinal bunch behavior (see next chapter)

- **Bunch shape and evolution** during storage and acceleration
- For proton LINACs: the beam **velocity** can be determined by two BPMs
- For electron LINACs: **Phase** measurement by Bunch Arrival Monitor
- **Relative** low current measurement down to 10 nA.

Time domain: Recording of a voltage as a function of time:


Instrument:

Fourier Transformation:

$$\widetilde{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

Frequency domain: Displaying of a voltage as a function of frequency:

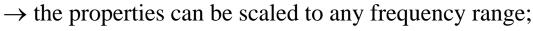
Instrument:

Spectrum Analyzer

Fourier Transformation of time domain data

Care: Contains amplitude *and* phase

Excurse: Properties of Fourier Transformation


Fourier Transform.:
$$\widetilde{f}(\omega) \equiv \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
 Inv. F. T.: $f(t) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{f}(\omega)e^{i\omega t}d\omega$ tech. $DFT(f)$ or $FFT(f)$

 \Rightarrow a process can be described either with f(t) 'time domain' or $\widetilde{f}(\omega)$ 'frequency domain'

No loss of information: If
$$\widetilde{f}(\omega) = \int f(t)e^{-i\omega t}dt$$
 exists, then $f(t) = \frac{1}{2\pi} \int \int f(\tau)e^{i\omega(t-\tau)}d\omega d\tau$

FT is complex: $\tilde{f}(\omega) \in \mathbb{C} \to \text{amplitude } A(\omega) = |\tilde{f}(\omega)| \text{ and phase } \varphi(\omega) = \arctan \frac{Im(\tilde{f})}{Re(\tilde{f})}$

Similarity Law: For
$$a \neq 0$$
 it is for $f(at)$: $|1/a| \cdot \tilde{f}(\omega/a) = \int_{\mathbb{R}^{d}} f(at)e^{-i\omega t}dt$ $Im(z)$

⇔ 'shorter time signal has wider FT'

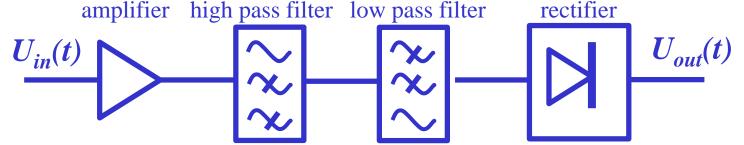
Differentiation Law: for nth derivative
$$f^{(n)}(t)$$
 it is: $(i\omega)^n \cdot \tilde{f}(\omega) = \int_0^\infty f^{(n)}(t)e^{-i\omega t}dt$

 \rightarrow differentiation in time domain corresponds to multiplication with $i\bar{\omega}$ in frequency domain

Convolution Law: For
$$f(t) = f_1(t) * f_2(t) \equiv \int f_1(\tau) \cdot f_2(t-\tau) d\tau$$

 $\Rightarrow \widetilde{f}(\omega) = \widetilde{f}_1(\omega) \cdot \widetilde{f}_2(\omega) \rightarrow \text{convolution be expressed as multiplication of FT}$

Re(z)



Excurse: Properties of Fourier Trans. -> technical Realization

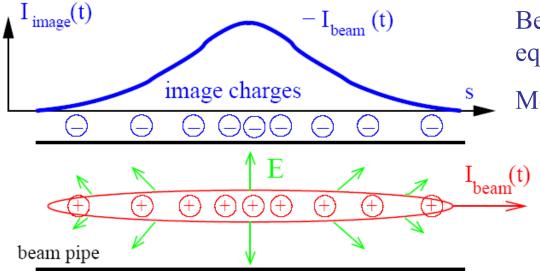
Convolution Law: For
$$f(t) = f_1(t) * f_2(t) \equiv \int_{\infty}^{\infty} f_1(\tau) \cdot f_2(t - \tau) d\tau$$

$$\Rightarrow \widetilde{f}(\omega) = \widetilde{f}_1(\omega) \cdot \widetilde{f}_2(\omega)$$

 \rightarrow convolution in time domain can be expressed as multiplication of FT in frequency domain **Application:** Chain of electrical elements calculated in frequency domain more easily parameters are more easy in frequency domain (bandwidth, f-dependent amplification.....)

Engineering formulation for <u>finite</u> **number of discrete samples:**

Digital Fourier Transformation DFT(f): corresponds to math. FT for finite number of samples **Fast Fourier Transformation**: FFT(f) dedicated algorithm for **fast** calc. with 2^n increments **Transfer function** $H(\omega)$ and h(t) are used to describe electrical elements


Calculation with $H(\omega)$ in frequency domain or

h(t) time domain \rightarrow 'Finite Impulse Response' FIR filter or 'Infinite Impulse Response' IIR filter

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

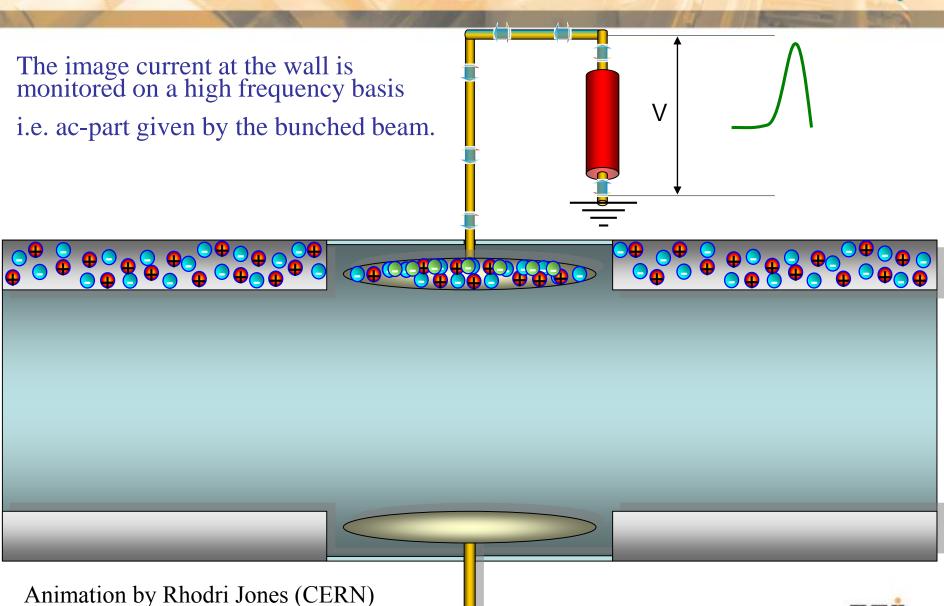
Beam Position Monitor **BPM** equals Pick-Up **PU**

Most frequent used instrument!

For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

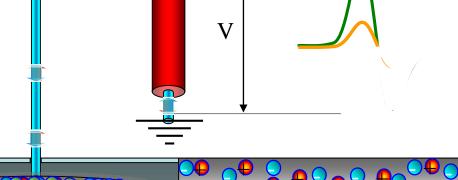
➤ Signal treatment for capacitive pick-ups:


- ➤ Longitudinal bunch shape
- Overview of processing electronics for Beam Position Monitor (BPM)

> Measurements:

- > Trajectory and closed orbit determination
- ➤ Tune and lattice function measurements (synchrotron only).

Principle of Signal Generation of capacitive BPMs

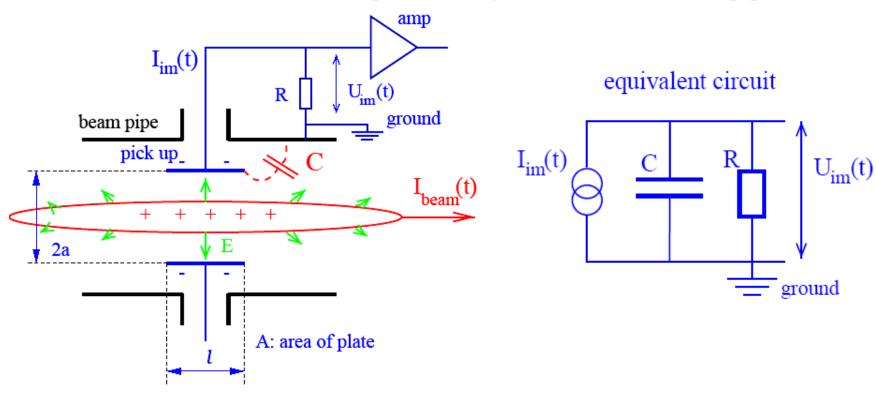

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Principle of Signal Generation of a BPMs, off-center Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam.

Animation by Rhodri Jones (CERN)


Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry:

$$I_{im}(t) = -\frac{dQ_{im}(t)}{dt} = \frac{-A}{2\pi al} \cdot \frac{dQ_{beam}(t)}{dt} = \frac{-A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{dI_{beam}(t)}{dt} = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot i\omega I_{beam}(\omega)$$
Using a relation for Fourier transformation: $I_{beam} = I_0 e^{-i\omega t} \Rightarrow dI_{beam}/dt = -i\omega I_{beam}$.

Transfer Impedance for a capacitive BPM

At a resistor R the voltage U_{im} from the image current is measured.

The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam}

in frequency domain:
$$U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$$
.

Capacitive BPM:

- \triangleright The pick-up capacitance C: plate \leftrightarrow vacuum-pipe and cable.
- \triangleright The amplifier with input resistor R.
- The beam is a high-impedance current source:

$$\begin{split} U_{im} &= \frac{R}{1 + i\omega RC} \cdot I_{im} \\ &= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam} \\ &\equiv Z_{t}(\omega, \beta) \cdot I_{beam} \end{split} \qquad \frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC} \end{split}$$

equivalent circuit

$$\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$$

This is a high-pass characteristic with $\omega_{cut} = 1/RC$:

Amplitude:
$$|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$
 Phase: $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$

ground

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

$$U_{im}(\omega) = Z_{t}(\omega) \cdot I_{beam}(\omega)$$

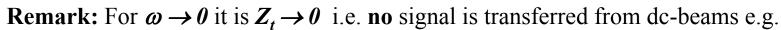
$$|Z_{t}| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^{2}/\omega^{2}_{cut}}} \xrightarrow{\Xi} 1$$

$$\varphi = \arctan(\omega_{cut}/\omega)$$

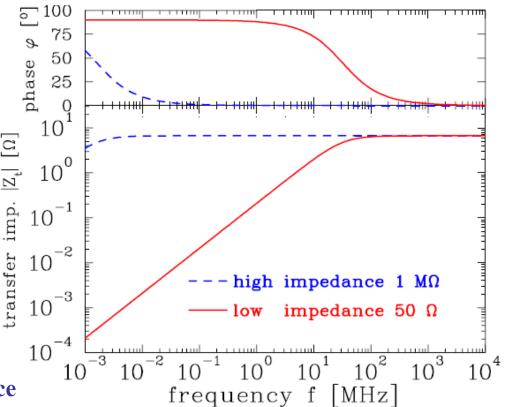
$$\varphi = \arctan(\omega_{cut}/\omega)$$

Parameter for shoe-box BPM:

$$C=100 \text{pF}, l=10 \text{cm}, \beta=50\%$$


$$f_{cut} = \omega/2\pi = (2\pi RC)^{-1}$$

for
$$R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$$


for
$$R=1 \text{ M}\Omega \Rightarrow f_{cut} = 1.6 \text{ kHz}$$

Large signal strength \rightarrow high impedance

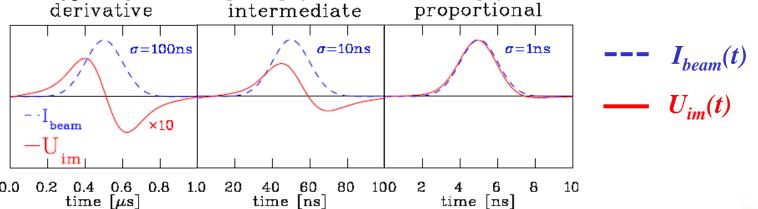
Smooth signal transmission $\rightarrow 50 \Omega$

- > de-bunched beam inside a synchrotron
- ➤ for slow extraction through a transfer line

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range *and* termination the signal looks different:

$$\begin{array}{c} \text{High frequency range } \omega >> \omega_{cut} \\ Z_{t} \propto \frac{i\omega/\omega_{cut}}{1 + i\omega/\omega_{cut}} \rightarrow 1 \Rightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t) \end{array}$$

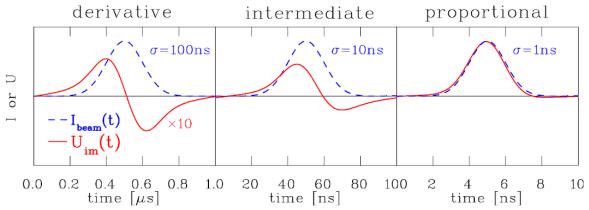

 \Rightarrow direct image of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length

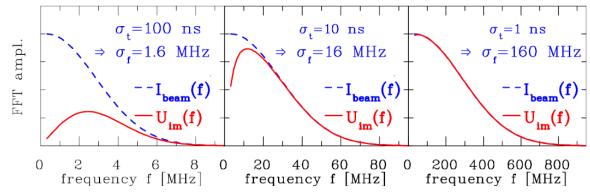
$$\triangleright$$
 Low frequency range $\omega \ll \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow i\frac{\omega}{\omega_{cut}} \implies U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

- \Rightarrow derivative of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on C
- > Intermediate frequency range $\omega \approx \omega_{cut}$: Calculation using Fourier transformation

Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : $\sigma >> 1$ ns):

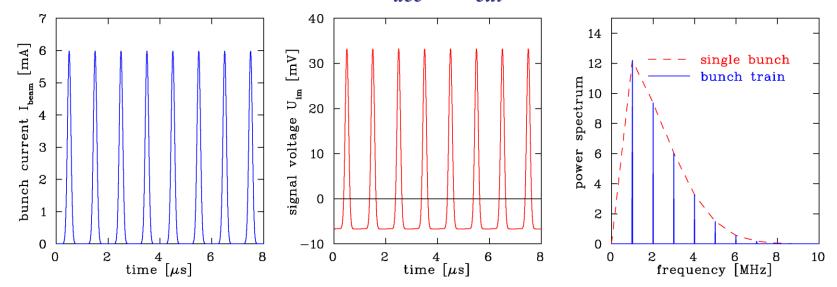



Calculation of Signal Shape (here single bunch)

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{heam}(t)$ having a width of σ_t

2. FFT of $I_{beam}(t)$ leads to the frequency domain Gaussian $I_{beam}(f)$ with $\sigma_f = (2\pi\sigma_t)^{-1}$


- 3. Multiplication with $Z_t(f)$ with $f_{cut}=32$ MHz leads to $U_{im}(f)=Z_t(f)\cdot I_{beam}(f)$
- **4. Inverse FFT** leads to $U_{im}(t)$

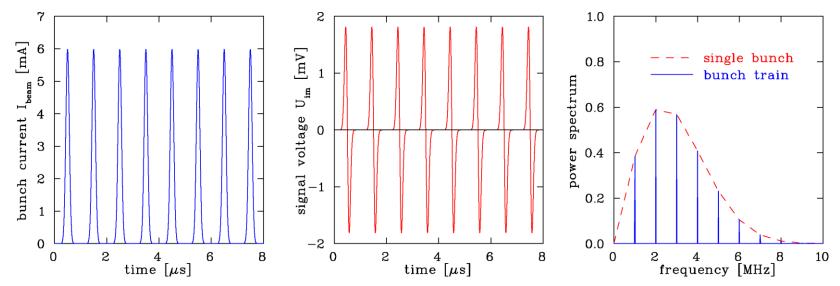
Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=1 \text{ M}\Omega \implies f_{acc} >> f_{cut}$:

Parameter: R=1 M $\Omega \Rightarrow f_{cut}=2$ kHz, $Z_t=5$ Ω , all buckets filled C=100pF, l=10cm, $\beta=50\%$, $\sigma_t=100$ ns $\Rightarrow \sigma_l=15$ m

- \blacktriangleright Fourier spectrum is composed of lines separated by acceleration f_{rf}
- ➤ Envelope given by single bunch Fourier transformation
- ➤ Baseline shift due to ac-coupling

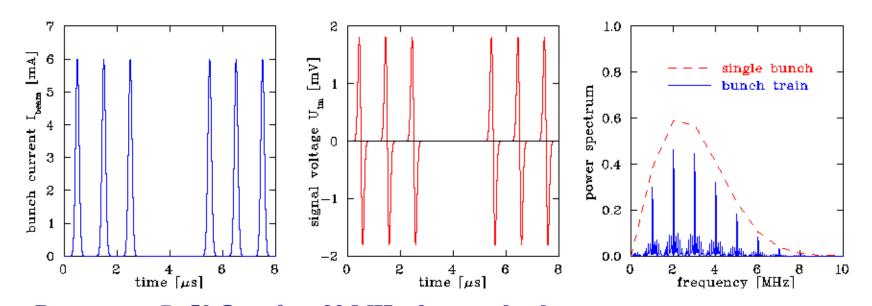

Remark: 1 MHz $< f_{rf} < 10$ MHz \Rightarrow Bandwidth ≈ 100 MHz $= 10 \cdot f_{rf}$ for broadband observation

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=50 \Omega \implies f_{acc} << f_{cut}$:

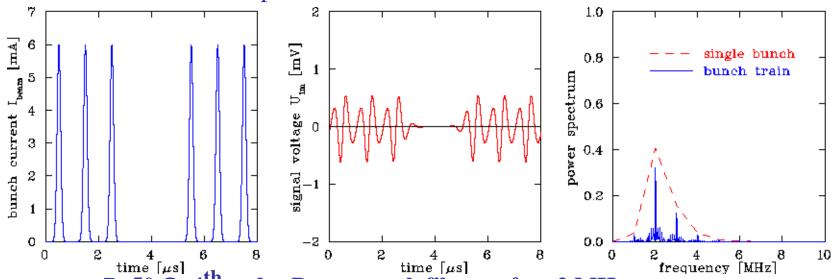
Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled


C=100pF,
$$l$$
=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_l$ =15m

- ➤ Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- \triangleright Bandwidth up to typically $10*f_{acc}$

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, $R=50 \Omega$:


Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, 2 empty buckets C=100 pF, l=10 cm, $\beta=50\%$, $\sigma_t=100 \text{ ns} \Rightarrow \sigma_l=15 \text{m}$

➤ Fourier spectrum is more complex, harmonics are broader due to sidebands

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:

Parameter: $R=50 \Omega$, 4th order Butterworth filter at $f_{cut}=2$ MHz

C=100pF, l=10cm, β =50%, σ =100 ns

- ➤ Ringing due to sharp cutoff
- Other filter types more appropriate

 $|H_{low}| = \frac{1}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}}$ and $|H_{high}| = \frac{(\omega/\omega_{cut})^n}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}}$

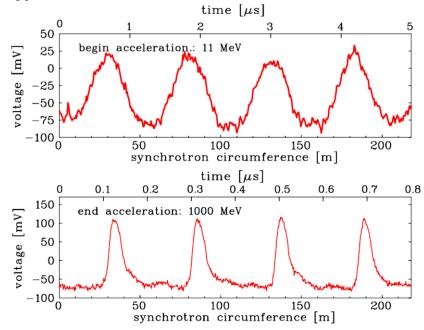
$$H_{filter} = H_{high} \cdot H_{low}$$

Generally: $Z_{tot}(\omega) = H_{cable}(\omega) \cdot H_{filter}(\omega) \cdot H_{amp}(\omega) \cdot \dots \cdot Z_{t}(\omega)$

Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron:


100 MHz $< f_{rf} <$ 1 GHz typically R=50 Ω processing to reach bandwidth C \approx 5 pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 700$ MHz Example: 36 MHz GSI ion LINAC

Proton synchtrotron:

1 MHz $< f_{rf} <$ 30 MHz typically R=1 M Ω for large signal i.e. large Z_t $C\approx 100$ pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 10$ kHz Example: non-relativistic GSI synchrotron

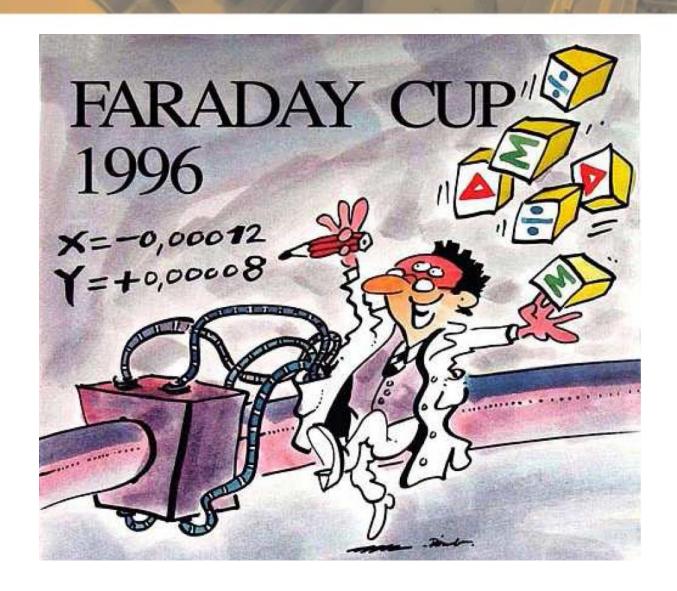
 $f_{rf}: 0.8 \text{ MHz} \rightarrow 5 \text{ MHz}$

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Principle of Position Determination by a BPM

The difference voltage between plates gives the beam's center-of-mass → most frequent application

'Proximity' effect leads to different voltages at the plates:


$$y = \frac{1}{S_{y}(\omega)} \cdot \frac{U_{up} - U_{down}}{U_{up} + U_{down}} + \delta_{y}(\omega)$$

$$\equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}} + \delta_{y}$$
Correspondingly:
$$x = \frac{1}{S_{x}(\omega)} \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} + \delta_{x}(\omega)$$
It is at least:
$$\Delta U << \Sigma U/10$$

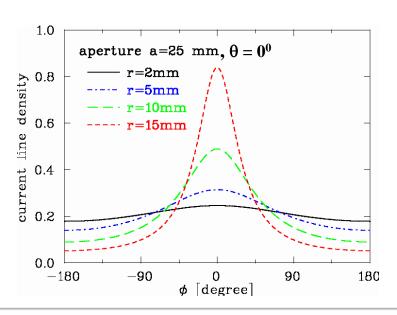
 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$ S is a geometry dependent, non-linear function, which have to be optimized Units: S=[%/mm] and sometimes S=[dB/mm] or k=[mm].

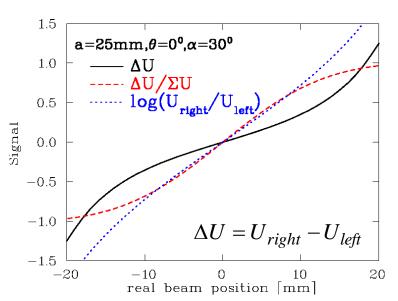
Outline:

- **>** Signal generation → transfer impedance
- ➤ Capacitive <u>button</u> BPM for high frequencies used at most proton LINACs and electron accelerators
- **➤** Capacitive *shoe-box* BPM for low frequencies
- **Electronics for position evaluation**
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

a

button


beam


'Proximity effect': larger signal for closer plate

Ideal 2-dim model: Cylindrical pipe → image current density via 'image charge method' for 'pensile' beam:

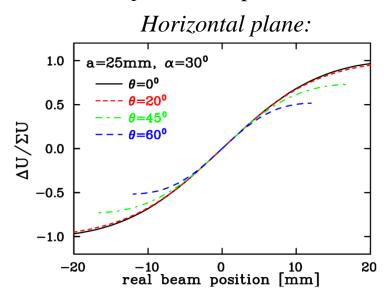
$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)} \right)$$

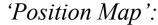
Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

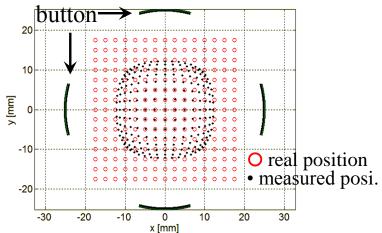
2-dim Model for a Button BPM

a

button


Ideal 2-dim model: Non-linear behavior and hor-vert coupling:

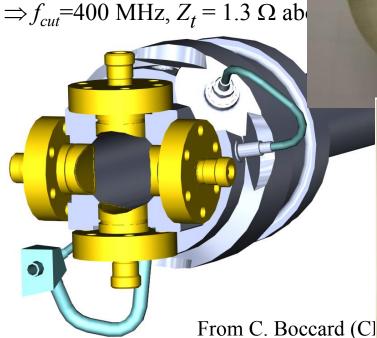

Sensitivity **S** is converts signal to position $x = \frac{1}{S} \cdot \frac{\Delta U}{\Sigma U}$

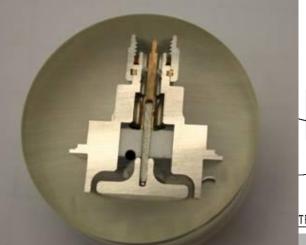

with S [%/mm] or [dB/mm]

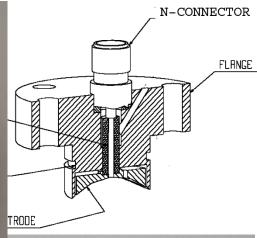
i.e. S is the derivative of the curve $S_x = \frac{\partial (\frac{\Delta U}{\Sigma U})}{\partial x}$, here $S_x = S_x(x, y)$ i.e. non-linear.

For this example: center part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$

Button BPM Realization

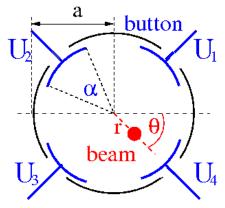



LINACs, e⁻-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length


 \rightarrow 50 Ω signal path to prevent reflections

Button BPM with 50 $\Omega \Rightarrow U_{im}(i)$

Example: LHC-type inside cryc \emptyset 24 mm, half aperture a=25 m

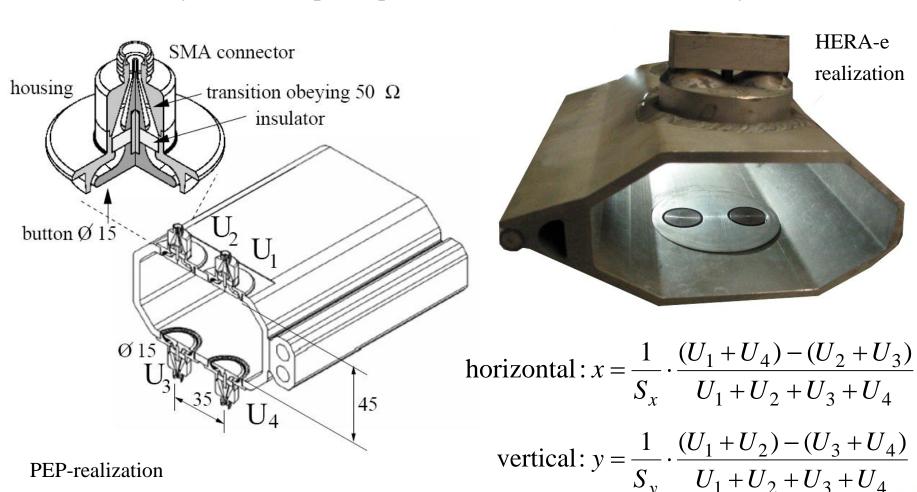


The button BPM can be rotated by 45⁰ to avoid exposure by synchrotron light:

Frequently used at boosters for light sources

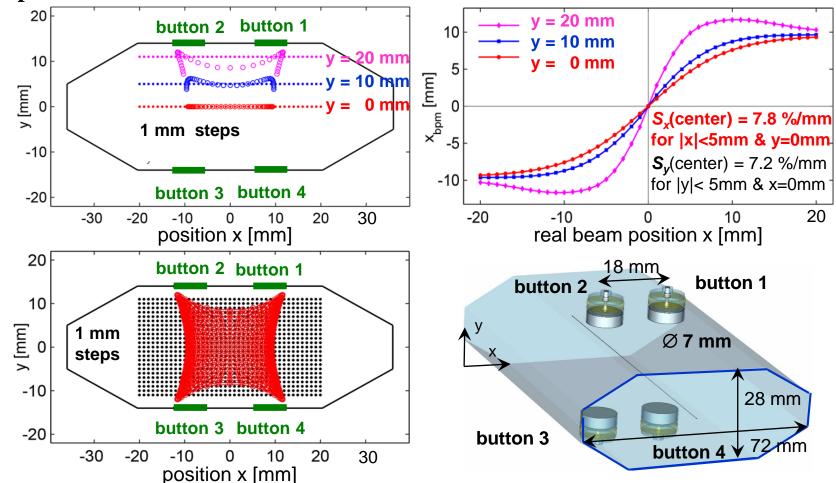
horizontal :
$$x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical:
$$y = \frac{1}{S} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$


Example: Booster of ALS, Berkeley

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed ⇒buttons only in vertical plane possible ⇒ increased non-linearity


PEP-realization

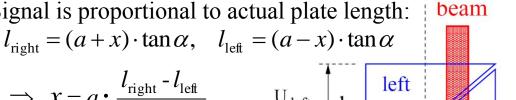
Example: Simulation for ALBA light source for 72 x 28 mm² chamber

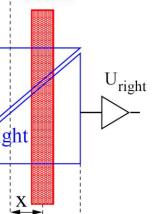
Optimization: horizontal distance and size of buttons

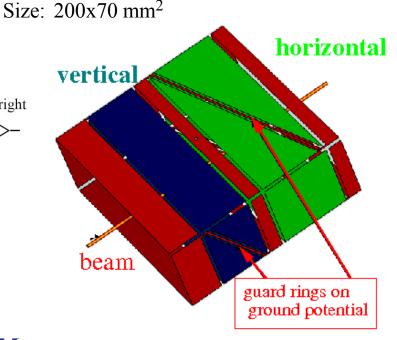
Result: non-linearity and xy-coupling occur in dependence of button size and position

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Capacitive <u>shoe-box</u> BPM for low frequencies used at most proton synchrotrons due to linear position reading
- **Electronics for position evaluation**
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

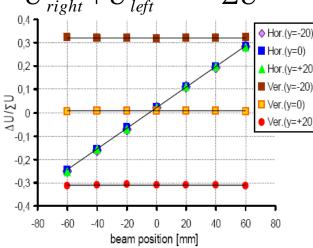



Frequency range: 1 MHz $< f_{rf} <$ 10 MHz \Rightarrow bunch-length >> BPM length.


Signal is proportional to actual plate length:

$$\nu_{\text{right}} = (\alpha + \lambda) \cdot \text{tall} \alpha$$
,

$$\Rightarrow x = a \cdot \frac{l_{\text{right}} - l_{\text{left}}}{l_{\text{right}} + l_{\text{left}}}$$
 U left 1



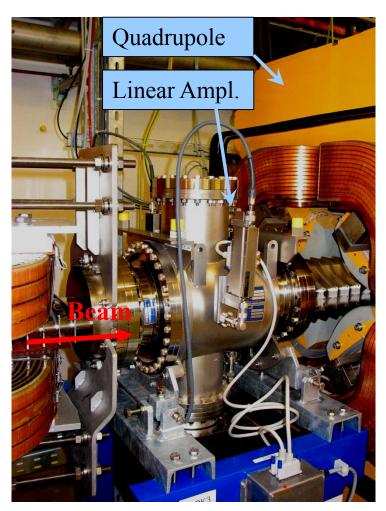
In ideal case: linear reading

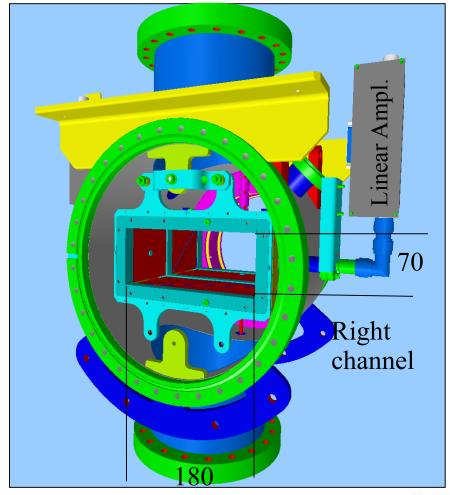
$$x = a \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$$

Shoe-box BPM:

Advantage: Very linear, low frequency dependence

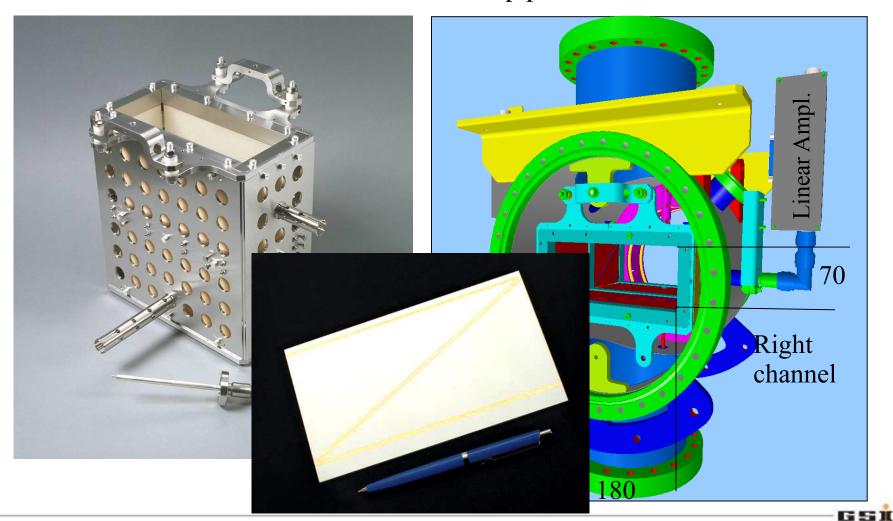
i.e. position sensitivity **S** is constant


Disadvantage: Large size, complex mechanics

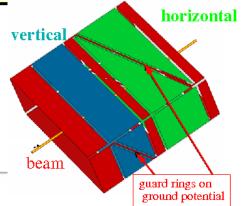

high capacitance

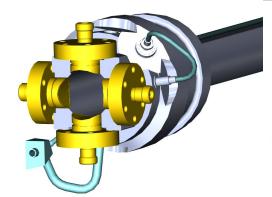
Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.



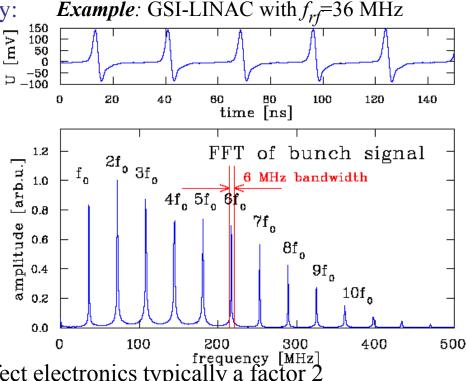
Technical Realization of a Shoe-Box BPM


Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.



Comparison Shoe-Box and Button BPM

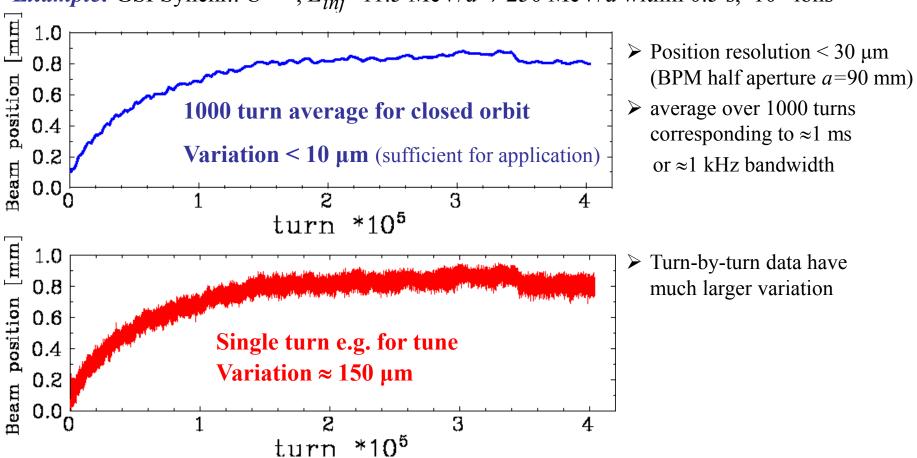
	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	1 MΩ or ≈1 kΩ (transformer)	50 Ω
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, f_{rf} < 10 MHz	All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$


Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Capacitive *shoe-box* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

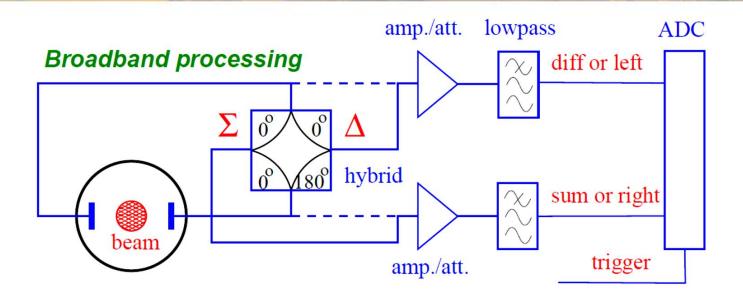
General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $\chi = 1/S \cdot \Delta U/\Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- \Rightarrow Signal-to-noise $\Delta U_{im}/U_{eff}$ is influenced by:
- ➤ Input signal amplitude
 - \rightarrow large or matched Z_t
- Thermal noise at $R=50 \Omega$ for T=300 K(for shoe box $R=1 \text{ k}\Omega \dots 1 \text{ M}\Omega$)
- ➤ Bandwidth Δf ⇒ Restriction of frequency width because the power is concentrated on the harmonics of f_{rf}


Remark: Additional contribution by non-perfect electronics typically a factor 2

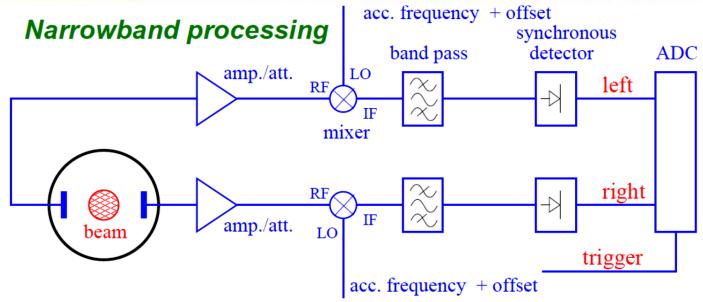
Moreover, pick-up by electro-magnetic interference can contribute ⇒ good shielding required

Comparison: Filtered Signal ↔ Single Turn



However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination.

Broadband Signal Processing


- \succ Hybrid or transformer close to beam pipe for analog $\varDelta U \& \Sigma U$ generation or $U_{left} \& U_{right}$
- ➤ Attenuator/amplifier
- > Filter to get the wanted harmonics and to suppress stray signals
- \triangleright ADC: digitalization \longrightarrow followed by calculation of of $\Delta U/\Sigma U$

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100~\mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture, resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise

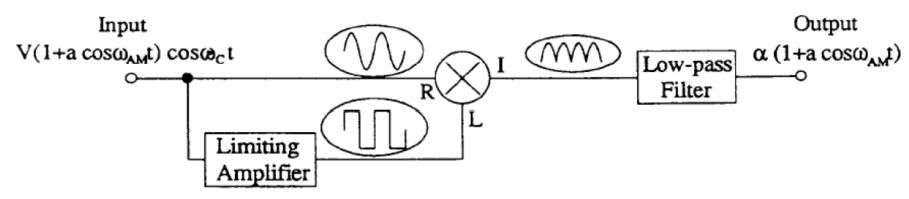
Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- ➤ Attenuator/amplifier
- \succ Mixing with accelerating frequency f_{rf} \Rightarrow signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- ➤ Rectifier: synchronous detector
- \triangleright ADC: digitalization \longrightarrow followed calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

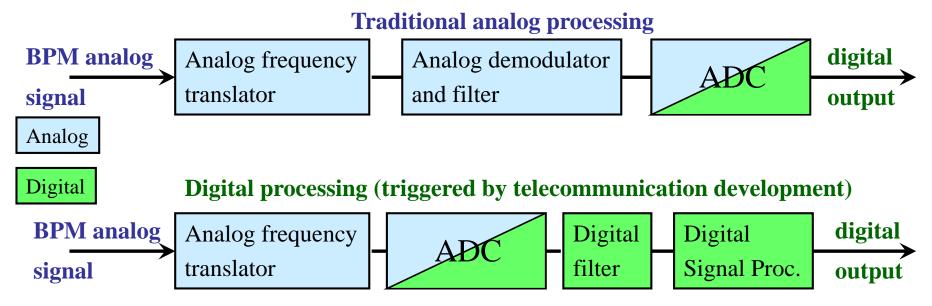

Mixer: A passive rf device with

- \triangleright Input RF (radio frequency): Signal of investigation $A_{RF}(t) = A_{RF} \cos \omega_{RF} t$
- \triangleright Input LO (local oscillator): Fixed frequency $A_{LO}(t) = A_{LO} \cos \omega_{LO} t$
- Output IF (intermediate frequency)

$$\begin{aligned} A_{IF}(t) &= A_{RF} \cdot A_{LO} \cos \omega_{RF} t \cdot \cos \omega_{LO} t \\ &= A_{RF} \cdot A_{LO} \left[\cos(\omega_{RF} - \omega_{LO})t + \cos(\omega_{RF} + \omega_{LO})t \right] \end{aligned}$$

⇒ Multiplication of both input signals, containing the sum and difference frequency.

Synchronous detector: A phase sensitive rectifier



38

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- ➤ Basic functionality is preserved but implementation is very different
- ➤ Digital transition just after the amplifier & filter or mixing unit
- ➤ Signal conditioning (filter, decimation, averaging) on digital electronics e.g. FPGA

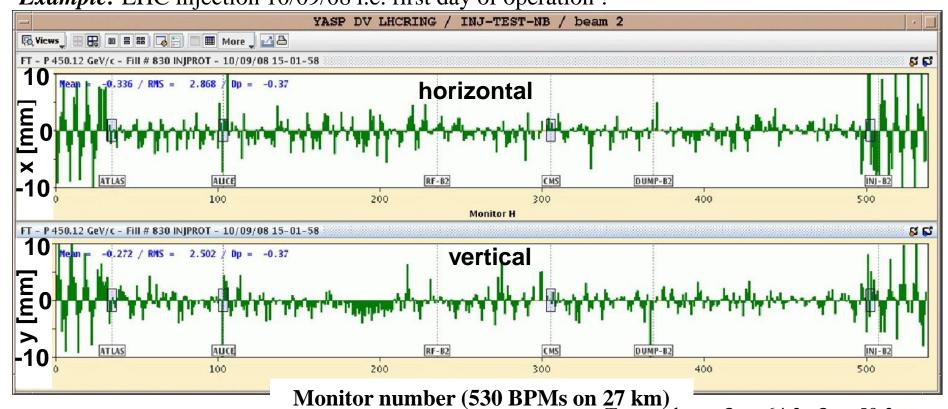
Advantage of DSP: Versatile operation, flexible adoption without hardware modification **Disadvantage of DSP: non**, good engineering skill requires for development, expensive

Comparison of BPM Readout Electronics (simplified)

Type	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	Limited time resolution by ADC → undersampling complex and expensive

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- > Capacitive *shoe-box* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- > Summary



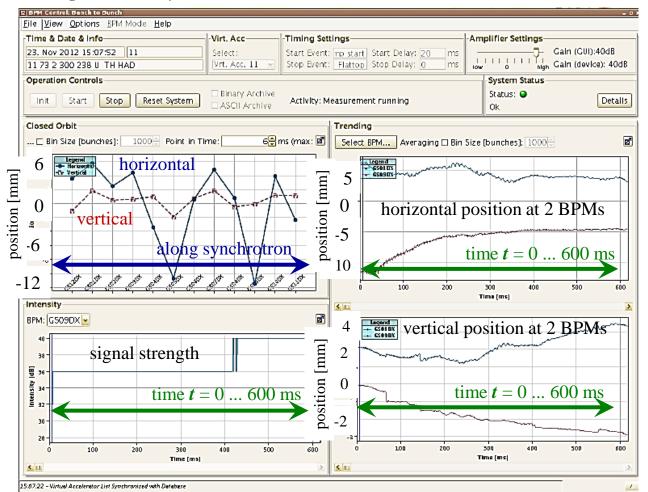
Trajectory:

The position delivered by an **individual bunch** within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation!

From R. Jones (CERN)


Tune values: $Q_h = 64.3$, $Q_v = 59.3$

Close Orbit Measurement with BPMs

Single bunch position averaged over 1000 bunches \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components.

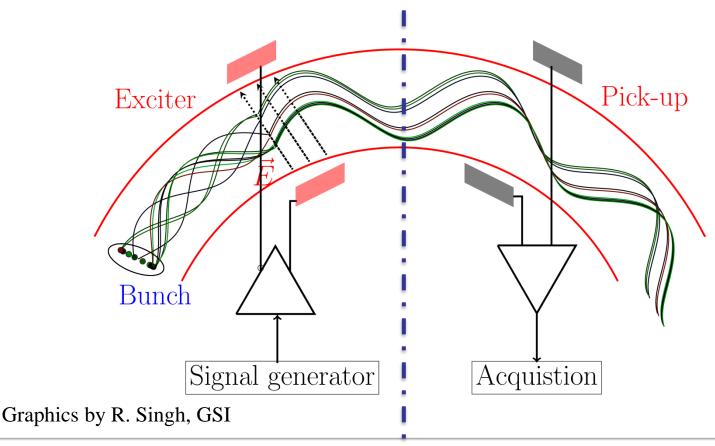
Example: GSI-synchrotron at two BPM locations, 1000 turn average during acceleration:

Closed orbit:

Beam position averaged over many turns (i.e. betatron oscillations). The result is the basic tool for alignment & stabilization

Remark as a role of thumb:

Number of BPMs within a synchrotron: $N_{BPM} \approx 4 \cdot Q$ Relation BPMs \leftrightarrow tune due to close orbit stabilization feedback (justification outside of the scope of this lecture)

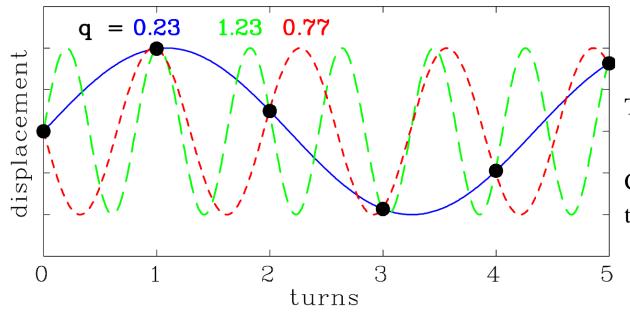

Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM

Beam particle's *in-coherent* motion \Rightarrow center-of-mass stays constant

Excitation of **all** particles by rf \Rightarrow **coherent** motion

⇒ center-of-mass variation turn-by-turn


The tune Q is the number of betatron oscillations per turn.

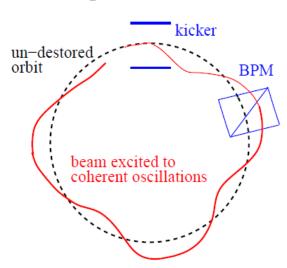
The betatron frequency is $f_{\beta} = Q \cdot f_{\theta}$.

Measurement: excitation of *coherent* betatron oscillations + position from one BPM.

From a measurement one gets only the non-integer part q of Q with $Q = n \pm q$. Moreover, only 0 < q < 0.5 is the unique result.

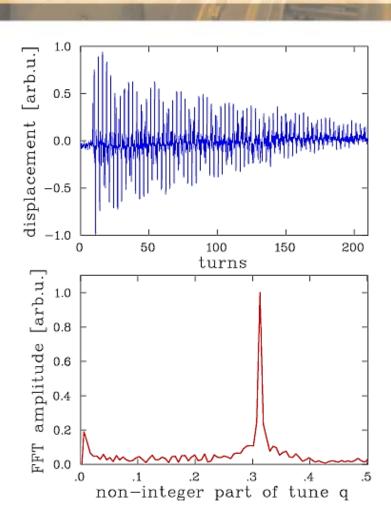
Example: Tune measurement for six turns with the three lowest frequency fits:

To distinguish for q < 0.5 or q > 0.5:


Changing the tune slightly, the direction of q shift differs.

Tune Measurement: The Kick-Method in Time Domain

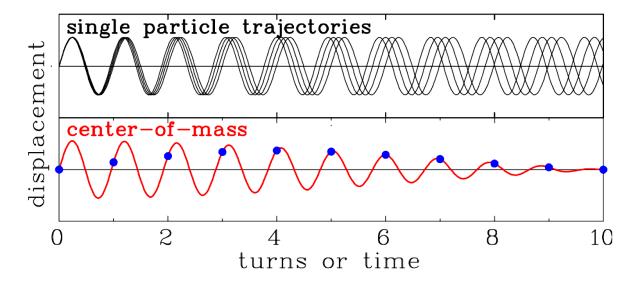
The beam is excited to coherent betatron oscillation


- → the beam position measured each revolution ('turn-by-turn')
- \rightarrow Fourier Trans. gives the non-integer tune q. Short kick compared to revolution.

The de-coherence time limits the **resolution**:

N non-zero samples

 \Rightarrow General limit of discrete FFT: $\Delta q > \frac{1}{2N}$



 $N = 200 \text{ turn} \Rightarrow \Delta q > 0.003 \text{ as resolution}$ (tune spreads are typically $\Delta q \approx 0.001!$)

Tune Measurement: De-Coherence Time

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):

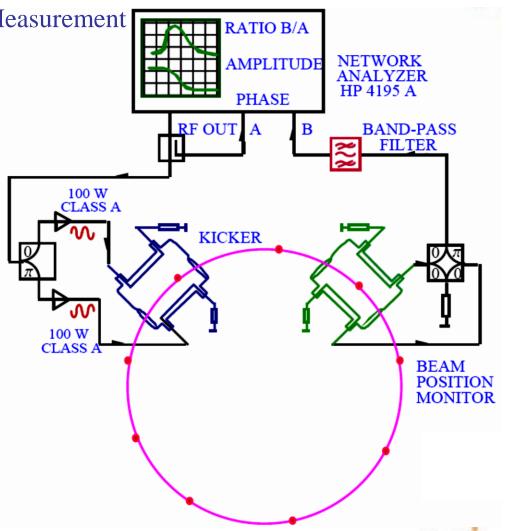
Scheme of the individual trajectories of four particles after a kick (top) and the resulting *coherent* signal as measured by a pick-up (bottom).

⇒ Kick excitation leads to limited resolution

Remark: The tune spread is much lower for a real machine.

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'

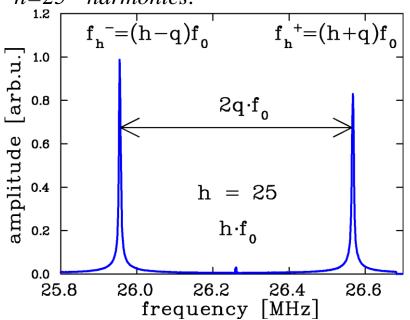

→ Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

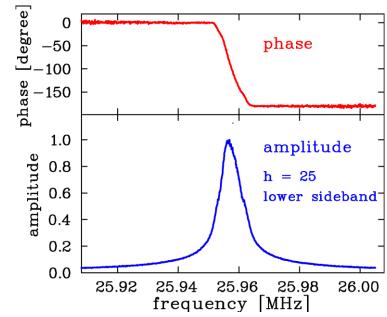
Beam acts like a driven oscillator!

Using a network analyzer:

- ➤ RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
- ➤ The position is measured at one BPM
- ➤ Network analyzer: amplitude and phase of the response
- ➤ Sweep time up to seconds due to de-coherence time per band
- \triangleright resolution in tune: up to 10^{-4}



Tune Measurement: Result for BTF Measurement


BTF measurement at the GSI synchrotron, recorded at the 25th harmonics.

A wide scan with both sidebands at

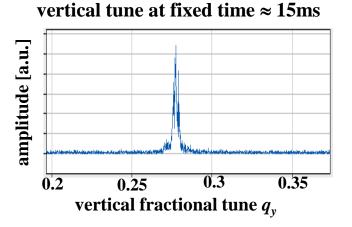
 $h=25^{th}$ -harmonics:

A detailed scan for the **lower** sideband → beam acts like a driven oscillator:

From the position of the sidebands q = 0.306 is determined. From the width

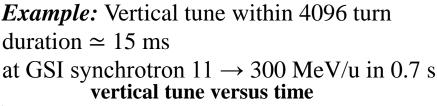
$$\Delta f/f \approx 5 \cdot 10^{-4}$$
 the tune spread can be calculated via $\Delta f_h^- = \eta \frac{\Delta p}{p} \cdot h f_0 \left(h - q + \frac{\xi}{\eta} Q \right)$

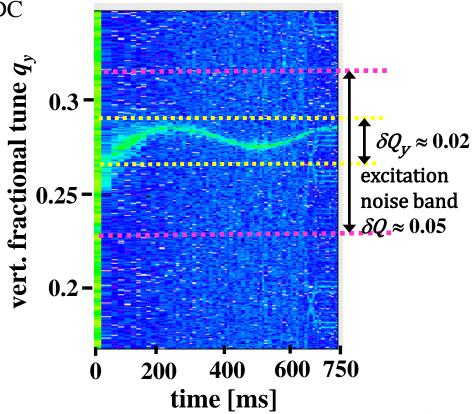
Advantage: High resolution for tune and tune spread (also for de-bunched beams)


Disadvantage: Long sweep time (up to several seconds).

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied


- → beam picks out its resonance frequency: *Example:* Vertical tune within 4096 turn
- ► broadband excitation with white noise of ≈ 10 kHz bandwidth
- turn-by-turn position measurement by fast ADC
- Fourier transformation of the recorded data
- ⇒ Continues monitoring with low disturbance



Advantage:

Fast scan with good time resolution

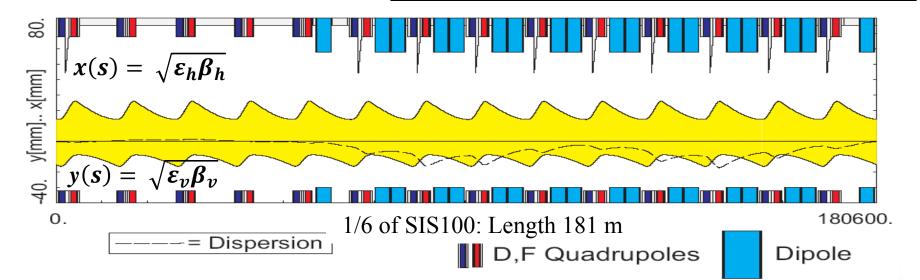
Disadvantage: Lower precision

Excurse: Example of Lattice Functions

The position of dipoles and quadrupoles

- > give the linear lattice functions
- \triangleright at injection point D = 0 is favored
- > chromatic correction with sextupoles,

Definition of dispersion D(s):


$$x_D(s) = D(s) \cdot \Delta p/p_0$$

Definition of chromaticity ξ per turn:

$$\Delta Q/Q_0 = \xi \cdot \Delta p/p_0$$

Example: GSI SIS100 ion synchrotron

Length C [m]		1086
Energy E_{kin} [GeV/u]		$0.2 \rightarrow 2$
Tune $Q_{h/v}$	h/v	18.84 / 18.73
Max. dispersion /D/ [m]		1.73
Max. β -function $\beta_{h/v}$ [m]	h/v	19.6 / 19.6
Natural chromaticity $\xi_{h/v}$	h/v	-1.19 / -1.20
Injected emittance $\varepsilon_{h/v}$ [mm mrad]	h/v	35 / 15
Injected mom. spread $\Delta p/p_0$ [%]		0.05

β -Function Measurement from Bunch-by-Bunch BPM Data

Excitation of **coherent** betatron oscillations: From the position deviation x_{ik} at the BPM i and turn k the β -function $\beta(s_i)$ can be evaluated.

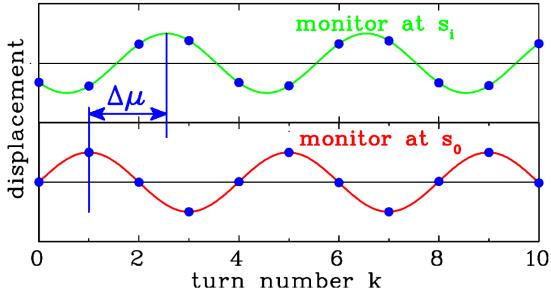
The position reading is: $(\hat{x}_i \text{ amplitude}, \mu_i \text{ phase at } i, Q \text{ tune}, s_0 \text{ reference location})$

$$x_{ik} = \hat{x}_i \cdot \cos(2\pi Qk + \mu_i) = \hat{x}_0 \cdot \sqrt{\beta(s_i)/\beta(s_0)} \cdot \cos(2\pi Qk + \mu_i)$$

 \rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required.

The ratio of β -functions at different location:

$$\frac{\beta(s_i)}{\beta(s_0)} = \left(\frac{\hat{x}_i}{\hat{x}_0}\right)^2$$

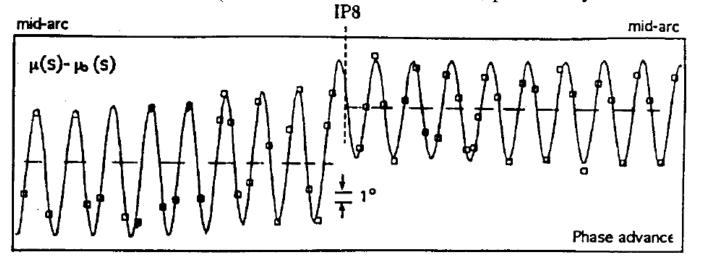

The phase advance is:

$$\Delta\mu = \mu_i - \mu_0$$

Without absolute calibration,

 β -function is more precise:

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$



Phase Measurement from Bunch-by-Bunch BPM Data

Excitation of **coherent** betatron oscillations: From the position deviation x_{ik} at the BPM i and turn k the betatron phase is measured. $\Delta \mu(s_i) = \int_{S0}^{Si} \frac{ds}{\beta(s)}$

Example: Phase advance $\mu(s)$ compared to the expected $\mu_0(s)$ by optics calculation e.g. MADX at each BPM at CERN's at LEP (e⁺ - e⁻ collider with 27 km, previously in LHC tunnel)

Result:

From J. Borer et al, EPAC'92

- ➤ Model does not describes the reality completely, corrections required
- ➤ At interaction point IP (detector location) an additional phase shift is originated
- ➤ Alignment by correction dipoles (steerer), quadrupoles or sextupoles.

Phase Measurement from Bunch-by-Bunch BPM Data

Excitation of **coherent** betatron oscillations: From the position deviation x_{ik} at the BPM i and turn k the beta-function can be determined $\Delta \mu(s_i) = \int_{S_0}^{S_i} \frac{ds}{\beta(s)}$

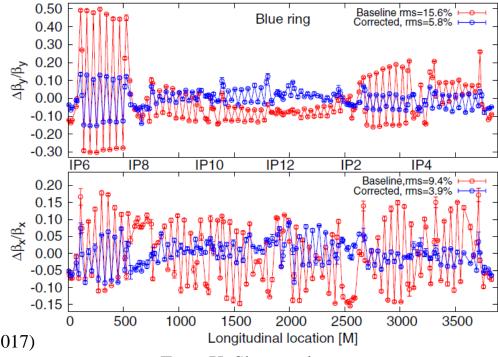
Example: Measured $\beta(s)$ compared to the expected $\beta_0(s)$ and normalized

for each BPM at BNL for RHIC (proton-proton or ions circular collider with 3.8 km length)

Result:

- Model does not describes the reality completely
- Corrections executed
- ➤ Increase of the luminosity

Remark:


Measurement accuracy depends on

- ➤ BPM accuracy
- Numerical evaluation method

See e.g.:

R. Tomas et al., Phys. Rev. Acc. Beams 20, 054801 (2017)

A. Wegscheider et al., Phys. Rev. Acc. Beams 20, 111002 (2017)

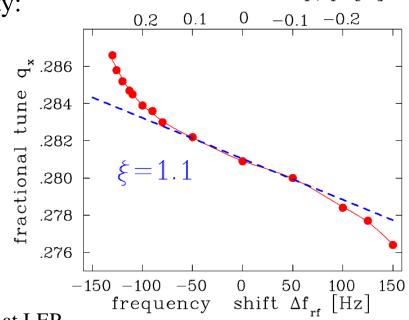
From X. Shen et al.,

Phys. Rev. Acc. Beams **16**, 111001 (2013)

Dispersion $D(s_i)$: Excitation of coherent betatron oscillations and change of momentum p by detuned rf-cavity:

- \rightarrow Position reading at one location: $x_i = D(s_i) \cdot \frac{\Delta p}{p}$
- \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$.

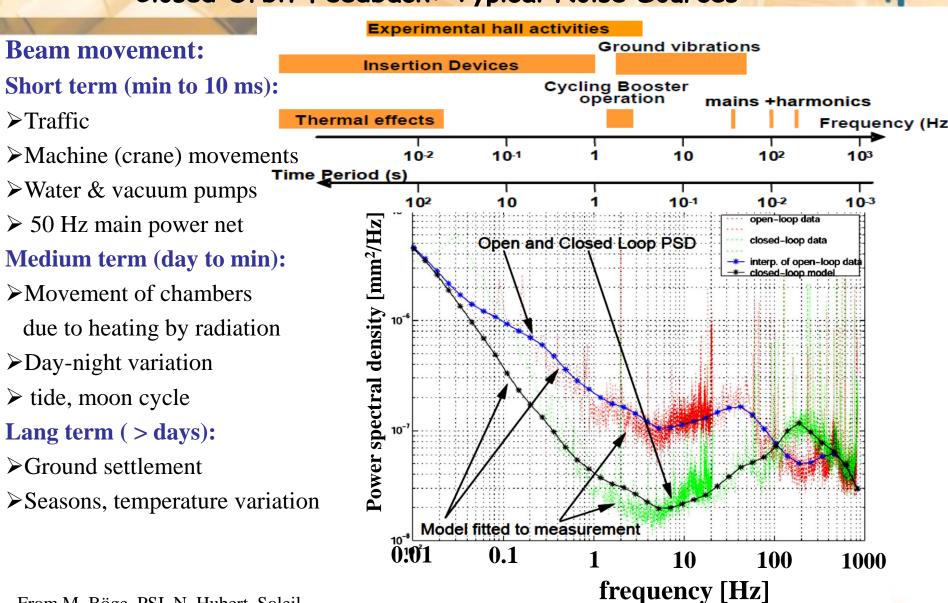
Chromaticity ξ: Excitation of coherent betatron oscillations and momentum shift Δp/p |%|


change of momentum p by detuned rf-cavity:

→ Tune measurement(kick-method, BTF, noise excitation):

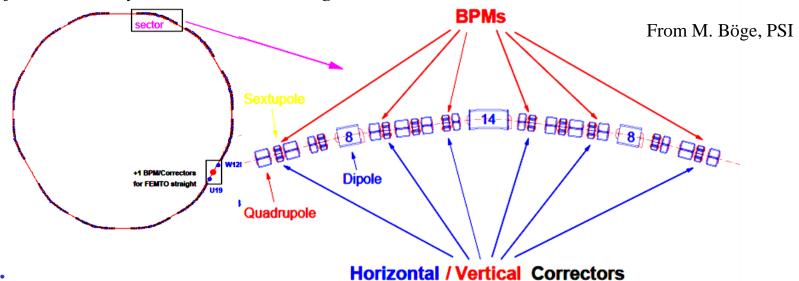
$$\frac{\Delta Q}{Q} = \xi \cdot \frac{\Delta p}{p}$$

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$


 \Rightarrow slope is dispersion ξ .

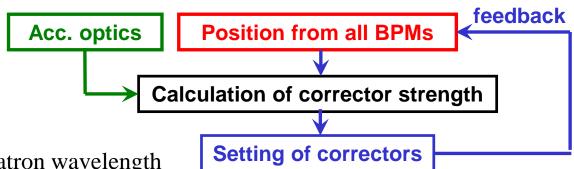
Measurement at LEP

Closed Orbit Feedback: Typical Noise Sources



From M. Böge, PSI, N. Hubert, Soleil

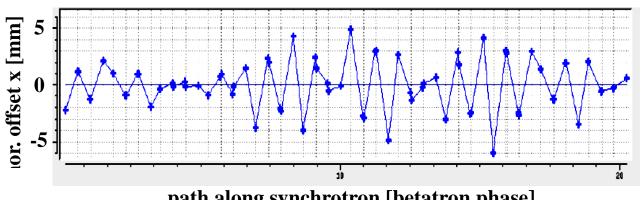
Close Orbit Feedback: BPMs and magnetic Corrector Hardware


Orbit feedback: Synchrotron light source → spatial stability of light beam

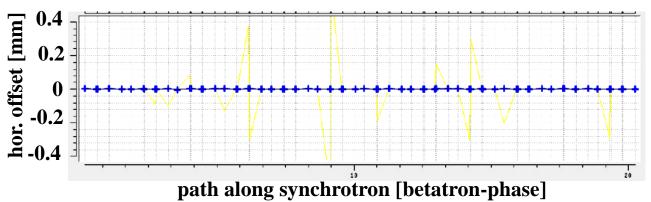
Example from SLS-Synchrotron at Villigen, Swiss:

Procedure:

- 1. Position from all BPMs
- 2. Calculation of correction setting
- 3. Digital feedback loop
- \Rightarrow regulation time down to 10 ms
- \Rightarrow Role od thumb: \approx 4 BPMs per betatron wavelength



Orbit feedback: Compensating variations of different kind, goal: $\Delta x \approx 0.1 \cdot \sigma_r$ Synchrotron light source \rightarrow spatial stability of light beam


Example from SLS-Synchrotron at Villigen, Swiss:

Uncorrected orbit:

Beam offset and oscillation here $\langle x^2 \rangle_{rms} = 2.3 \text{ mm}$

Corrected orbit:

Beam dynamically corrected here $\langle x^2 \rangle_{rms} = 1 \, \mu \text{m} !$

From M. Böge, PSI

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transfromers they are the most often used instruments!

Differentiated or proportional signal: rf-bandwidth \leftrightarrow beam parameters

Proton synchrotron: 1 to 100 MHz, mostly 1 M Ω \rightarrow proportional shape

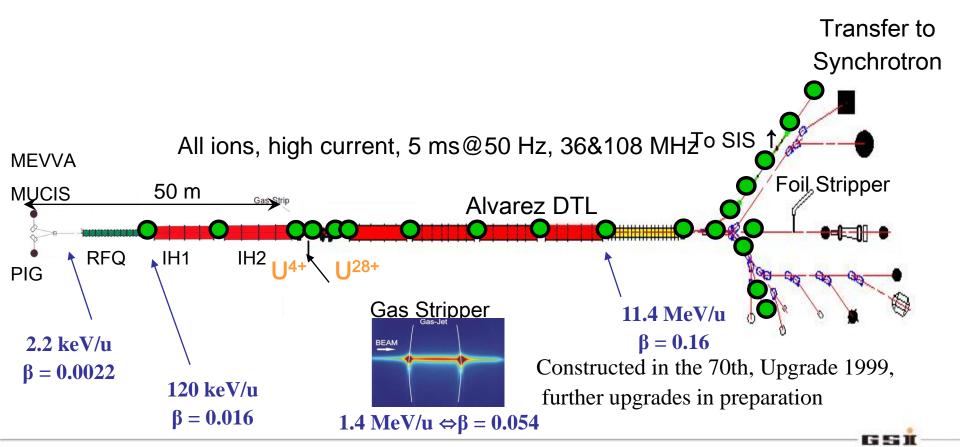
LINAC, e-synchrotron: 0.1 to 3 GHz, 50 Ω \rightarrow differentiated shape

Important quantity: transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

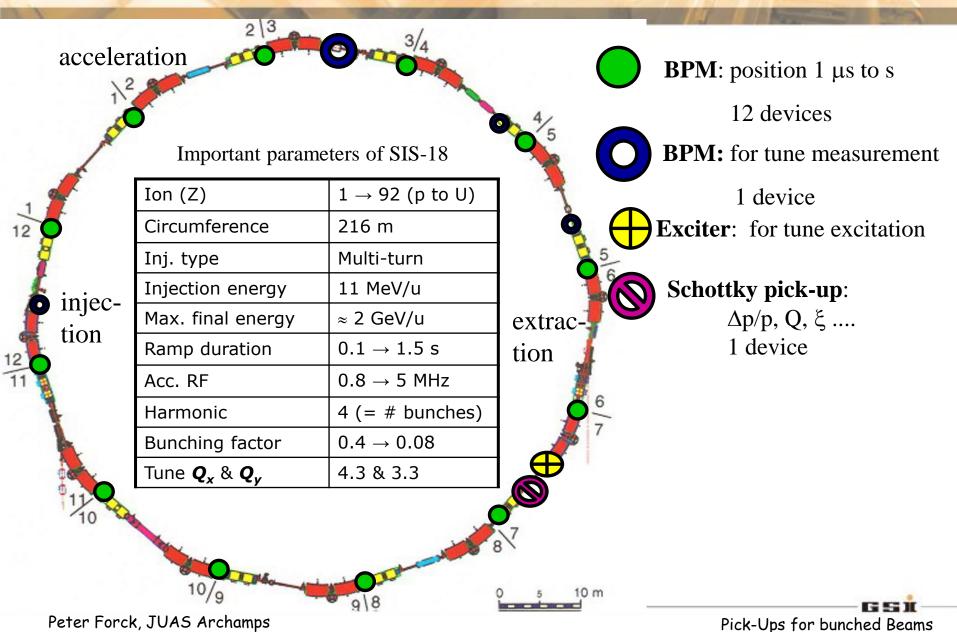
Shoe-box (p-synch.), button (p-LINAC, e-LINAC and synch.)

Remark: Stripline BPM as traveling wave devices are frequently used

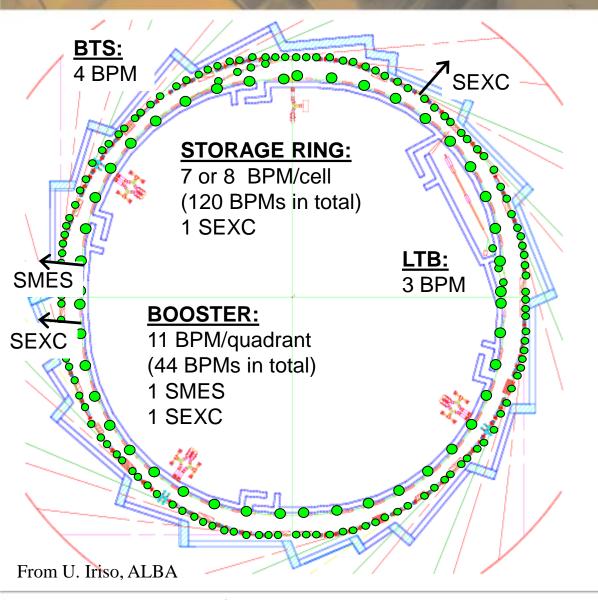

Position reading: difference signal of four pick-up plates (BPM):

- > Non-intercepting reading of center-of-mass \rightarrow online measurement and control slow reading \rightarrow closed orbit, fast bunch-by-bunch \rightarrow trajectory
- Excitation of *coherent betatron oscillations* and response measurement excitation by short kick, white noise or sine-wave (BTF)
 - \rightarrow tune q, chromaticity ξ , dispersion D etc.

Appendix GSI Ion LINAC: Position and mean beam energy Meas.



BPM: Capacitive type, for position and time-of-flight total 25 device


JUBS prement

Appendix GSI Ion Synchrotron: Position, tune ect. Measurement

Appendix: Synchrotron Light F.ALBA: 'Position, tune ect. Meas.

Beam position:

Center of mass

- ➤ Many locations!
- >Frequent operating tool
- For position stabilization i.e. closed orbit feedback

Abbreviation:

Meas. Stripline → SMES ↑
Exc. Stripline → SEXC
Button BPMs → BPM •