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Purpose of this course
Discuss the oscillations of the particles in the
Transverse planes x and y
of synchrotrons, called
BETATRON OSCILLATIONS

(similarly to the synchrotron oscillations in the longitudinal plane), and derive the
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Part 1.

Basics, single-particle dynamics



Luminosity run of a typical storage ring

In a storage ring: the protons are accelerated and stored for ~ 12 — 15 hours

The distance traveled by particles running at nearly the speed of light, v = ¢, for
12 hours is

distance ~ 12 x 10*! km

— this is about 100 times the distance from Sun to Pluto and back!

[ - L
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Forces and fields

It's a circular machine: we need a transverse deflecting force—the Lorentz force

F‘:q-<E‘+\7/\§>

where, in high energy machines, |V|~ c~3- 108 m/s. Usually there is no
electric field, and the transverse deflection is given by a magnetic field only.

Comparison of electric and magnetic force:

E = 1 MV/m
é‘ - 1 T
Fimnagnetic _ evB _ BcB - ﬁ3 . 1;)8 a005
Fe\ectric eE E 10

= the magnetic force is much stronger then the electric one: in an accelerator, use

magnetic fields whenever possible.
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Dipole magnets: the magnetic guide

RF cavity <—

RF generator

Stable circular motion: centrifugal force + centripetal force = 0

P = mv = mgyv "momentum"

Lorentz force F; = qvB non
, > Bp = "beam ridigity"
Centripetal force  Feentr = ’”TV
A
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Rule of thumb, in practical units:

L B[T]
o~ PP Gev/d/a el

Example: In the LHC, p = 2.53 km. The circumference 2mp = 15.9 km = 60% of the
entire LHC. (R = 4.3 km, and the total circumference is C = 27R =~ 27 km)

The field Bis~1...8T

The quantity £ can be seen as a “normalised bending strength”, i.e. the bending
field normalised to the beam rigidity.

Note: 1/p is also known as kg.
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Accelerating cavity
It accelerates particles with high
Beam is sent to synchrotron frequency by al:?plying an elecng-ic
accelerator from the pre-accelerator  field at the right timing of the
(Tandem or Linac, etc.). particles passing through.

m is sent to the
beam utilizing course

Charged particles travel Sfer asceloratian.

around the track in a fixed
orbit by electromagnet.
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The focusing force

Remember the 1d harmonic oscillator: F = —k x
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Reminder: the 1d Harmonic oscillator

Restoring force

F=—kx
Equation of motion:
1" k
X' =——x
m

which has solution:
x (t) = Acos (wt + ¢)

System Time Series Phase Portrait

i i i
Pasition |
]
Time Pos ition
—-

i i

! b

N\ |

| Vel ocity 1

. i Velority
> F | restoring force, N or MeV/m » f, rotation frequency, Hz
>k, spring constant or focusing strength, N/m or MeV/m? » A, oscillation amplitude, m
. 2
> w=./% =2rf, angular velocity, rad/s > mo, particle’s rest mass, MeV/c
> m = myy, particle’s mass, MeV/c?

» ¢, initial phase, rad
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Phase-space coordinates
The state of a particle is represented with a 6-dimensional phase-space vector:

(x, X, v, ¥, 2, 6)

where x’ and y’ are the transverse angles:

with
X [m]
dx  dxdt Vi Py Px
X =TT X TX [rad]
ds dtds V. P, Py
Y d dy d V, P, P ]
t
V' _y_wyda Y _ Ty [rad]
ds dtds V., P, Py
z [m]
P—P
5 = APT’: =20 [#]

where P is the momentum of the reference particle (reference momentum), and P = Py (1 + 6)
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Exercise: Phase space representations

1. Consider a cathode, located at position sg with radius w, emitting particles. What does
the phase space look like for the particles just created? Which portion of the phase space
is occupied by the emitted particles?

Hint: the picture below shows the particle source in the configuration space

particle source
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Quadrupole magnets: the focusing force

Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly-increasing Lorentz force, thru a linearly-increasing magnetic field:

Bi=Gy Fx=—qv.B, = —qv.G x
=
B, =Gx F,= qv.Bx= qv.Gy

G is the gradient of the quadrupole magnet:

2/.&0(7/ |:I:| _ Bpoles |:I:|

G=—
r m m

aperture laperture

» LHC main quadrupole magnets: G ~ 25..
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Normalised focusing strength

Dividing the gradient G by the magnet rigidity P/q one finds k, the “normalised
focusing strength”

with

c-[1} et £-[-[Z]rm

Another useful rule of thumb: | k [m’2] ~ 0.3% i

Note: k is also known as ki.
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Focal length of a quadrupole

The focal length of a quadrupole is

1
=i

where L is the quadrupole length.

Phase space view:
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Towards the equation of motion

Linear approximation:

» the ideal particle coincides with the reference orbit
» any other particle = has coordinates
X, ¥, Px, Py #0; P # Py with

> X7y<<p
> nyPy<<PO

» only linear terms in x and y of B are taken into

account
Let's recall some useful relativistic formulae and definitions:

Py = mo~yovo= mo~yoBoc reference momentum

P  =Py(l1+459) total momentum

5§ =(P—-Py) /Py relative momentum offset
E =4/P?c24+ mic* =moyc®=myc?+ K | total energy

K =E—mg c? kinetic energy

B =Y - FPc. v = E relativistic beta and gamma

c E 1 mg c<
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Towards the equation of motion

Taylor expansion of the By field:

B 8B, 18°B, , 10°B, 4
By (x) = Byo+ 8XX+§ Ox? x +§ Ox3 x

Now we drop the suffix 'y" and normalise to the magnetic rigidity P/q = Bp

B (X) _ ﬁ unadX E Gsext X2 i Goct 3 T
P/a  Bop P/a 2 P/aq 31 P/q

1 1 1
= 2 dhkx+ —kox?+ —ksx3 4 ...
P 2 3!
~—~
=ko
In the linear approximation, only the terms linear in x and y are taken into account:
> dipole fields, 1/p = ko
» quadrupole fields, k;

It is more practical to use “separate function” magnets, rather than combined ones:

> split the magnets and optimise them regarding their function

> bending
» focusing, etc.
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The equation of motion in radial coordinates

Let's consider a local segment of one particle's trajectory:

_ . _ d? doN?  d?
and recall the radial centrifugal acceleration: a, = ar_ pl— = &r_ w2
dt? dt dt2
» For an ideal orbit: p = const = j—’; =0
F. i = —mpw? = —mv?
=the force is centrifugal P /p % = Byp
FLorentz = quV = — centrifugal
» For a general trajectory: p — p+ x:
d? v2
Feentrifugal = mar = —F, = m|l—(+x)— =—qByv
centrifugal r Lorentz dt2 (P ) P+ ~ qby
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d mv
F=m— x) — = —qgB,v
dt2 (p+ ) p+X q y
N——
term 1 term 2
> Term 1: As p =const...
2 d2
m— (p+x) = m—x
dt2 (p+2) dt2

> Term 2: Remember: x &= mm whereas p ~ m — we develop for small x

remember Taylor expansion:

! xl(l_f) F(x) = F(x0)+

ptx p p
+(x = %) 1/ () + L7 (30) +

d’x  mv? X
m—s— —|(1——) =—-qgByv
dt? p p
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The guide field in linear approximation B, = By + x 9By

ox
d°x  mv? X dB,
m— —— (1-=) =—qvi{By+x—% let's divide by m
dt? p ( p) 7 { 0 ox } Y
d2x v ( x) qvBy qvg
(1) =T _x=
dt? P o m m
Let's change the independent variable: t — s
dx dxds ,
— = ——=x'v
dt ds dt
d>x ddx d | dx ds d

— —=—|= = |==Kv)=
dt2 dt dt  dt | ds dt dt
N~

d d d
= E (Ti X/v) = E (XIVQ) — x"2 +x'2/v¥
~~
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1 5 Remember:
x”77(175> _9% 99
P

p mv mv mv =p
X B X
X,,_7+72,_#_#
pr q q Normalise to the momentum of
X2 4 x :/,/_ kx the particle:
2
p P p 1 B L g 5
—=—[m; k=—[m"7]
p  Pla P/q
" 1
xX'+x|—=+k)=0
2
p
Equation for the vertical motion
> plz =0 usually there are not vertical bends
> k+— —k quadrupole field changes sign
y// _ ky — O
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Weak focusing

> “Weak” focusing:

focusing effect
there is a focusing force, <, even without a quadrupole gradient,
P
1
k=0 = x'=-Sx

P
even without quadrupoles there is retrieving force (focusing) in the bending plane
of the dipole magnets

> In large machines, this effect is very weak.

Is

180° spectrometer | Mass spectrometers entirely rely on weak fo-

magnet |

cusing: they have no quadrupoles; particles
are separated according to their energy and fo-
cused due to the 1/p effect of the dipole

lon source
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When scientists just knew weak focusing...

184-inch cyclotron (diameter = 467 cm) at Berkeley campus, 1942:
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Solution of the trajectory equations

Definition:
horizontal plane K =1/24+k

" _
vertical plane K = —k } X"+ Kx=0

This is the differential equation of a 1d harmonic oscillator with spring constant K. We
know that, for K > 0, the solution is in the form:

X (s) = a1 cos (ws) + azsin (ws)

In fact,
X' (s) = —a1wsin (ws) + axw cos (ws)

x" (5) = —a1w’ cos (ws) + aw’sin (ws) = —w’x(s) — w=VK

Thus, the general solution is
x(s) = a1 cos (\/Rs) + a>sin (\/Rs)

for K > 0.
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We determine a1, a» by imposing the initial conditions:

{X(O) = Xo, alr = Xo

S:O ’ /
x'(0) = xg, a =

Horizontal focusing quadrupole, K > 0:
X (s) = xo cos (fs) -l—XO\/» sin (\/>s)
X' (s) = —xoVK sin (\/Rs) + X5 cos (\/Rs)

We can use the matrix formalism:

For a quadrupole of length L:
cos (\/RL) ﬁ sin (\/RL)
—VKsin (\/?L) cos (\/RL)
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Defocusing quadrupole
The equation of motion is

x4+ Kx=0
with K < 0

The solution is in the form:
X (s) = a1 cosh (ws) + az sinh (ws)

with w = 4/|K]. For a quadrupole of length L the transfer matrix reads:

cosh (\/WL) \/TTI sinh (\/WL)
VIK]sinh (mL) cosh (\/WL)

Mdefoc =

Notice that for a drift space, i.e. when K =0 — M = ( (1) i >
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Summary of the transfer matrices

» Focusing quad, K >0

B cos (\/RL) —2sin (\/RL)
Moe = ( f\/ﬁsin (\/RL) \:os (\/RL)

» Defocusing quad, K < 0

cosh (\/WL) \/TW sinh (\/WL)
\/Wsinh (\/WL) cosh (\/WL)

1 L
Mdrift:<0 1)

With the assumptions we have made, the motion in the horizontal and vertical planes is
independent: the particle motion in x and y is “uncoupled”

beam dynamics - JUAS 2018

Mdefoc =

» Drift space, K =0
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Thin-lens approximation of a quadrupole magnet

When the focal length f of the quadrupolar lens is much bigger than the length of the

magnet itself, Lo
1

f=—"
k-Lo
we can derive the limit for L — O while keeping constant f, i.e. k- Lg = const.

> Lo

The transfer matrices are

we(39) me
-1 1

focusing, and defocusing respectively.

L
= O
N——

This approximation is useful for fast calculations.
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Transformation through a system of lattice elements

One can compute the solution of a system of elements, by multiplying the
matrices of each single element:

focusing lens

-
o \"}/ dipole magnet
i

defocusing lens

Miotal = MqF - Mp - MBend - Mp - Mqp -
X X
( X! ) = M51%52 : Msoﬁsl ' ( NG >
So So

In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

) ...typical values are:
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Properties of the transfer matrix M

The transfer matrix M has two important properties:

» |ts determinant is 1
det(M)=1

(Liouville's theorem, but only in case of no acceleration)
» Provides a stable motion over N turns, with N — oo, if and only if:

trace (M) < 2

(Stability condition)
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Stability condition

Question: Given a periodic lattice with generic transport map M,

a b
v=(20)
under which condition the matrix M provides stable motion after N turns (with N — oc0)?

sy=M-...-M-M-Mx = M"x
N —

N turns, with N— oo

The answer is simple: the motion is stable when all elements of MY are finite, with N — oo.

The difficult question is... how do we compute M" with N — co?

Remember:
> det(M)=ad —bc=1
> trace(M)=a+d
If we diagonalise M, we can rewrite it as:

. A1 0 T
e (3 R )

where U is some unitary matrix, A; and X\, are the eigenvalues.
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Stability condition (cont.)

What happens if we consider N turns?

N_.)\{VO T
oo (3§ g)

Notice that A; and A» can be complex numbers. Given that det (M) = 1, then

1 .
M-d=1 S A=-— S X,=e*
A2

= to have a stable motion, x must be real: x € R.

Now we can find the eigenvalues through the characteristic equation:

a—A b
det(M—AI):det( c d_)\>=0

X —(a+d)A+(ad — bc) =0
A2 —trace(M)A+1=0
trace (M) = A+ 1/\ =

X —

=e"+e ™ =2cosx

From which derives the stability condition:
sincex € R — |trace(M)| < 2
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Orbit and tune

Tune: the number of oscillations per turn.

Example:
= ¥ASP DV LHCRING / INJ-TEST-NB / beam 1 ]

Bews| R (m/am) G TE More | 58
527 INJOUNP - 10/09/08 10-41-34 T

FT- Pa5012 Gevyc -

64.31

H Pos (mm)

59.32

fEen { (T
[} 100 0 00 00 500
Monitor H

- PA50.12 Gevic - Fil 827 INJOUMP - 10/09/08 10-41-34 L

ey
(G} o U
i 20 300 P

Monitor v

v Pos lmal

Relevant for beam stability studies is : the non-integer part

u]

o)
I
i

it
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Summary

beam rigidity:

bending strength of a dipole:

focusing strength of a quadruple:

focal length of a quadrupole:

equation of motion:

solution of the eq. of motion:

e.g.. Mqgr =

cosh <ML>
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VIK]sinh (v/IKIL)

Bp = %

L o] = o2
] = 3728
f=r

x”+(§+k)x:o

Xsy = M - X5, ...WithME(é
cos (\/?L) ﬁ sin (\/?L)
—vKsin (\/RL) cos (\/RL) '

\/T7I sinh (\/WL)
cosh (\/|7|l_)



Part 2.

Optics functions and
Twiss parameters



Envelope

So far we have studied the motion of a particle.
Question: what will happen, if the particle performs a second turn ?

> ... or a third one or ... 1019 turns ...

X

Telchanbonnen und Enveloppe

100

S7mm - -

~100

40

s/re _———>
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The Hill's equation

In 19th century George William Hill (1838 — 1914), one of the greatest master
of celestial mechanics of his time, studied the differential equation for “motions
with periodic focusing properties”: the “Hill's equation”

where:
» K (s) is a non-constant restoring force
» K (s) depends on the position s
> K(s+ L) = K(s) periodic function, where L is the period (the “lattice"
period, in accelerator physics)

We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s in the ring.
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The “beta” function
General solution of Hill's equation:

x(s) = V/Bx (s) Jx cos (px () + #x,0) )

Jx, po =integration constants determined by initial conditions
Bx (s) is a periodic function given by the focusing properties of the lattice +» quadrupoles

Bx (5+ L) = Bx (5)

Inserting Eq. (1) in the equation of motion, we get (Floquet’s theorem) the following result

S ds
“X(S):/o B (s)

where px (s) is the “phase advance” between the points 0 and s, in the phase space.

For one complete revolution, px (s) is the number of oscillations per turn, or “tune” when

normalised to 27
1 ds

or Bx (s)

Jx is a constant of motion, called the Courant-Snyder invariant or “action”.

Note: 8 and J are measured in units of length, p in units of angle.
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The orbit in the phase space Is an ellipse

General solution of the Hill's equation

x(s) = V/Bx(s) Jxcos (px (5) + 1x,0) (1)
X'(s) = —%Zs) {ax (s) cos (kx (s) + pax,0) +sin (ux () + px0)}  (2)

From Eq. (1) we get

1 / s
X (S) X (S) 2 X ( )
2

cos(u(s) + po) = \/17\//@7(5) e () = 1+ax(s)”
x Bx ()

Insert into Eq. (2) and solve for J

e = 7 (8) X (5)° + 200 (5) X (5) X' () + B (5) X' (5)°

» s is a constant of the motion, i.e. the Courant-Snyder invariant or Action
> it is a parametric representation of an ellipse in the xx’ space

» the shape and the orientation of the ellipse are given by ax, Bx, and vx = these are the
Twiss parameters
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The phase-space ellipse

e = 7 (8) X (5) + 205 (8) x (5) X' () + B (5) X' (5)°

Liouville’s theorem: in an ideal storage ring,
if there is no beam energy change, the area
of the ellipse in the phase space x — x’ is
constant

Jor
~

N

The area of ellipse, 7 - Jx , is an intrinsic beam parameter and cannot be changed by
the focal properties.
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Particle distribution and beam ellipse
For each turn x, x’ at a given position s; in the phase-space diagram is

10 T T T

Note: The equation of the beam ellipse can be written also in matrix form:

withX:( ¢ ) and
X

Q is the “Twiss matrix”.

XTQ™1X = Jy
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[ function and beam properties

Given the particle trajectory:
x(s) = V/Bx (s) Jx cos (1 (s) + po)

» the max. amplitude is:

X (5) =V BxJIx

» the corresponding angle, in X (s), can be found putting X (s) = +/BxJx in Eq.
e = (5) X (5)7 + 2 (5) x (5) X' () + Bx (5) X' (5)°
and solving for x’:

Ix = Ix * BXJX + 20k V BXJX -x! + BXXI2

o [ Ix
= X =—ax/ >
Bx

Important remarks:

» A large B-function corresponds to a large beam size and a small beam divergence

» Wherever 3 reaches a maximum or a minimum, a = 0 (and x’ = 0)
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Evolution of the Twiss parameters

Let’'s repeat the remarks:

» A large B-function corresponds to a large beam size and a small beam divergence
» In the middle of a quadrupole, 8 is maximum, and a =0 = x' =0

Y ¥ ¥ Y,
@%v g%%v §# ¥ @v
a b ¢ d

10 20 30 40 50 60
S—»m

[VIDEOS!]
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The transfer matrix in terms of Twiss parameters

As we have already seen, a general solution of the Hill's equation is:

x(s) = v/Bx (s) Jx cos (px (S) + px,0)

X' (s) = [ax (s) cos (ux (5) + 1x,0) +sin (px (S) + px,0)]

Let's remember some trigonometric formulae:

sin (a 4+ b) = sina cos b + cos a sin b,
cos(at b) =cosacosbFsinasinb, ...

then,
X (5)= /B (5) Jx (cos jux (5) €08 fux,0 — sin jix (s) sin fix,0)

Ix
Bx (s)

x'(s)= — [ (5) (cos pix () €os x,0 — sin px (S) sin px,0) +

+sin pux (S) €os pix,0 + €Os ix (S) sin fix 0]
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At the starting point, s (0) = sp, we put p (0) = 0. Therefore we have
X0
cos po =
BoJ

. 1 ,
= (5022

If we replace this in the formulae, we obtain:
_ /65 . . ’
= %{cosu5+aosm;45}><70+{\/Bsﬁgsmps}io

— (14 apas)sin ps} xo + 4 / % {cos s — assin us}xé
S

X' (s)=

1
vV BsBo

The linear map follows easily,

(cos ps + ag sin ps) v/BsBo sin s

x 5
—as )cos MS—(1+a0a5)sin s /30 (COS s — Qs sin ,LLs)

(5),=m( 7). we | LR

> We can compute the single particle trajectories between two locations in the ring, if we know the «, 3

and ~ at these positions!
P Exercise: prove that det(M) =

erse beam dynamics - JUAS 2018
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Periodic lattices, 1-turn map

The transfer matrix for a particle trajectory

Bo

Mo—s = | (ag—as) cos us—(1+agas) sinps

Bs (cos s + ag sin ws) v/ BsBo sin ps

vV BsBo

simplifies considerably if we consider one complete turn:
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£/ % (cos pus — as sin ws)

M= cos 1 + as sin g
- —s sin g

Bssin puL
COS 4| — Qus SiN i

)

where p; is the phase advance per period

s+L ds
e ‘/5 5(s)

Remember: the tune is the
units of 2m:

1 ds

phase advance in

o

“2n ) B(s) 2n




Evolution of «, £, and ~

Consider two positions in the storage ring: sp, s

(5)-+(:

X/

c s
C/

L4 (S =s
s) (% 7

)

M = Mqr - Mp - Mgena - Mb - Maqp

Since the Liouville’s theorem holds, J = const:

2 2
J = Bx"” 4+ 2axx" + vx
2 / 2
J = Poxg” + 2000x0% + Y0X5
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We express xp and x§ as a function of x and x’:
xo=S'x—Sx
/ - / = ! ’ /
X ) X ) Xp=—Cx+ Cx

Substituting xo and xj into the expression of J, we obtain:
J = Bx" + 2axx’ +yx°
J=po (-C'x+ Cx')2 +2a0 (S'x = SX') (=C'x + &) + 70 (5'x — SX')2

We need to sort by x and x’:

B(s) = C?Bo —25Cao + S*vo
a(s)=—CC'Bo+ (SC'+5'C) ao — SS'y0
y(s) = C”?Bo — 25 C'ap + S"0
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Evolution of «, £, and v in matrix form

The beam ellipse transformation in matrix notation:

c? —25C S2
TO%S = —CCI SCI + SIC —SS/
C/Q _o5'c’ 5/2
B B
a = Toss (67
v s v 0

This expression is important, and useful:

1. given the twiss parameters «, 3, v at any point in the lattice we can transform
them and compute their values at any other point in the ring

2. the transfer matrix is given by the focusing properties of the lattice elements, the
elements of M are just those that we used to compute single particle trajectories

51/146 A. Latina - Transverse beam dynamics - JUAS 2018



Exercise: Twiss transport matrix, T

Compute the Twiss transport matrix, T,

c? —-25C S2
T=| -CC SC'+S5C =55

C/2 _25lcl 512

B B

o =T| «

v s v 0

for:
1. the identity matrix: M = =+l
2. a drift of length L
3. a thin quadrupole with focal length +f
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Beam ellipse evolution (another approach)

Let’s start from the equation of the Twiss matrix Q seen before, now for xp:
XTQ X0 = J  with: Qo= ( P T
0o 70 0 ( —a0 Y
X! Q7 X =J

At a later point if the lattice the coordinates of an individual particle are given using the

transfer matrix M from sy to s3:
X1 =M-Xo

Solving for Xo , i.e. Xo = M~!. Xy, and inserting in the first equation above, one obtains:
MLx) st (M X)) =J
-1
(- () ) 2 030 =

X/ (MT)A QM X = J

Which gives
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Covariance matrix of a distribution and geometric
emittance

In phase space a realistic particle distribution matches the shape of an ellipse, and can be
described using a covariance matrix, or “beam matrix”’, ¥

=

Y is the covariance matrix of the particles distri-
bution:

: N T
(2w )=(8 @)

The square root of the determinant of the co- . .
variance matrix is proportional to the area of the . ol
distribution in the phase space. Where

dety = 030’5, — O')2<X/

The geometric emittance e is defined as the square root of the determinant of X:

VdetX

= € is the area of the distribution in the phase space.
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Geometric emittance and covariance matrix

The geometric emittance e is the square root of the determinant of X:

‘ geometric emittance €= VdetX

Notice that one can write:
T =€eQ

where € is the Twiss matrix, previously defined.

Demonstration: )
o Oxx! —«
Y = X = =¢ B
O xx! T ! — vy
det Q=1

det eQ=¢2

From which: € = v/det X.
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Geometric and normalised emittance

The geometric emittance is a constant of motion only if the beam energy is preserved:

» e.g. in case of no acceleration (P = constant)
» in absence of dissipative forces (e.g. synchrotron radiation, intra-beam scattering,

etc. )
RF cavity /~ \| = _y---oooas
e
R
—
In presence of acceleration P, — P, + AP,, so that x’ = £¢ goes to x' = m and

the area of the phase space shrinks. We therefore defme the normalised emittance:

def
€normalized — ﬂrel Yrel * €geometric

The normalised emittance is a constant of motion also in case of acceleration.

’ Ox=1+/ €geometric * ﬁx Twiss

» The beam size is:
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Liouville’s theorem

Named after the French mathematician Joseph Liouville (1809 — 1882), it's a key
theorem in classical statistical and Hamiltonian mechanics.

The Liouville equation describes the time evolution of the phase space distribution
function, p, and asserts that such phase-space distribution function is constant along
the trajectories of the system — that is, the density of system points in the vicinity of
a given system point traveling through phase-space is constant with time.

In equations, the Liouville’s theorem states that:
dp 0Op ( Op . op . )
— =+ —dqi+ — =0
dt ~ ot ; aq; a 8p,
when
g; are the canonical coordinates

p; are the conjugate momenta
i=1,...,N (where N is the number of particles)

and the system is Hamiltonian (that is, it's governed by the Hamilton's equations).

= This is the case for planetary systems and charged particles in electromagnetic fields.
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Symplectic condition

In terms of phase space, the Liouville's theorem corresponds to say that the system’s
volume in the phase space is invariant under “Hamiltonian” flows.

Without entering the details, it can be demonstrated that the Liouville’s theorem is
preserved if the so called “Symplectic condition” is verified. That is, an arbitrary 6 x 6
transfer matrix, M, is symplectic if the following condition is true:

MTIM = J
where J is the symplectic matrix:
0 1 0 0 0 0
-1 0 0 0 0 0
- 0 0 0 1 0 0
- 0 0 -1 0 0 0
0 0 0 0 0 1
0 0 0 0 -1 0
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Summary

Hill's equation:  x”/ (s) + K(s)x(s) =0, K(s)=K(s+L)

general solution of the

Hill's equation:  x (s) = v/JB (s) cos (p (s) + o)

phase advance & tune: i = 5512 Bd(ss), Q=3¢ ﬁdé)

beam ellipse:  J = v (s) x (s)* + 2a (s) x (s) X' (s) + B (s) X’ (s5)?

geometric emittance: e = Area of the beam ellipse = /det (cov(x, x'))
) ,/g—; (cos s + g sin ps) v/ BsBo sin s
transfer matrix s; — 521 M = (cp—as) cos ps— (1+agas) sin ps Bo (cos 115 — s sin pus)
Bs Hs s SIN fts

v/ BsBo

stability criterion:  [trace (M)| < 2
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Summary: beam matrix, emittance, and Twiss
parameters

» The beam matrix is the covariance matrix of the particle distribution
s—( ou o) _ [CORNRE-Y
021 02 (X'xy  (x?)
this matrix can be also expressed in terms of Twiss parameters «, 3, v and of the emittance e:

s= (0 )= (% )
» Given M = < c S

c g ) , we can transport the beam matrix, or the twiss parameters, from 0 to
0—s
s in two equivalent ways:

1. Twiss 3 x 3 transport matrix:

B c? —25C s? B
a = —-cc’ sc’+s'c -ss a
,Y s CIZ _251 C/ 512 ,Y o

2. Recalling that & = M Xy M :

(L 7). =w (o 3w
e 7 s e 0
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Part 3.

Lattice design



Lattice design in particle accelerators

Or..."how to build a storage ring"

High energy accelerators are mostly circular machines
we need to juxtapose a number of dipole magnets,
to bend the design orbit to a closed ring, then add
quadrupole magnets (FODO cells) to focus the beam
transversely

The geometry of the system is determined by the following equality

centrifugal force = Lorentz force

Lorentz force F; =evB
w!' Centrifugal force  Feentr = 22¥

\}A. umd :e)/pB

77 P
P
«3@ =Bp

q

2

Bp is the well known beam ridigity

Note that p is different from R the physical radius of the machine (typically p < R).
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7000 GeV proton storage ring / Bdl ~NLgenaB = 2mp/e

N = 1232 dipole magnets 27 - 7000 - 107 eV

BN—S,”ZSBT
LBend = 15 m 1232-15m -3 1082Z¢
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Focusing force

X"+ Kx=0

K =1/p>4+ k hor. plane

K=—k vert. plane
Example: the LHC ring
dipole magnet % - Pi;q Eéinacgn;rarziﬁi ;:jégng/mnﬂ
quadrupole magnet k = Pi/q k—04.10"2% m-2

1/p°=13-107" m™?
For estimates, in large accelerators, the weak focusing term 1/p2 can in general be

neglected
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Alternating gradient focusing

» One single quadrupole cannot simultaneously focus in both the horizontal and the
vertical planes

» Two quadrupoles, separated by a drift of length L, can focus in both directions
» Demonstration in thin-lens approximation:

If
1 0 1 0 1 L
MIZ(% 1)? M?Z(% 1)? DZ(o 1)
1 2

The composite system is:

L L2

L 1 1 L? L 2L
mmtats mrtetatl
» This system focuses in both axes if the matrix element M»; < 0 always. This can

be achieved imposing f, = —f;.

= A system with alternating gradients, always focuses in both axes: My = —f%
1
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The FODO lattice

» Most high-energy accelerators, or storage rings, have a periodic sequence of
quadrupole magnets of alternating polarity in the arcs

sample trajectory

e A = v N

e ey U ]

4
T— S
W//// / ‘\ \\\ ! -

‘ envelope
e -L = —

cell length

» A magnet structure consisting of focusing and defocusing quadrupole lenses in
alternating order with “nothing” in between

» Nota bene: “nothing” here means the elements that can be neglected on first
sight: drift, bending magnet, RF structures ... and experiments...

66/146 A. Latina - Transverse beam dynamics - JUAS 2018



Periodic solution in a FODO Cell

030 o 128 o, o 201

s,

Output of MAD-X

Nr Type Length  Strength B, a, 9, B, a, 9,
m Vm2 m 1/2m m 1/2m

0 J/4 0,000 0,000 11,611 0,000 0,000 5,295 0,000 0,000
1 OFH 0,250 -0,541 11,228 1,514 0,004 5,488 -0,781 0,007
2 oD 3,251 0,541 5,488 -0,781 0,070 11,228 1,514 0,066
3 OFH 6,002 -0,541 11,611 0,000 0,125 5,295 0,000 0,125
4 P 6,002 0,000 11,611 0,000 0,125 5,295 0,000 0,125

0,125 0,125 T — 0.125 * 2w = 45°
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The FODO cell

The transfer matrix gives all the information we need.

F 0 D Y F ’sump!e trajectory

A
i il - —]/ \cvwdope

cell length

In thin-lens approximation, we have:

(1 0. (1 L2 (1 0
=G 9) m-(o ) me=( 7)

the transformation matrix of the cell is:

Mropo = Mk - Mo - Mp - Mo

(notice that you can also write M = Mg/, - Mo - Mp - Mo - Mg 5, or other cyclic
permutation), which corresponds to

1+4 L4+ E
Mropo = ( +L2f j— AP

—37 l-2—um

6 A. Latina - Transverse beam dynamics - JUAS 2018




The FODO cell (cont.)

If we compare the previous matrix with the Twiss representation over one period,

2

1+ £ L+ &
MFODO—< 2 T
“3 1o

[ cosp+asinp Bsin _ 1 0 . @ B
MTW'SS_( —ysinp cosufasinp)_ws“(O 1 ) Tsinu -y —a

— —_—
| J

we can derive interesting properties.
» Phase advance
cos = 1trace(/\ﬂ) =1 L
=3 BT

remembering that cos jt = 1 — 2 sin? 5

‘- mp_ L
L Y

This equation allows to compute the phase advance per cell from the cell length
and the focal length of the quadrupoles.
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The FODO cell (cont.)

» Example: compute the focal length in order to have a phase advance of 90° per

cell

Fo 1L
V22
e.g. an emittance measurement station
Stability requires that |cos | < 1, that is
L S
iF <1 —  stability is for:  f > L/4 (or L < 4f)

Compute the phase advance per cell from the transfer matrix: From
cos pu = itrace (M)

1
1L = arccos (Etrace (I\/l))
Compute SB-function and « parameter

_ Mo
sin
My —
o= 11 Cos [

sin
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The FODO cell: useful formulae

For a FODO cell like in figure, with two quads separated by length L/2

F 0 D 0 F sample trajectory
o N
// N\ == [ \;\\:\
il i o il B Iy
~_ |\ _— \\\LL
L RN
cell length
one has:
f 1 _ Lcell

Kilquag  4sin &

Lcell (1 =+ sin %)

B = sin
ot = Fl—sin§
cos 5§
ot _ Leant (1+3sinf)
4sin2%

0 is the total bending angle of the whole cell.

71/146 A. Latina - Transverse beam dynamics - JUAS 2018



Bmax and Bmin as a function of u

50

Bman

[¢]
20 40 60 80 100 120
Phose Advance

» The minimum of Bmax can be found at pmin = 76.345°. (Remember: pimin is such
that 9 “'“'" = 0) < this applies only for the cases where €, > €., or & > ¢,.

> In cases where €x & €, one needs to minimise B« + B, (i.e. find the zero of
(/BXHBY ), which has solution pmin = 90°.
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Example

o 1o

thin lens:
Xeconst F 1] -] [0} B

6 A. Latina - Transverse beam dynamics - JU

JAS 2018

Phase space dynamics in a simple circular
accelerator consisting of one FODO cell
with two 180° bending magnets located
in the drift spaces (the O’s)

The periodicity of «, 3, and ~ is reflected
by the fact that the phase-space ellipse is
transformed into itself after each turn

An individual particle trajectory, however,
which starts, for instance, somewhere on
the ellipse at the exit of the focusing
quadrupole (small circle), is seen to move
on the ellipse from turn to turn as
determined by the phase angle u

Thus, an individual particle trajectory is
not periodic, while the envelope of a
whole beam is



No

74/146 A

n-periodic lattices

In the previous sections the Twiss parameters «, (3, 7y, and p have been
derived for a periodic, circular accelerator. The condition of periodicity was
essential for the definition of the beta function (Hill's equation)

Often, however, a particle beam moves only once along a beam transfer
line, but one is nonetheless interested in quantities like beam envelopes and
beam divergence

In a circular accelerator «, 8, and v are completely determined by the
magnet optics and the condition of periodicity (beam properties are not
involved - only the beam emittance is chosen to match the beam size)

In a transfer line, o, 8, and ~y are no longer uniquely determined by the
transfer matrix, but they also depend on initial conditions which have to be
specified in an adequate way
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Example: ILC bunch compressor
Optics of a non-periodic system including non-periodic optics. “Matching”
sections connect parts with different periodic conditions.

B (m), B (m)

75/146 A

Ll
250.

single stage bunch compressoMAD-X 3.04.67 28/01/10 15.55.19

B B

225. A
200. A
175.
150. 4
125. A
100. H

0.0 . . . . .
0.0 50. 100. 150. 200. 250. 300. 350.
s (m)
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400.

The matrix

B

« = Mzx3
~y

=2 Q0™

with

c? —25C 52
M3y 3 = —cc’ sc’+s'c —ss’

cr? _os/c! 572

allows to compute the magnets
parameters for the matching
sections

Note: even if the 3 functions are very large, the beam
size keeps small: o = /Be, with

-9
5x107%m
= = — = 10713 m
Yrel 5 GeV/0.5MeV




Example: final focus of a HEP experiment

HERA PeRing. Lumi=A<Opta. 7/0.5 m. p/ee 920 Gev. 1999, qd@97r. Ata9200 4 B, AE Nomen
T = T - T T

40

76/146 A. Latina - Transverse beam dynamics - JUAS 2018



Summary

integrated dipole field over a turn
transfer matrix of a FODO cell

stability in a FODO cell

phase advance in a FODO cell

matching sections provide
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~ _ 5P
[ Bdl = NLgena B = 272

2

1+ £ L+ 57
MFODO:< 2 LY
w l-—ap

f>L/4
p = arccos (trace (M))

B B
(e = Mzyx3 (e
0l 0l

s 0

)



Part 4.

Dispersion
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Dispersion

So far we have studied monochromatic beams of particles, but this is slightly unrealistic: We always have

some (small?) momentum spread among all particles: AP = P — Py # 0.

Example: Consider three particles with P respectively: less than, greater than, and equal to Py , traveling

through a dipole. Remembering Bp = %:

The dipole introduces a linear correlation between transverse position and momentum, called D (s):

x(s) = D(s)%f

This correlation is known as dispersion function, which can be seen as an intrinsic property of the dipole

magnets.
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The Inhomogeneous Hill's equation

P—P,
0 = %—5) we can work out how the

Let's go back to the magnetic rigidity. If P # Py (define § = R =
bending radius p depends on the particle momentum, w.r.t. po:
P Po(1+6
=>BP:E :¥:BPO(1+5) = p=po(1+9).
When we derived the equation of motion at some point we had (slide 21):
1 B 1
"o = ——2  that later became: x”' + <— + k) x=0
~~  pt+Xx P/q 02
term 1 N~
term 2
1 1 X
On the way we had "Taylor expanded" term 2: ~—-(1——).
ptx p P
1 1 1 X
= ~—|(1——=06
Po

Now we need to redo it for p as 14 94): _—— =~
pas o ) p+x  po(l4+0)+x  po

and the equation of motion becomes:
1 5

X"+ <—2 +k> x—— =0.
Po PO

If we drop the suffix 0 and explicit 4, this is "the inhomogeneous Hill's equation":

ny (1 _1Ap
X +(p2 +k)x—p o
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Solution of the inhomogeneous Hill's equation

A particle with AP = P — Py # 0 satisfies the inhomogeneous Hill equation for the horizontal

motion: 1 AP
X" (s)+ K(s)x(s)=~—~
p Po

the total deviation of the particle from the reference orbit can be written as

x(s) =xg (s) +xp (s)
where:

> xa (s) describes the betatron oscillation around the new closed orbit, and it's the solution
of the homogeneous equation xg (5)+ K(s)xg(s)=0

> xp (s) describes the deviation of the closed orbit for an off-momentum particle. It is
rewritten as xp (s) = D (s) AP—(':, where D (s) is the solution of the equation

1
D"(s)+K(s)D(s) =~

P

is that special orbit that an ideal particle would have for AP/Py =1

D (s) is the dispersion function.
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Dispersion function and orbit

The dispersion function D (s) is the solution of the inhomogeneous Hill's equation:

D" (s)+ K(s)D(s) = %

It can be shown that the solution is:
D(s)= 5(5)/S L,C (s)ds" — C(s)/s L,S (s) ds’
o P(s) o P(s)

Once we know D (s), the orbit x (s) = xz (s) + xp (s), with xp (s) = D (s) %f, can be
rewritten as

x(s) = x5 (s) + xo (s)
AP

= C(S)XO+S(S)X6+D(S)TO
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Dispersion function and orbit

The equation of motion:

x(s) = x5 (s) +xo (s)

_ C(s)xo—l—S(s)x(’)—&—D(s)AP—OP

can be written in matrix form:
X ~( C S X\ AP (D
X' . - c s X! o 'DO D’ o

Or, in a more compact way:
X c S D X
X/ — C/ S/ D/ XI
AP/py < 0O 0 1 AP/p, 0
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Closed orbit of off-momentum particles

Orbit x (s) = x5 (s) + D (s) &2.

—central de
(closed orbi

‘\—closed orbit
\ for p=po closed
rpe

| x=Dls) B2
Po

/
T—closed orbit ot

J-=Fr——t—
for p<p, [ AT closed orbit forp
e P central design orbit >
e ST =closed orbit for p=p, %pls)=Dls

Closed orbit for particles with momentum P # Pq in
a weakly (a) and strongly (b) focusing circular accelerator.

> xp (s) describes the deviation from the reference orbit of an off-momentum
particle with P = Py + AP

> xg (s) describes the betatron oscillation around the orbit xp (s)

84/146 A. Latina - Transverse beam dynamics - JUAS 2018



Dispersion and orbit propagation
The dispersion orbit is solution of D" (s) + K (s) D (s) = % :

¢ ]‘ !/ ! ° / /
D(s) :S(s)/O p(S,)C(s)ds - C(s)/0 p(sl)S(s)ds
Now the orbit:
x(s) = xg (s) +xp (s)
AP

x(s) = C(s)xo+5(s)x6+D(s)P—0

(2)=(e $)(2) % (),

We can rewrite the solution in matrix form:

X c S D X
X/ — Cl Sl D/ Xl
AP/p, s 0 0 1 AP/p, 0

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions Dy = D} = 0.
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Examples of dispersion function

Let's study, for different magnetic elements, the solution of:

D(s):S(s)/osp(ls,)C(S’)ds’_ c(s)/os

at the exit of the element: that is, D (s) with s = Lmagnet

» Drift space:

1 L
MDr\ft: < 0 1 )

C(t)=1, S(t)=1L, p(t) =00 = the integrals cancel

1 L O
MDrlft = 0 1 0
0 0 1
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Dispersion function in a quadrupole

» Focusing quadrupole, K > 0:

cos (\/RL) ﬁ sin (\/RL) 0
Mar = —VKsin (\/KL) cos (\/RL) 0
0 0 1

» Defocusing quadrupole, K < 0O:

cosh (\/WL) \/TW sinh (\/WL) 0
Mao = | \/K]sinh (\/IKIL)  cosh (VIKIL) O
0 0 1

87/146 A. Latina - Transverse beam dynamics - JUAS 2018



Dispersion function in a sector dipole

» Sector dipole:
K=7%:

p

Moo = ( i cos (\/RL) ﬁ sin (x/?L)

VK sin (\/RL)

cos (\/RL)

COos —

— p
( —Llgnt
p p

p(l — cos

sin £
P

which gives
D(L)y=p (1fcos£>
p
D' (L) =sin L
P
therefore
L in L
cos psin
Mdipole = | —Llsint cost
p p p
0 0

1

¢ = % is the bending angle, L is the length of magnet.
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Exercise: Thin-lens approximation

» Starting from the transfer matrix of a thick dipole magnet of small bending angle,

cos¢  psing p(l—coso)
Mdipole = _% sin ¢ cos ¢ sin ¢
0 0 1

derive its thin-lens approximation. L is the length of the dipole

[Hint: compute the limit for L — 0, while keeping the bending angle, ¢ = L

P
constant]
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Dispersion propagation through the lattice

» The equation:

D(s):S(s)/OS L C(s’)ds'—C(s)/osp(ls,)S(s/)ds’

allows to compute the dispersion inside a (dipole) magnet, which does not
depend on the dispersion that might have been generated by the upstreams
magnets.

> At the exit of a magnet of length Ly the dispersion reaches the value D (L)

» The dispersion (also indicated as n, with its derivative ' ) propagates from there,
through the rest of the machine, just like a particle with AP/P = 1:

n c S D n
77/ — C/ 5‘/ D/ 77/
1 0o 0 1 1
s 0
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Periodic dispersion

In a periodic lattice, also the dispersion must be periodic:

25 meter 180° Arc based on 90°-FODO lattice

) T T T T o
| p=3.8 GeVic <
'E" =
2 AN NP g
< N
wr 1@
0 a
T
=) L L L L L L N
0 BETA_X BETA_Y DISP_X DISP_Y 24.8792
i B ) o O s, O ) e, B s, e, B, el 0
N\ I\ J\L J
e Y Yo
2 “half-empty ' cells 4. 90°-FODO cells 2 ‘half-empty " cells

Aperture radius: r = 15 cm

field: 3.9 Tesla

12 « Dipoles:
gradient: 25 Tesla/m (3.8 Tesla at the pole)

15 < Quads:

length: 85 cm
length: 50 cm
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Periodic dispersion

n
That is, for ( n ) we need to have:

1
i c s D n
/ !/ ’ /
n = ¢ s D nl
1 0 0O 1 1

The solution is:
no\ _ 1 1-5 S D
" )] (1-C0@1-5)-CS ¢ 1-C D’
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Dispersion function in a FODO lattice

The dispersion function in a FODO cell is a periodic function with maxima at the

focusing quadrupoles and minima at the defocusing quadrupoles:

— Lo (1+Lsink)

4 sin 5

where:
» L is the total length of the cell
> ¢ is the total bending angle of the cell
» o is the phase advance of the cell
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Impact of dispersion on the beam size

In this example from the HERA storage ring
(DESY) we see the Twiss parameters and the
dispersion near the interaction point. In the pe-
riodic region,

xg(s)=1...2 mm

D(s)=1...2m

AP/py 22 1-1073

Remember:

AP

x(s) =xg (s) + D (s) 5~

D,

Beware: the dispersion contributes to the beam size:

P 9 Bing, omi-A-Opt3. 7/ m. 5/et 920 Gav. 1995, 009971, nsI00+8. A8 Noman

- H
T A T TR T T R T

AP\? o2
Ox = \/0'>2<13 + std (D : ?0) = \/Egeometric -8+ D2 Fg

» We need to suppress the dispersion at the IP !

> We need a special insertion section: a dispersion suppressor

€normalised

Brelrel
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The momentum compaction factor

The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate

The general solution of the equation of motion is

x(s)zxa(s>+o(s)%f

The dispersion changes also the length of the off-energy
orbit.

particle with offset x w.r.t. the design orbit:

!
d—S:p+X — ds’:(l—i—i)ds
ds p p

The circumference change is AC, that is C' = § <1 + %) ds=C+AC

We define ap as “momentum compaction factor”, such that:

AC AP 1 r
— =ap— — to the lowest order in AP/Py: ap = —95
C Py C

b (s)ds ~ %
p Q%
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Summary

inhomogeneous Hill's equation  x” + K (s)x = %AP—::
: ; AP
...and its solution  x(s) = xg (s) + D(s) B
new closed orbit of off-momentum particle  xp(s) = D (s %
dispersion function D (s) [m] (closed orbit for a particle with %’ =1)

how to compute dispersion in an element D (s) = S(s) fos ﬁC(t)dt —C(s) fos ﬁs (t)dt

definition of momentum compaction, ap A—CC = ap%’
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Part 5.

Imperfections, chromaticity



Fringe fields

» \We use a "hard-edge" model:
1" 1

(e.g. p # 0 inside bending dipoles, p = 0 outside of them) but this cannot be
really correct, because it would violate the Maxwell equations at the magnet edges

> At the edges, bending and focusing fields depend on the position s smoothly

Fringe field of a dipole magnet (in this case:
a combined dipole + quadrupole magnet, no-
tice the slope of the field along the x axis)
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Effective length

hnag
Bo . Leff: / B (S) ds
0

Field or mulhpole component

True field shape
\

TB

7

)

Hard edge model
/

A

]

' Central value

| Bmax

Lens
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Magnetic imperfections
High-order multipolar components and misalignments

Taylor expansion of the B field:

oB, 10°B, , 18B, 3

By (x) = Byo +8—Xx+§ e X T3 as +... divide by By
dipole M M
quad sextupole octupole
L opotes There can be undesired multipolar components,
o o due to small fabrication defects
, Or also errors in the windings, in the gap h, ...
B nl
h remember: B = #(;1
0 ‘yh PO TSNY Ty |
? H rgoo hA SLE ¢
2l
L

L
0 2 & 6 8 10 12 W %

Moreover: “feed-down” effect = a misalign magnet of order n, behaves like a magnet of order
n, plus a magnet of order n — 1 overlapped
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Dipole magnet errors
Let's imagine to have a magnet with B = By + AB. This will give an additional kick to
each particle, and will distort the ideal design orbit

Fx=ev (B + AB); Ax" = ABds/Bp

A dipole error will cause a distortion of the closed orbit, that will ,run around” the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error (9

X 0
( x' ) = M\attwce ( Ax’ )
s 0

5

In order to have bounded motion the tune @ must be non-integer, @ # 1. We see that
even for particles with reference momentum P, an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

X0 dipole kick 1/p*4s

We consider a single thin dipole field error at the location s = sy, with a kick angle Ax’.

are the phase space coordinates before and after the kick located at sy. The closed-orbit

condition becomes
Xo X0
MLattice (Xé) = (Xé +AX/>

The resulting closed orbit at sp is
BoAx’ Ax!
X0 = = = =
2sinTtQ 2sinTtQ

where Q is the tune. The orbit at any other location s is

sBoAX'
x(s) = %COS(WQ — |ps — tol)

/

cosmQ; Xy (sinTQ — ap cos T Q)

(see the references for, a, demonstration)



Orbit distortion for distributed dipole field errors
One single dipole field error

sBoAx
x(s) = %COS(WQ — s — pol)

Distributed dipole field errors

x(s) = % Z: \/EAX// cos (mQ — |ps — puil)

» orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point sy

» the 8 function describes the sensitivity of the beam to external fields

» the 3 function acts as amplification factor for the orbit amplitude at the
given observation point

» there is a singularity at the denominator when Q integer = it's called
resonance
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Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

Y . 1 0 COS [0 + asin pio B'sin po
Perturbed = | " Apds 1 —sin o COS [t — Qsin fig
perturbation ideal ring

Let's see how the tunes changes: one-turn map

€os 1o + a:sin o Bsin o )

Mperturbed = ( Akds (cos po + asin o) — ysin o Akdsf sin o + €os o — asin o

with po = 27 Q. Remember the rule for computing the tune:

2 cos pu = trace (M) = 2 cos o + AkdsfSsin uo
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Quadrupole errors: tune shift (cont.)
We rewrite cos p = cos (o + Ap)

cos (o + Ap) = cos po + %Akdsﬁ sin o

from which we can compute that

Akd L
Ay = Tsﬁ shift in the phase advance
k
AQ — ¢\ M tune Sh|ft
quads 4m

Important remarks:

» the tune shift if proportional to the S-function at the location of the
quadrupole

» field quality, power supply tolerances etc. are much tighter at places where 8
is large

» [ is a measurement of the sensitivity of the beam
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Quadrupole errors: tune shift example
Deliberate change of a quadrupole strength in a synchrotron:

AK (s)B(s)ds  AK(S) Lquad B
AQ = ~
Q éuads

i i

=

The tune is measured permanently P2 | <Y | [T =]

We change the strength of "trim" quads to
fix Q
Horizontal axis is a scan of Ki (quad

integrated focusing strength): 03050
13000 -

» tune shift is proportional to 8 s i )
e

through AQ o« AK - 3

» En passant, we use this to 02050

£
measure (. 02600 *
n.o1250 001300 001350 001400 001450
ki

¥=-6.TAE3x « 0.IEE3

»
=0 I
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Tune shift correction

Errors in the quadrupole fields induce tune shift:

AQ =

quads

4

Ak (s)B(s)ds

Cure: we compensate the quad errors using other (correcting) quadrupoles

> If you use only one correcting quadrupole, with 1/f = Ak L

» it changes both Qy and Qy:

51><

AQx =
Q 4mh

and AQ, =—

» \We need to use two independent correcting quadrupoles:

_ ﬁlx ﬁQX
A=k T anh AQ 1
_ _ Py _ Bay AQy  4r
AQ = Arf 47f>

» Solve by inversion:

( 1/f > _ Am ( Bay
l/f2 - ﬂlXﬁZy - 62xﬁ1y *51y
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By

- /BQX
5 1x

Bly
Amf

ﬂZX
By

)

)

AQ.
AQ,

1/f
1/6

)

)



Quadrupole errors: beta beat

of all quadrupoles

Afs

Bs

A quadrupole error at sp causes distortion of S-function at s: AB(s) due to the errors

25m2ﬂQ Zﬁ,Ak cos (27 Q — 2 (i
Note: Unstable betatron motion if tune is half integer!

i — Hs))

orbit is not affected to
first order !
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This imperfection can be corrected with an appropriate distribution of tuneable

sextupoles.

[m]

=



Tunes and resonances

The particles — oscillating under the influence of the external magnetic fields — can be
excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.

)

vy = integer

The cure:

1. avoid large magnet errors

2. avoid forbidden tune values in both planes

m-Qx+n-Q, #p

with m, n, p integer numbers
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Resonance diagram

11.4 \ / ///
-

i 112 § /
g [ /
¥ u = 7
ey
= ) ;

10.8 / N

10.6

L — TN AN/
28.6 28.8 29 29.2 29.4
Horizontal Tune

m-Qx+n-Q, #p where |m|+|n| is the order of the resonance

A resonance diagram for the Diamond light source. The lines shown are the resonances
and the black dot shows a suitable place where the machine could be operated.
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Quadrupole errors: chromaticity, &
[VIDEO!] Chromaticity is an optical aberration occurring in quadrupoles when
AP/Py # 0:

The chromaticity £ is the variation of tune AQ with the relative momentum error:

AP AQ
A = & — =
R G V=Y =»

Remember the quadrupole strength:

G .
then

qG ko q AP
= = ~—(1-— = ko + Ak
Po+AP  1+6 Po< P0>G ot
AP
Ak - 7?0/(0
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Quadrupole errors: chromaticity (cont.)

Ak =20
Py ©

= Chromaticity acts like a quadrupole error and leads to a tune spread:

1 AP 1 AP
AQone quad = *Eipo koﬂ (5) ds = AQall quads = 7G7P0 %k (S) [‘3 (S) ds
Therefore the definition of chromaticity € is
1
=—— k d
S RCLIOLE

The peculiarity of chromaticity is that it isn't due to external agents, it is generated by
the lattice itself!

Remarks:
» ¢ is a number indicating the size of the tune spot in the working diagram
> ¢ is always created by the focusing strength k of all quadrupoles
» natural chromaticity of a focusing quad is always negative

In other words, because of chromaticity the tune is not a sharp point, but is a spot
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Example: Chromaticity of the FODO cell

Consider a FODO cells like in figure, with two thin quads, each with focal length f,
separated by length L/2, and total phase advance u:

sample trajectory

envelope

cell length

The natural chromaticity &y of the cell is:

1 L2\ 1
n = P8I - ( ) (L _ 7) 1
4w e sin p af ) f
1
=—— B(s) k(s)ds _ 1 Lt + i
AT Jeell — " ar smu fof  2f2
k(s)ds=KL=%
= L ~ -1 tan &
__1 Bt B N 87rsmuf2_ ™ 2
47 | f f

For Ny cells, the total chromaticity is Nee times the chromaticity of each cell

cell

N,
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Quadrupole errors: chromaticity

Tune signal for a nearly
uncompensated cromaticity
(Q'=~20)

Ideal situation: cromaticity well corrected,
(Q'~1)
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Chromaticity correction

Remember what is chromaticity: the quadrupole focusing experienced by particles
changes with energy

> it induces tune shift, which can cause beam lifetime reduction due to resonances

Cure: we need additional, energy-dependent, focusing. This is given by sextupoles

Ap/p >0 focal length — — ‘
| ﬁ}\ |
| —~
Ap/p =0
mal || |~

» The sextupole magnetic field rises quadratically:

B.=Gxy 0B, 0B,

= == = Gx a "moving" quadrupole gradient
& (X2 B y2) dy Ox g g p g

G
1
B, ==
Y2

it provides a ||near|y |ncreasmg quadrupole gradient
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Chromaticity correction (cont.)

Now remember:

» Normalised quadrupole strength is

G

ki = ——
! Po/q

[m~]

» Sextupoles are characterised by a normalised sextupole strength ko, which carries a
focusing quadrupolar component ki:

G —37. T GXf -2
:%[m ] =5 = kax [m™7]

k:
2 ; 1 Po/q
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Cure for chromaticity: we need sextupole magnets installed in the storage ring in order to
increase the focusing strength for particles with larger energy

D . AP

> A sextupole at a location with dispersion does the trick: x = Py

hzégfhwﬁ

» for x = 0 it corresponds to an energy-dependent focal length

k1
,~—/\ﬁ
Lk G pAP AP
@ = ki Lsext = TM DFO Lsext = koD - pio + Leoxt
! N —
ko [m]

Now the formula for the chromaticity rewrites:

1 1
=~ PrEEEE + Pl DiES

4 A
chromaticity due to quadrupoles chromaticity due to sextupoles
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Design rules for sextupole scheme

Chromatic aberrations must be corrected in both planes = you need at least two
sextupoles, S¢ and Sp (sextupole strengths)

In each plane the sextupole fields contribute with different signs to the
chromaticity &« and &,:

b=y 55@ (s)[ k(s) = SeDx(s) + SpDx (s)] ds

6= yﬁgy (5) [k (5) + SFDx (5) — SpDx (5)] ds

To minimise chromatic sextupoles strengths, sextupoles should be located near
quadrupoles where 8Dy and B, Dy are large

For optimal independent chromatic correction Sg should be located where the
ratio Bx/By is large, Sp where 8, /By is large.
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Example of chromaticity correction scheme

» Chromatic aberrations introduced by quadrupoles are locally cancelled by sextupoles
placed near the quadrupoles, in dispersive regions (in straight sections dispersion is
generated using an upstream bending magnet)

» Notice that the sextupoles affect also the on-momentum particles: i.e. they introduce
geometric aberrations. These can be cancelled by adding one additional sextupoles (per

each direction), in opposite phase with them (Ap = )

dipole

— sextupoles —

The phase advance between the two sextupoles S; and S, must be 7, so that:

(), = (s gy~ (),




Summary of imperfections

Error

Effect

Cure

fabrication imperfections

unwanted multipolar
components

better fabrication /
multipolar corrector coils

transverse offsets

“feed-down" effect

better alignment /
corrector kickers

roll effects

couplings x — y

skew quads

dipole kicks along
the ring

orbit distortion o< Bkick location

residual dispersion

corrector kickers

quad field errors

tune shift

trim special quadrupoles

chromaticity

tune spread

design / sextupoles

power supplies

/146 A. Latina - Transverse beam dynamics -

closed orbit distortion
tune shift / spread

JUAS 2018

try to correct /
improve power supplies



121/

Summary

stability condition & resonances

closed orbit distortion due to

dipole errors

tune shift

beta beat

chromaticity

46 A. Latina - Transverse beam dynamics - JUAS
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m-Qc+n-Q, #p with n, m, p integers

x(s) = Qs.nﬁo i VBiAX! cos (mQ — |us — pil)

AQ = 7 $ags DK (5) B (s)ds

AB(s) _ 1
B(s)  2sin2rQ

P80 Ak (D) cos(2rQ — 20 (6) ~ n($)dt

52 Ag/QPO = 1 lquadsk(s)ﬁ( )



Part 6.

Insertions
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Insertions

HERA P-Ring. Lumi-A-Optik. 7/0.8 m, p/es 920 GV, 1999, qd#97r, AADI0N 48, AE Noman

44

33373705337 3903p BF0bB2naz: LbBgzIb33755 07T 35¢
D 3%5&&33“535333”55 $°° 383838 BEEcs3iTEaraigaid’
-
i x tul Ll L X .
Q 200 L=
NoN,— Ng+ fre 5 1
L:eief\/ [Cm s ]

* *
4moioy
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Dispersion suppressor

In an arc, the FODO dispersion is non-zero everywhere. However, in straight sections, we often
want to have n =n’ =0. = for instance to keep small the beam size at the interaction
point.

We can “match” between these two conditions with a “dispersion suppressor”: a non-periodic

set of magnets that transforms FODO 7, ' to zero

Y

|
/ \ v L\
;F 01/2 o 0,/2 . 02/2 R 05/2 ;F

Consider two FODO cells with length L and different total bend angles: 61, 6>: we want to have

( n entrance ' exit
Note:

» the two cells have the same quadrupole strengths, so that they have also the same 3, and
w1 (phase advance per cell)

» remember that a = 0 at both ends, and that, if the incoming beam comes from a FODO
cell with the same length L, phase advance p, and with a total bending angle 6, then the
initial dispersion is

— ot
o = MFopo
2
[ n;ODO ~ % <1 + S—Lf) 0 in thjn—lens approximation ]
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Dispersion suppressor (cont.)

Transport for the dispersion:
0 c S D 0
0 = c s D 0
1 0 0 1 suppressor 1
In 2 x 2 form reads
oy [ C s m Y, (D
0 - c s 0 D’
D\ _ c S 0
Do)\ ¢ ¢ 0

The transfer matrix for the suppressor is

which has solution

Msuppressor - MFODO 2 MFODO 1

For each FODO ceII, MFODO = M1/2|: . Mdipole . MD . Mdipo\e . M1/2|:, in thin-lens
approximation:

L2 ! L L
1- 45 Li+4)  s(+&)e
R 2 2
oo~ | < (1=4) - (ko)
0 0

‘where j = 1,2 (1=first cell, 2=second cell)
6 A tina be AK 2018
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Dispersion suppressor (cont.)

If we do the math, we find the expressions that we have to set to zero:

D(s):g(1+§) [(3—%) 01+92}
D (s) = (178%7 3;2) {(17%) elwz]

From lecture 3, we remember that the phase advance u for a FODO cell, in terms of
the length L and the focal length f, is

i H‘ -t
‘s'" 21~ ar
Thus, one can write the solution as a function of the phase advance u, and of

0 =0+ 06-:
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Dispersion suppressor (summary)
Dispersion suppressor, a non-periodic set of magnets that transforms FODO 7, n’ to

ZEro:

/ AR\ v L\
. 01/2 b 01/2 . 02/2 b 62/2 -

One possibility: two FODO cells with length L, phase advance p, and different total
bend angles: 61, 02:

=

02

= n 25
4 sin 5

An interesting solution is for g = 60°: in this case
» then #; = 0, and 0> = 8 = we just leave out two dipole magnets in the first
FODO cell insertion
> this is called the “missing-magnet” scheme
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Optics functions in the dispersion suppressor, with
= 60°

} Arc } Dispersion suppressor 4{& Straight section 4,{

This is the "missing-magnet" scheme.
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The most problematic insertion: the drift space

The most problematic insertion is the drift space !

Let's see what happens to the Twiss parameters «, 8, and «y if we stop focusing
for a while

B C? —25C S2 B
e =| -CC" SC’'+S5'C =-S5 e
v . C/2 _os/c’ 5/2 vy o

for a drift:
c s . B(s) = Bo — 2aps + Y0s?
Mariee = ( c s ) = ( 0 ) = CV(S):Oéo—’)/oS
7 (s) =0

= 0
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Let's find the location of the waist: a =0
» the location of the point of smallest beam size, 8*

beam waist: ¢ =0

> )
I
Beam waist: o
OL(S):OZO*’}/()S:O — SZ*O:lwaist
Yo
Beam size at that point

7 (1) =0 1+a%() 1 1
1N =—FF"=3% = Bin = —
a(/)=o} D="3m =50 70

This beta, at | = lyaist, is also called “beta star”:
= ﬁ* = Bmin

It's,at | = hgist that the interaction point (IP) is located.



A drift space with L = kit : the Low [S-insertion

We can assume we have a symmetry point at a distance lyajst:

B(s) = fBo—2a0s+ s, at a(s) =0 — g =—

On each side of the symmetry point

l !
e By ;
we have
52
S
B(s)= + 5

= [ grows quadratically with s.

A drift space at the interaction point, with length L = lyaist, is called “low-£ insertion”:

Dispersion

‘//igzgessor \
o] low B | low f FEofmofofo]

Collision po/m
é yé y
a= ()
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Phase advance in a low- insertion

We have:

,8(5)=/6*+;i

The phase advance across the straight section is:

Luaist ds L .
Ap = / —— = 2arctan WE:St
Lusse B + 5= B

which is close to Au = 7 for Lyaist > 5*.

In other words: in the interaction region the tune increases by half an integer!
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Achromatic insertions

There exist insertions (arcs) that don't introduce dispersion: they are called
achromatic arcs
» |n principle, dispersion can be suppressed by one focusing quadrupole and
one bending magnet
» With one focusing quad in between two dipoles, one can get achromat
condition: In between two bends, we call it arc section. Outside the arc
section, we can match dispersion to zero. This is called “Double Bend
Achromat” (DBA) structure
» We need quads outside the arc section to match the betatron functions,
tunes, etc.
» Similarly, one can design “Triple Bend Achromat” (TBA), “Quadruple Bend
Achromat” (QBA), and “Multi Bend Achromat” (MBA or nBA) structure
» For FODO cells structure, dispersion suppression section at both ends of
the standard cells (see previous slides)
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The Double Bend Achromat lattice (DBA)

Consider a simple DBA cell with a single quadrupole in the middle (plus external quadrupoles

for matching).

Mpea = Mg - Maritt + Mhjor - Mg -Mariee - Mg
—_———

Mg
In thin-lens approximation, the dispersion matching condition:

Deenter 1 0 O 1 L7 O 1 L L9/2 0
0 =| -3 10 0 1 0 o1 0 0
1 0 o0 1 0 0 1 00 1 1

where f is the focal length of the quad, 6 and L are the bend angle and the length of the
dipole, and L; is the distance between the dipole and the centre of the quad.

1 1 1
fZE(Ll"FEL); Dcenter = <L1+§L)9
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DBA optical functions

3048 (m)

0.40

B (m

- 0.35
r 0.30
r0.25
- 0.20
015
r0.10
r 0.05
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Triple Bend Achromat (TBA)

TLS OPTICAL FUNCTIONS
T T

a ‘ L 50 :
=
i ‘ S 05 A
Q
£ ‘ ‘ 200 -
0 i 1751 3
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e e T FY
i i | 125 1 3
- o\ I
0 1o i 100 i
IRV 1NN\ WV AT 7.51 g
\ / \, /
mlasl (14 I 251 i
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Combined function dipoles
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QBA, OBA, and nBA

B2 B1 B1 B2

B1=8.823"

a B1=8.57"
B2=6.176"

B2=4.28°

A B1=7.5°
| B2=3.75°

Optical Functions (m)
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Completing the picture: 6-D phase space

In the real life the state vector is six-dimensional:
(x X y y z AP/P )T

and the transfer matrix is typically

X Ri1 R O 0 0 R X

x! Ro1  Roo 0 0 0 R x!

y _ 0 0 Rs3 R3a O 0 y

% - 0 0 Rizs Rsa O 0 1%

z Rs1  Rso 0 0 1 Rsg z

4 0o 0 0 0 o0 1 £

0 s 0 0

- In bold the elements that would couple the x — y motion.
- In aring: Rsg = —C « (circumference X momentum compaction).

Nota bene: this matrix can still represent only linear elements.

» if we want to consider high-order elements: e.g. sextupoles, octupoles, etc. = we need
computer simulations ! “particle tracking” or “maps” (MAD-X, for instance)

» because such elements introduce non-linear motion, which is too difficult to treat

analytically
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Coupled motion: skew quadrupoles

Certain elements might be used to intentionally couple horizontal and vertical motions,
for example: skew quadrupoles, ...

Mskew quad — Rrot (QS) X Mquad X Rrot (7(17) =

cos ¢ 0 sin ¢ 0
7 0 cos ¢ 0 sin @ «
- —sin¢ 0 cos ¢ 0
0 —sin¢ 0 cos ¢
cos VKL ﬁsin\/RL 0 0
—VKsin VKL cos VKL 0 0 X
0 0 cosh /|K|L \/TT\Sinh\/lK‘L
0 0 v/ |K|sinh \/|K|L cosh /|K|L
cos ¢ 0 —sin¢ 0
% 0 cos ¢ 0 —sin ¢
sin ¢ 0 cos ¢ 0
0 sin ¢ 0 cos ¢

A skew-quadrupole is a rotated quadrupole with ¢ = 45°

Notice: coupling can be induced even by normal elements, including quadrupoles and
dipoles, just because of alignment errors (“roll error”, i.e. small angles about the optical
axis).
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Coupled motion: solenoid magnets

Solenoids are magnets with only B, # 0. Their transfer matrix reads

2 < sc =
—KSC C? —KS? sC
s? sC

-s¢ -% 2
KS? —-SC —KSC C(?

with: L = effective length of the solenoid, K = B,/ (2Bp) = B;/ (2P/q), C = cos KL,
S =sinKL.

Msolenoid =

Remark: a rotation of the transverse coordinates x and y about the optical axis at the exit of
the solenoid by an angle —KL, decouples the x and y first order terms:

c 2 0 0

-KS C 0 0
0 0 C % = Rrot (*KL) X Msolenoid
0 0 —-KS C

= a solenoid behaves like a rotating quadrupole that focuses in both x and y.
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Non-linear dynamics

* Q=0.2516
T T T
T . I * linear motion near center
(circles)

* More and more square
_ * Non-linear tuneshift
-l * lIslands

4 * Limit of stability

* Dynamic Aperture

. * Crucial if strong quads and
chromaticity correction in s.r.
light sources

Tyt cos(2mQ)  sin(27Q) T, * many non-linearities in LHC
1 “\ —sin(27Q) cos(27Q) I due to s.c. magnet and finite
manufacturing tolerances

v
n+1
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Dynamic aperture in a FODO
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Phase space portraits of a FODO storage ring without (left) and with (right)
sextupoles for correction of chromaticity.
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Particle tracking and dynamic aperture

Dynamic aperture: is a method used to calculate the amplitude threshold of stable
motion of particles. Numerical simulations of particle tracking aim at determining the

“dynamic aperture”.

Dynamic aperture for hadrons

» in the case of protons or heavy ion accelerators, (or synchrotrons, or storage
rings), there is minimal radiation, and hence the dynamics is symplectic

» for long term stability, a tiny dynamical diffusion can lead an initially stable orbit
slowly into an unstable region

» this makes the dynamic aperture problem particularly challenging: One may need
to consider the stability over billions of turns

For the case of electrons
> in bending magnetic fields, the electrons radiate which causes a damping effect.
» this means that one typically only cares about stability over few (“thousands) of
turns
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Emittance growth

"perfecty Gaussian electron distribution”
1 T T

0.5

X' [mrad]

-10 -5 0 5 10
X [mm]

An initially Gaussian electron bunch, filamenting after traveling through the CLIC Drive Beam
Recombination Complex, under the effects of non-linear fields and other imperfections...
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... The End!

Thank you

for your attention!



