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Purpose of this course
Discuss the oscillations of the particles in the

Transverse planes x and y

of synchrotrons, called

BETATRON OSCILLATIONS

(similarly to the synchrotron oscillations in the longitudinal plane), and derive the
basic equations
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Part 1.

Basics, single-particle dynamics
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Luminosity run of a typical storage ring
In a storage ring: the protons are accelerated and stored for ∼ 12− 15 hours

The distance traveled by particles running at nearly the speed of light, v ≈ c , for
12 hours is

distance ≈ 12× 1011 km

→ this is about 100 times the distance from Sun to Pluto and back!
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Forces and fields
It’s a circular machine: we need a transverse deflecting force→the Lorentz force

~F = q ·
(
~E + ~v ∧ ~B

)
where, in high energy machines, |~v | ≈ c ≈ 3 · 108 m/s. Usually there is no
electric field, and the transverse deflection is given by a magnetic field only.

Comparison of electric and magnetic force:∣∣∣~E ∣∣∣ = 1 MV/m∣∣∣~B∣∣∣ = 1 T

Fmagnetic

Felectric
=

evB
eE

=
βcB
E

' β
3 · 108

106
= 300β

⇒ the magnetic force is much stronger then the electric one: in an accelerator, use
magnetic fields whenever possible.
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Dipole magnets: the magnetic guide

E

R

RF generator

B

RF cavity

Stable circular motion: centrifugal force + centripetal force = 0

Lorentz force FL = qvB
Centripetal force Fcentr = mv2

ρ

mv �2
ρ = q�vB


P = mv = m0γv "momentum"

Bρ = "beam ridigity"

P
q =Bρ

8/146 A. Latina - Transverse beam dynamics - JUAS 2018



Rule of thumb, in practical units:

1
ρ [m]

≈ 0.3
B [T ]

P [GeV /c ]/q [e]

Example: In the LHC, ρ = 2.53 km. The circumference 2πρ = 15.9 km ≈ 60% of the
entire LHC. (R = 4.3 km, and the total circumference is C = 2πR ≈ 27 km)

The field B is ≈ 1 . . . 8 T

The quantity 1
ρ can be seen as a “normalised bending strength”, i.e. the bending

field normalised to the beam rigidity.

Note: 1/ρ is also known as k0.
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The focusing force

~F = q ·
(
~E + ~v ∧ ~B

)

Remember the 1d harmonic oscillator: F = −k x
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Reminder: the 1d Harmonic oscillator
Restoring force

F = −k x

Equation of motion:

x ′′ = − k
m
x

which has solution:

x (t) = A cos (ωt + φ) =
or
a1 cos (ωt) + a2 sin (ωt)

I F , restoring force, N or MeV/m
I k, spring constant or focusing strength, N/m or MeV/m2

I ω =
√

k
m = 2πf , angular velocity, rad/s

I φ, initial phase, rad

I f , rotation frequency, Hz
I A, oscillation amplitude, m
I m0, particle’s rest mass, MeV/c2

I m = m0γ, particle’s mass, MeV/c2
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Phase-space coordinates
The state of a particle is represented with a 6-dimensional phase-space vector:(

x , x ′, y , y ′, z , δ
)

where x ′ and y ′ are the transverse angles:

with
x [m]

x ′ =
dx
ds

=
dx
dt

dt
ds

=
Vx

Vz
=

Px

Pz
≈

Px

P0
[rad]

y [m]

y ′ =
dy
ds

=
dy
dt

dt
ds

=
Vy

Vz
=

Py

Pz
≈

Py

P0
[rad]

z [m]

δ = ∆P
P0

= P−P0
P0

[#]

where P0 is the momentum of the reference particle (reference momentum), and P = P0 (1 + δ)
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Exercise: Phase space representations

1. Consider a cathode, located at position s0 with radius w , emitting particles. What does
the phase space look like for the particles just created? Which portion of the phase space
is occupied by the emitted particles?

Hint: the picture below shows the particle source in the configuration space
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Quadrupole magnets: the focusing force

Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly-increasing Lorentz force, thru a linearly-increasing magnetic field:

Bx = G y

By = G x
⇒

Fx = −qvzBy = −qvzG x

Fy = qvzBx = qvzG y

G is the gradient of the quadrupole magnet:

G =
2µ0nI
r 2aperture

[
T
m

]
=

Bpoles

raperture

[
T
m

]
the arrows show the force ex-
erted on a particle

I LHC main quadrupole magnets: G ≈ 25 . . . 235 T/m
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Normalised focusing strength

Dividing the gradient G by the magnet rigidity P/q one finds k, the “normalised
focusing strength”

k =
G
P/q

[
m−2

]

with

G =

[
T
m

]
; q = [e] ;

P
q

=

[
GeV
c · e

]
=

[
GV
c

]
=[T m]

Another useful rule of thumb: k
[
m−2

]
≈ 0.3

G [T/m]

P [GeV /c]/q [e]
.

Note: k is also known as k1.
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Focal length of a quadrupole

The focal length of a quadrupole is

f =
1

k · L [m]

where L is the quadrupole length.

Phase space view:
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Towards the equation of motion

Linear approximation:

I the ideal particle coincides with the reference orbit

I any other particle ⇒ has coordinates
x , y ,Px ,Py 6= 0; P 6= P0 with

I x , y � ρ
I Px , Py � P0

I only linear terms in x and y of B are taken into
account

Let’s recall some useful relativistic formulæ and definitions:

P0 = m0 γ0 v0 = m0 γ0 β0 c reference momentum
P = P0 (1 + δ) total momentum

δ = (P − P0) /P0 relative momentum offset

E =
√
P2c2 + m2

0c
4 = m0 γ c2 = m0 c2 + K total energy

K = E −m0 c2 kinetic energy
β = v

c = Pc
E ; γ = 1√

1−β2
= E

m0 c2
relativistic beta and gamma
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Towards the equation of motion
Taylor expansion of the By field:

By (x) = By0 +
∂By

∂x
x +

1
2
∂2By

∂x2
x2 +

1
3!

∂3By

∂x3
x3 + . . .

Now we drop the suffix ’y’ and normalise to the magnetic rigidity P/q = Bρ

B (x)

P/q
=

B0

B0ρ
+

Gquad

P/q
x +

1
2
Gsext

P/q
x2 +

1
3!

Goct

P/q
x3 + . . .

=
1
ρ︸︷︷︸
≡k0

+k1x +
1
2
k2x2 +

1
3!
k3x3 + . . .

In the linear approximation, only the terms linear in x and y are taken into account:

I dipole fields, 1/ρ ≡ k0
I quadrupole fields, k1

It is more practical to use “separate function” magnets, rather than combined ones:

I split the magnets and optimise them regarding their function
I bending
I focusing, etc.
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The equation of motion in radial coordinates
Let’s consider a local segment of one particle’s trajectory:

and recall the radial centrifugal acceleration: ar =
d2ρ
dt2
− ρ

(
dθ
dt

)2
=

d2ρ
dt2
− ρω2.

I For an ideal orbit: ρ = const ⇒ dρ
dt = 0

⇒the force is
Fcentrifugal = −mρω2 = −mv2/ρ

FLorentz = qBy v = −Fcentrifugal
⇒ P

q = Byρ

I For a general trajectory: ρ→ ρ+ x :

Fcentrifugal = mar = −FLorentz ⇒ m
[
d2

dt2
(ρ+ x)−

v2

ρ+ x

]
= −qBy v
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F = m
d2

dt2
(ρ+ x)︸ ︷︷ ︸

term 1

−
mv2

ρ+ x︸ ︷︷ ︸
term 2

= −qBy v

I Term 1: As ρ =const...

m
d2

dt2
(ρ+ x) = m

d2

dt2
x

I Term 2: Remember: x ≈ mm whereas ρ ≈ m → we develop for small x

remember Taylor expansion:
1

ρ+ x
≈

1
ρ

(
1−

x
ρ

)
f (x) = f (x0) +

+ (x − x0) f ′ (x0) + (x−x0)2

2!
f ′′ (x0) + · · ·

m
d2x
dt2
−

mv2

ρ

(
1−

x
ρ

)
= −qBy v
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The guide field in linear approximation By = B0 + x ∂By
∂x

m
d2x
dt2
−

mv2

ρ

(
1−

x
ρ

)
= −qv

{
B0 + x

∂By

∂x

}
let’s divide by m

d2x
dt2
−

v2

ρ

(
1−

x
ρ

)
= −

qvB0

m
− x

qvg
m

Let’s change the independent variable: t → s

dx
dt

=
dx
ds

ds
dt

= x ′v

d2x
dt2

=
d
dt

dx
dt

=
d
dt

 dx
ds︸︷︷︸
x′

ds
dt︸︷︷︸
v

 =
d
dt

(
x ′v
)

=

=
d
ds

ds
dt︸︷︷︸
v

(
x ′v
)

=
d
ds

(
x ′v2

)
= x ′′v2 + x ′

�
��2v
dv
ds

x ′′v2 −
v2

ρ

(
1−

x
ρ

)
= −

qvB0

m
− x

vg
m

let’s divide by v2
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x ′′ −
1
ρ

(
1−

x
ρ

)
= −

qB0

mv
− x

qg
mv

x ′′ −
1
ρ

+
x
ρ2

= −
B0

P/q
−

xg
P/q

x ′′
�
��−
1
ρ

+
x
ρ2

=
�
��−
1
ρ
− kx

Remember:

mv = p

Normalise to the momentum of
the particle:

1
ρ

=
B0

P/q
[m−1]; k =

g
P/q

[m−2]

x ′′ + x
(

1
ρ2

+ k
)

= 0

Equation for the vertical motion

I 1
ρ2

= 0 usually there are not vertical bends

I k ←→ −k quadrupole field changes sign

y ′′ − ky = 0
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Weak focusing
I “Weak” focusing:

x ′′ (s) +

(
1
ρ2

+ k
)

︸ ︷︷ ︸
focusing effect

x (s) = 0

there is a focusing force, 1
ρ2
, even without a quadrupole gradient,

k = 0 ⇒ x ′′ = − 1
ρ2

x

even without quadrupoles there is retrieving force (focusing) in the bending plane
of the dipole magnets

I In large machines, this effect is very weak.

Mass spectrometers entirely rely on weak fo-
cusing: they have no quadrupoles; particles
are separated according to their energy and fo-
cused due to the 1/ρ effect of the dipole
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When scientists just knew weak focusing...
184-inch cyclotron (diameter = 467 cm) at Berkeley campus, 1942:
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Solution of the trajectory equations

Definition:
horizontal plane K = 1/ρ2 + k

vertical plane K = −k

}
x ′′ + Kx = 0

This is the differential equation of a 1d harmonic oscillator with spring constant K . We
know that, for K > 0, the solution is in the form:

x (s) = a1 cos (ωs) + a2 sin (ωs)

In fact,

x ′ (s) = −a1ω sin (ωs) + a2ω cos (ωs)

x ′′ (s) = −a1ω2 cos (ωs) + a2ω2 sin (ωs) = −ω2x (s) → ω =
√
K

Thus, the general solution is

x (s) = a1 cos
(√

Ks
)

+ a2 sin
(√

Ks
)

for K > 0.
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We determine a1, a2 by imposing the initial conditions:

s = 0 →

{
x (0) = x0, a1 = x0
x ′ (0) = x ′0, a2 =

x′0√
K

Horizontal focusing quadrupole, K > 0:

x (s) = x0 cos
(√

Ks
)

+ x ′0
1√
K

sin
(√

Ks
)

x ′ (s) = −x0
√
K sin

(√
Ks
)

+ x ′0 cos
(√

Ks
)

We can use the matrix formalism:

(
x
x ′

)
s1

= Mfoc

(
x0
x ′0

)
s0

For a quadrupole of length L:

Mfoc =

 cos
(√

KL
)

1√
K

sin
(√

KL
)

−
√
K sin

(√
KL
)

cos
(√

KL
) 
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Defocusing quadrupole
The equation of motion is

x ′′ + Kx = 0

with K < 0

Remember:
f (s) = cosh (s)

f ′ (s) = sinh (s)
The solution is in the form:

x (s) = a1 cosh (ωs) + a2 sinh (ωs)

with ω =
√
|K |. For a quadrupole of length L the transfer matrix reads:

Mdefoc =

 cosh
(√
|K |L

)
1√
|K |

sinh
(√
|K |L

)
√
|K | sinh

(√
|K |L

)
cosh

(√
|K |L

)


Notice that for a drift space, i.e. when K = 0 → Mdrift =

(
1 L
0 1

)
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Summary of the transfer matrices
I Focusing quad, K > 0

Mfoc =

 cos
(√

KL
)

1√
K

sin
(√

KL
)

−
√
K sin

(√
KL
)

cos
(√

KL
) 

I Defocusing quad, K < 0

Mdefoc =

 cosh
(√
|K |L

)
1√
|K |

sinh
(√
|K |L

)
√
|K | sinh

(√
|K |L

)
cosh

(√
|K |L

)


I Drift space, K = 0

Mdrift =

(
1 L
0 1

)

With the assumptions we have made, the motion in the horizontal and vertical planes is
independent: the particle motion in x and y is “uncoupled”
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Thin-lens approximation of a quadrupole magnet

When the focal length f of the quadrupolar lens is much bigger than the length of the
magnet itself, LQ

f =
1

k · LQ
� LQ

we can derive the limit for L→ 0 while keeping constant f , i.e. k · LQ = const.

The transfer matrices are

Mx =

(
1 0
− 1

f 1

)
My =

(
1 0
1
f 1

)
focusing, and defocusing respectively.

This approximation is useful for fast calculations.
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Transformation through a system of lattice elements
One can compute the solution of a system of elements, by multiplying the
matrices of each single element:

Mtotal = MQF ·MD ·MBend ·MD ·MQD · · · ·(
x
x ′

)
s2

= Ms1→s2 ·Ms0→s1 ·
(

x
x ′

)
s0

In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

...typical values are:

x ≈ mm

x ′ ≤ mrad
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Properties of the transfer matrix M

The transfer matrix M has two important properties:

I Its determinant is 1
det (M) = 1

(Liouville’s theorem, but only in case of no acceleration)

I Provides a stable motion over N turns, with N →∞, if and only if:

trace (M) < 2

(Stability condition)
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Stability condition

Question: Given a periodic lattice with generic transport map M,

M =

(
a b
c d

)

under which condition the matrix M provides stable motion after N turns (with N →∞)?

xN = M · . . . ·M ·M ·M︸ ︷︷ ︸
N turns, with N→∞

x0 = MNx0

The answer is simple: the motion is stable when all elements of MN are finite, with N →∞.

The difficult question is... how do we compute MN with N →∞?

Remember:

I det (M) = ad − bc = 1
I trace (M) = a + d

If we diagonalise M, we can rewrite it as:

M = U ·
(

λ1 0
0 λ2

)
· UT

where U is some unitary matrix, λ1 and λ2 are the eigenvalues.
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Stability condition (cont.)
What happens if we consider N turns?

MN = U ·
(

λN1 0
0 λN2

)
· UT

Notice that λ1 and λ2 can be complex numbers. Given that det (M) = 1, then

λ1 · λ2 = 1 → λ1 =
1
λ2

→ λ1,2 = e±i x

⇒ to have a stable motion, x must be real: x ∈ R.

Now we can find the eigenvalues through the characteristic equation:

det (M − λI ) = det

(
a − λ b
c d − λ

)
= 0

λ2 − (a + d)λ + (ad − bc) = 0
λ2 − trace (M)λ + 1 = 0

trace (M) = λ + 1/λ =

= e ix + e−ix = 2 cos x

From which derives the stability condition:

since x ∈ R → |trace (M)| < 2
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Orbit and tune

Tune: the number of oscillations per turn.

Example:

64.31

59.32

Relevant for beam stability studies is : the non-integer part
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Summary
beam rigidity: Bρ = P

q

bending strength of a dipole: 1
ρ
[m−1] = 0.2998·B0 [T]

P [GeV/c]

focusing strength of a quadruple: k [m−2] = 0.2998·g
P [GeV/c]

focal length of a quadrupole: f = 1
k·LQ

equation of motion: x ′′ +
(

1
ρ2

+ k
)
x = 0

solution of the eq. of motion: xs2 = M · xs1 . . . with M ≡
(

C S
C ′ S ′

)

e.g.: MQF =

 cos
(√

KL
)

1√
K

sin
(√

KL
)

−
√
K sin

(√
KL
)

cos
(√

KL
) ,

MQD =

 cosh
(√
|K |L

)
1√
|K |

sinh
(√
|K |L

)
√
|K | sinh

(√
|K |L

)
cosh

(√
|K |L

)
 , MD =

(
1 L
0 1

)
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Part 2.

Optics functions and
Twiss parameters
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Envelope
So far we have studied the motion of a particle.
Question: what will happen, if the particle performs a second turn ?

I ... or a third one or ... 1010 turns ...
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The Hill’s equation

In 19th century George William Hill (1838 – 1914), one of the greatest master
of celestial mechanics of his time, studied the differential equation for “motions
with periodic focusing properties”: the “Hill‘s equation”

d2x
ds2

+ K (s) x = 0

where:
I K (s) is a non-constant restoring force
I K (s) depends on the position s
I K (s + L) = K (s) periodic function, where L is the period (the “lattice"

period, in accelerator physics)

We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s in the ring.
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The “beta” function
General solution of Hill’s equation:

x (s) =
√
βx (s) Jx cos (µx (s) + µx,0) (1)

Jx , µ0 =integration constants determined by initial conditions

βx (s) is a periodic function given by the focusing properties of the lattice ↔ quadrupoles

βx (s + L) = βx (s)

Inserting Eq. (1) in the equation of motion, we get (Floquet’s theorem) the following result

µx (s) =

ˆ s

0

ds
βx (s)

where µx (s) is the “phase advance” between the points 0 and s, in the phase space.

For one complete revolution, µx (s) is the number of oscillations per turn, or “tune” when
normalised to 2π

Qx =
1
2π

˛
ds

βx (s)

Jx is a constant of motion, called the Courant-Snyder invariant or “action”.

Note: β and J are measured in units of length, µ in units of angle.
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The orbit in the phase space is an ellipse
General solution of the Hill’s equation

x (s) =
√
βx (s) Jx cos (µx (s) + µx,0) (1)

x ′ (s) = −
√
Jx√

βx (s)
{αx (s) cos (µx (s) + µx,0) + sin (µx (s) + µx,0)} (2)

From Eq. (1) we get

cos (µ (s) + µ0) =
x (s)

√
Jx
√
βx (s)

αx (s) = −
1
2
β′x (s)

γx (s) =
1 + αx (s)2

βx (s)

Insert into Eq. (2) and solve for J

Jx = γx (s) x (s)2 + 2αx (s) x (s) x ′ (s) + βx (s) x ′ (s)2

I Jx is a constant of the motion, i.e. the Courant-Snyder invariant or Action
I it is a parametric representation of an ellipse in the xx ′ space
I the shape and the orientation of the ellipse are given by αx , βx , and γx ⇒ these are the

Twiss parameters
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The phase-space ellipse

Jx = γx (s) x (s)2 + 2αx (s) x (s) x ′ (s) + βx (s) x ′ (s)2

Liouville’s theorem: in an ideal storage ring,
if there is no beam energy change, the area
of the ellipse in the phase space x − x ′ is
constant

The area of ellipse, π · Jx , is an intrinsic beam parameter and cannot be changed by
the focal properties.
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Particle distribution and beam ellipse
For each turn x , x ′ at a given position s1 in the phase-space diagram is

Note: The equation of the beam ellipse can be written also in matrix form:

XTΩ−1X = Jx

with X =

(
x
x ′

)
and

Ω =

(
βx −αx
−αx γx

)
Ω is the “Twiss matrix”.
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β function and beam properties

Given the particle trajectory:

x (s) =
√
βx (s) Jx cos (µ (s) + µ0)

I the max. amplitude is:
x̂ (s) =

√
βxJx

I the corresponding angle, in x̂ (s), can be found putting x̂ (s) =
√
βxJx in Eq.

Jx = γx (s) x (s)2 + 2αx (s) x (s) x ′ (s) + βx (s) x ′ (s)2

and solving for x ′:

Jx = γx · βxJx + 2αx
√
βxJx · x ′ + βxx ′2

→ x̂ ′ = −αx

√
Jx
βx

←

Important remarks:

I A large β-function corresponds to a large beam size and a small beam divergence
I Wherever β reaches a maximum or a minimum, α = 0 (and x ′ = 0)
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Evolution of the Twiss parameters
Let’s repeat the remarks:

I A large β-function corresponds to a large beam size and a small beam divergence
I In the middle of a quadrupole, β is maximum, and α = 0 ⇒ x ′ = 0

[VIDEOS!]
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The transfer matrix in terms of Twiss parameters

As we have already seen, a general solution of the Hill’s equation is:

x (s) =
√
βx (s) Jx cos (µx (s) + µx,0)

x ′ (s) = −

√
Jx

βx (s)
[αx (s) cos (µx (s) + µx,0) + sin (µx (s) + µx,0)]

Let’s remember some trigonometric formulæ:

sin (a ± b) = sin a cos b ± cos a sin b,
cos (a ± b) = cos a cos b ∓ sin a sin b, . . .

then,

x (s)=
√
βx (s) Jx (cosµx (s) cosµx,0 − sinµx (s) sinµx,0)

x ′ (s)= −

√
Jx

βx (s)
[αx (s) (cosµx (s) cosµx,0 − sinµx (s) sinµx,0) +

+ sinµx (s) cosµx,0 + cosµx (s) sinµx,0]
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At the starting point, s (0) = s0, we put µ (0) = 0. Therefore we have

cosµ0 =
x0√
β0J

sinµ0 = −
1
√
J

(
x ′0
√
β0 +

α0x0√
β0

)
If we replace this in the formulæ, we obtain:

x (s)=

√
βs

β0
{cosµs + α0 sinµs} x0 +

{√
βsβ0 sinµs

}
x ′0

x ′ (s)=
1

√
βsβ0

{(α0 − αs ) cosµs − (1 + α0αs ) sinµs} x0 +

√
β0

βs
{cosµs − αs sinµs} x ′0

The linear map follows easily,

(
x
x ′

)
s

= M
(

x
x ′

)
0
→ M =


√
βs
β0

(cosµs + α0 sinµs )
√
βsβ0 sinµs

(α0−αs ) cosµs−(1+α0αs ) sinµs√
βsβ0

√
β0
βs

(cosµs − αs sinµs )


I We can compute the single particle trajectories between two locations in the ring, if we know the α, β,

and γ at these positions!
I Exercise: prove that det(M) = 1
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Periodic lattices, 1-turn map

The transfer matrix for a particle trajectory

M0→s =


√
βs
β0

(cosµs + α0 sinµs)
√
βsβ0 sinµs

(α0−αs ) cosµs−(1+α0αs ) sinµs√
βsβ0

√
β0
βs

(cosµs − αs sinµs)


simplifies considerably if we consider one complete turn:

M =

(
cosµL + αs sinµL βs sinµL
−γs sinµL cosµL − αs sinµL

)
where µL is the phase advance per period

µL =

ˆ s+L

s

ds
β (s)

Remember: the tune is the phase advance in
units of 2π:

Q =
1
2π

˛
ds
β (s)

=
µL

2π
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Evolution of α, β, and γ
Consider two positions in the storage ring: s0, s

(
x
x ′

)
s

= M
(

x
x ′

)
s0

with
M = MQF · MD · MBend · MD · MQD · · · ·

M =

(
C S
C ′ S ′

)
M−1 =

(
S ′ −S
−C ′ C

)

Since the Liouville’s theorem holds, J = const:

J = βx ′2 + 2αxx ′ + γx2

J = β0x ′20 + 2α0x0x ′0 + γ0x20
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We express x0 and x ′0 as a function of x and x ′:(
x
x ′

)
s0

= M−1
(

x
x ′

)
s

⇒
x0 = S ′x − Sx ′

x ′0 = −C ′x + Cx ′

Substituting x0 and x ′0 into the expression of J, we obtain:

J = βx ′2 + 2αxx ′ + γx2

J = β0
(
−C ′x + Cx ′

)2
+ 2α0

(
S ′x − Sx ′

) (
−C ′x + Cx ′

)
+ γ0

(
S ′x − Sx ′

)2
We need to sort by x and x ′:

β (s) = C 2β0 − 2SCα0 + S2γ0

α (s) = −CC ′β0 +
(
SC ′ + S ′C

)
α0 − SS ′γ0

γ (s) = C ′2β0 − 2S ′C ′α0 + S ′2γ0
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Evolution of α, β, and γ in matrix form

The beam ellipse transformation in matrix notation:

T0→s =

 C 2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′
C ′2 −2S ′C ′ S ′2


 β

α
γ


s

= T0→s

 β
α
γ


0

This expression is important, and useful:

1. given the twiss parameters α, β, γ at any point in the lattice we can transform
them and compute their values at any other point in the ring

2. the transfer matrix is given by the focusing properties of the lattice elements, the
elements of M are just those that we used to compute single particle trajectories
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Exercise: Twiss transport matrix, T

Compute the Twiss transport matrix, T ,

T =

 C 2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′

C ′2 −2S ′C ′ S ′2


 β

α
γ


s

= T

 β
α
γ


0

for:

1. the identity matrix: M = ±I
2. a drift of length L

3. a thin quadrupole with focal length ±f
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Beam ellipse evolution (another approach)
Let’s start from the equation of the Twiss matrix Ω seen before, now for x0:

XT
0 Ω−10 X0 = J with: Ω0 =

(
β0 −α0
−α0 γ0

)
XT
1 Ω−11 X1 = J

At a later point if the lattice the coordinates of an individual particle are given using the
transfer matrix M from s0 to s1:

X1 = M · X0

Solving for X0 , i.e. X0 = M−1 · X1, and inserting in the first equation above, one obtains:(
M−1 · X1

)T
Ω−10

(
M−1 · X1

)
= J(

XT
1 ·
(
MT

)−1)
Ω−10

(
M−1 · X1

)
= J

XT
1 ·
(
MT

)−1
Ω−10 M−1︸ ︷︷ ︸

Ω−11

·X1 = J

Which gives
Ω1 = M · Ω0 ·MT
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Covariance matrix of a distribution and geometric
emittance
In phase space a realistic particle distribution matches the shape of an ellipse, and can be
described using a covariance matrix, or “beam matrix”, Σ

Σ is the covariance matrix of the particles distri-
bution:

Σ =

(
σ2x σxx′

σxx′ σ2x′

)
=

( 〈
x2
〉 〈

xx ′
〉〈

xx ′
〉 〈

x ′2
〉 )

The square root of the determinant of the co-
variance matrix is proportional to the area of the
distribution in the phase space. Where

det Σ = σ2xσ
2
x′ − σ

2
xx′

The geometric emittance ε is defined as the square root of the determinant of Σ:

ε =
√

det Σ

⇒ ε is the area of the distribution in the phase space.
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Geometric emittance and covariance matrix

The geometric emittance ε is the square root of the determinant of Σ:

geometric emittance ε =
√

det Σ

Notice that one can write:
Σ = εΩ

where Ω is the Twiss matrix, previously defined.

Demonstration:

Σ =

(
σ2x σxx′

σxx′ σ2x′

)
= ε

(
β −α
−α γ

)
︸ ︷︷ ︸

det Ω=1︸ ︷︷ ︸
det εΩ=ε2

From which: ε =
√

det Σ.
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Geometric and normalised emittance
The geometric emittance is a constant of motion only if the beam energy is preserved:

I e.g. in case of no acceleration (P = constant)
I in absence of dissipative forces (e.g. synchrotron radiation, intra-beam scattering,

etc. )

In presence of acceleration Pz → Pz + ∆Pz , so that x ′ = Px
Pz

goes to x ′ = Px
Pz+∆Pz

, and
the area of the phase space shrinks. We therefore define the normalised emittance:

εnormalized
def
= βrel · γrel · εgeometric

The normalised emittance is a constant of motion also in case of acceleration.
I The beam size is:

σx=
√
εgeometric · βx Twiss
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Liouville’s theorem

Named after the French mathematician Joseph Liouville (1809 – 1882), it’s a key
theorem in classical statistical and Hamiltonian mechanics.

The Liouville equation describes the time evolution of the phase space distribution
function, ρ, and asserts that such phase-space distribution function is constant along
the trajectories of the system — that is, the density of system points in the vicinity of
a given system point traveling through phase-space is constant with time.

In equations, the Liouville’s theorem states that:

dρ
dt

=
∂ρ

∂t
+

N∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= 0

when

qi are the canonical coordinates

pi are the conjugate momenta

i = 1, . . . ,N (where N is the number of particles)

and the system is Hamiltonian (that is, it’s governed by the Hamilton’s equations).

⇒ This is the case for planetary systems and charged particles in electromagnetic fields.
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Symplectic condition

In terms of phase space, the Liouville’s theorem corresponds to say that the system’s
volume in the phase space is invariant under “Hamiltonian” flows.

Without entering the details, it can be demonstrated that the Liouville’s theorem is
preserved if the so called “Symplectic condition” is verified. That is, an arbitrary 6× 6
transfer matrix, M, is symplectic if the following condition is true:

MTJ M = J

where J is the symplectic matrix:

J =


0 1
−1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
−1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
−1 0



58/146 A. Latina - Transverse beam dynamics - JUAS 2018



Summary

Hill’s equation: x ′′ (s) + K (s) x (s) = 0, K (s) = K (s + L)

general solution of the

Hill’s equation: x (s) =
√

Jβ (s) cos (µ (s) + µ0)

phase advance & tune: µ12 =
´ s2
s1

ds
β(s) , Q = 1

2π

¸ ds
β(s)

beam ellipse: J = γ (s) x (s)2 + 2α (s) x (s) x ′ (s) + β (s) x ′ (s)2

geometric emittance: ε = Area of the beam ellipse =
√

det
(
cov
(
x, x′

))

transfer matrix s1 → s2: M =


√
βs
β0

(cosµs + α0 sinµs )
√
βsβ0 sinµs

(α0−αs ) cosµs−(1+α0αs ) sinµs√
βsβ0

√
β0
βs

(cosµs − αs sinµs )



stability criterion: |trace (M)| < 2
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Summary: beam matrix, emittance, and Twiss
parameters
I The beam matrix is the covariance matrix of the particle distribution

Σ =

(
σ11 σ12
σ21 σ22

)
=

( 〈
x2
〉 〈

xx ′
〉〈

x ′x
〉 〈

x ′2
〉 )

this matrix can be also expressed in terms of Twiss parameters α, β, γ and of the emittance ε:

Σ =

( 〈
x2
〉 〈

xx ′
〉〈

x ′x
〉 〈

x ′2
〉 ) = ε

(
β −α
−α γ

)

I Given M =

(
C S
C ′ S′

)
0→s

, we can transport the beam matrix, or the twiss parameters, from 0 to

s in two equivalent ways:

1. Twiss 3× 3 transport matrix: β
α
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + S′C −SS′
C ′2 −2S′C ′ S′2

 β
α
γ


0

2. Recalling that Σs = M Σ0 MT :(
β −α
−α γ

)
s

= M ·
(

β −α
−α γ

)
0
·MT
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Part 3.

Lattice design
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Lattice design in particle accelerators
Or..."how to build a storage ring"

High energy accelerators are mostly circular machines
we need to juxtapose a number of dipole magnets,
to bend the design orbit to a closed ring, then add
quadrupole magnets (FODO cells) to focus the beam
transversely

The geometry of the system is determined by the following equality

centrifugal force = Lorentz force

Lorentz force FL = evB

Centrifugal force Fcentr = γmv2

ρ

γmv �2
ρ

= e�vB

P
q

= Bρ

Bρ is the well known beam ridigity

Note that ρ is different from R the physical radius of the machine (typically ρ < R).
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7000 GeV proton storage ring
ˆ

Bdl ≈NLBendB = 2πp/e

N = 1232 dipole magnets
B ≈

2π · 7000 · 109 eV
1232 · 15 m · 3 · 108 m

s e
= 8.3 T

LBend = 15 m
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Focusing force

x ′′ + Kx = 0

K = 1/ρ2 + k hor. plane

K = −k vert. plane

dipole magnet 1
ρ

= B
P/q

quadrupole magnet k = g
P/q


Example: the LHC ring

Bending radius: ρ = 2.53 km
Quad gradient: g = 220 T/m

k = 9.4 · 10−3 m−2

1/ρ2 = 1.3 · 10−7 m−2

For estimates, in large accelerators, the weak focusing term 1/ρ2 can in general be

neglected
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Alternating gradient focusing

I One single quadrupole cannot simultaneously focus in both the horizontal and the
vertical planes

I Two quadrupoles, separated by a drift of length L, can focus in both directions

I Demonstration in thin-lens approximation:
If

M1 =

(
1 0
1
f1

1

)
; M2 =

(
1 0
1
f2

1

)
; D =

(
1 L
0 1

)
The composite system is:

M = M1 ·D ·M2 ·D =

(
L
f2

+ 1 L2

f2
+ 2L

L
f1f2

+ 1
f1

+ 1
f2

L2

f1f2
+ L

f2
+ 2L

f1
+ 1

)
I This system focuses in both axes if the matrix element M21 < 0 always. This can

be achieved imposing f2 = −f1.

⇒ A system with alternating gradients, always focuses in both axes: M21 = − L
f 21
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The FODO lattice

I Most high-energy accelerators, or storage rings, have a periodic sequence of
quadrupole magnets of alternating polarity in the arcs

I A magnet structure consisting of focusing and defocusing quadrupole lenses in
alternating order with “nothing” in between

I Nota bene: “nothing” here means the elements that can be neglected on first
sight: drift, bending magnet, RF structures ... and experiments...
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Periodic solution in a FODO Cell

Output of MAD-X
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The FODO cell
The transfer matrix gives all the information we need.

In thin-lens approximation, we have:

MF =

(
1 0
− 1

f 1

)
; MO =

(
1 L/2
0 1

)
; MD =

(
1 0

+ 1
f 1

)
the transformation matrix of the cell is:

MFODO = MF ·MO ·MD ·MO

(notice that you can also write M = MF/2 ·MO ·MD ·MO ·MF/2, or other cyclic
permutation), which corresponds to

MFODO =

(
1 + L

2f L + L2

4f

− L
2f 2 1− L

2f −
L2

4f 2

)
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The FODO cell (cont.)
If we compare the previous matrix with the Twiss representation over one period,

MFODO =

(
1 + L

2f L + L2

4f

− L
2f 2 1− L

2f −
L2

4f 2

)

MTwiss =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
= cosµ

(
1 0
0 1

)
︸ ︷︷ ︸

I

+ sinµ

(
α β
−γ −α

)
︸ ︷︷ ︸

J

we can derive interesting properties.

I Phase advance

cosµ =
1
2
trace (M) = 1− L2

8f 2

remembering that cosµ = 1− 2 sin2 µ
2

∣∣∣sin
µ

2

∣∣∣ =
L
4f

This equation allows to compute the phase advance per cell from the cell length
and the focal length of the quadrupoles.
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The FODO cell (cont.)

I Example: compute the focal length in order to have a phase advance of 90◦ per
cell

f =
1√
2
L
2

e.g. an emittance measurement station
I Stability requires that |cosµ| < 1, that is

L
4f

< 1 → stability is for: f > L/4 (or L < 4f )

I Compute the phase advance per cell from the transfer matrix: From
cosµ = 1

2 trace (M)

µ = arccos

(
1
2
trace (M)

)
I Compute β-function and α parameter

β =
M12

sinµ

α =
M11 − cosµ

sinµ
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The FODO cell: useful formulæ
For a FODO cell like in figure, with two quads separated by length L/2

one has:

f =
1

k1Lquad
=

Lcell
4 sin µ

2

β± =
Lcell

(
1± sin µ

2

)
sinµ

α± =
∓1− sin µ

2

cos µ2

D± =
Lcellθ

(
1± 1

2 sin µ
2

)
4 sin2 µ2

θ is the total bending angle of the whole cell.
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βmax and βmin as a function of µ

I The minimum of βmax can be found at µmin = 76.345◦. (Remember: µmin is such
that dβ(µmin)

dµ = 0) ⇐ this applies only for the cases where εy � εx , or εx � εy .
I In cases where εx ≈ εy one needs to minimise βx + βy (i.e. find the zero of

d(βx+βy )

dµ ), which has solution µmin = 90◦.
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Example

I Phase space dynamics in a simple circular
accelerator consisting of one FODO cell
with two 180◦ bending magnets located
in the drift spaces (the O’s)

I The periodicity of α, β, and γ is reflected
by the fact that the phase-space ellipse is
transformed into itself after each turn

I An individual particle trajectory, however,
which starts, for instance, somewhere on
the ellipse at the exit of the focusing
quadrupole (small circle), is seen to move
on the ellipse from turn to turn as
determined by the phase angle µ

I Thus, an individual particle trajectory is
not periodic, while the envelope of a
whole beam is
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Non-periodic lattices

I In the previous sections the Twiss parameters α, β, γ, and µ have been
derived for a periodic, circular accelerator. The condition of periodicity was
essential for the definition of the beta function (Hill’s equation)

I Often, however, a particle beam moves only once along a beam transfer
line, but one is nonetheless interested in quantities like beam envelopes and
beam divergence

I In a circular accelerator α, β, and γ are completely determined by the
magnet optics and the condition of periodicity (beam properties are not
involved - only the beam emittance is chosen to match the beam size)

I In a transfer line, α, β, and γ are no longer uniquely determined by the
transfer matrix, but they also depend on initial conditions which have to be
specified in an adequate way
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Example: ILC bunch compressor
Optics of a non-periodic system including non-periodic optics. “Matching”
sections connect parts with different periodic conditions.

The matrix

 β
α
γ


s

= M3×3

 β
α
γ


0

with

M3×3 =

 C2 −2SC S2

−CC′ SC′ + S′C −SS′

C′2 −2S′C′ S′2



allows to compute the magnets
parameters for the matching
sections
Note: even if the β functions are very large, the beam
size keeps small: σ =

√
βε, with

εy =
εy,N

γrel
=

5 × 10−9 m

5 GeV/ 0.5 MeV
= 10−13 m
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Example: final focus of a HEP experiment
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Summary

integrated dipole field over a turn
´
Bdl ≈ NLBendB = 2π P0

q

transfer matrix of a FODO cell MFODO =

(
1 + L

2f L + L2

4f

− L
2f 2 1− L

2f −
L2

4f 2

)

stability in a FODO cell f > L/4

phase advance in a FODO cell µ = arccos
( 1
2 trace (M)

)
matching sections provide

 β
α
γ


s

= M3×3

 β
α
γ


0
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Part 4.

Dispersion
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Dispersion
So far we have studied monochromatic beams of particles, but this is slightly unrealistic: We always have
some (small?) momentum spread among all particles: ∆P = P − P0 6= 0.

Example: Consider three particles with P respectively: less than, greater than, and equal to P0 , traveling
through a dipole. Remembering Bρ = P

q :

0

p=p
0

p<p
0

p>p

The dipole introduces a linear correlation between transverse position and momentum, called D (s):

x (s) = D (s)
∆P
P0

This correlation is known as dispersion function, which can be seen as an intrinsic property of the dipole
magnets.
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The Inhomogeneous Hill’s equation
Let’s go back to the magnetic rigidity. If P 6= P0 (define δ =

P−P0
P0

= ∆P
P0

) we can work out how the
bending radius ρ depends on the particle momentum, w.r.t. ρ0:

⇒ Bρ =
P
q

=
P0 (1 + δ)

q
= Bρ0 (1 + δ) ⇒ ρ = ρ0 (1 + δ) .

When we derived the equation of motion at some point we had (slide 21):

x ′′︸︷︷︸
term 1

−
1

ρ + x︸ ︷︷ ︸
term 2

= −
By

P/q
that later became: x ′′ +

(
1
ρ2

+ k
)
x = 0

On the way we had "Taylor expanded" term 2:
1

ρ + x
≈

1
ρ

(
1−

x
ρ

)
.

Now we need to redo it for ρ as ρ0 (1 + δ):
1

ρ + x
=

1
ρ0 (1 + δ) + x

≈
1
ρ0

(
1−

x
ρ0
−δ
)

and the equation of motion becomes:

x ′′ +

(
1
ρ20

+ k
)
x−

δ

ρ0
= 0.

If we drop the suffix 0 and explicit δ, this is "the inhomogeneous Hill’s equation":

x ′′+
(

1
ρ2

+ k
)
x= 1

ρ
∆P
P0

80/146 A. Latina - Transverse beam dynamics - JUAS 2018



Solution of the inhomogeneous Hill’s equation

A particle with ∆P = P − P0 6= 0 satisfies the inhomogeneous Hill equation for the horizontal
motion:

x ′′ (s) + K (s) x (s) =
1
ρ

∆P
P0

the total deviation of the particle from the reference orbit can be written as

x (s) = xβ (s) + xD (s)

where:

I xβ (s) describes the betatron oscillation around the new closed orbit, and it’s the solution
of the homogeneous equation x ′′β (s) + K (s) xβ (s) = 0

I xD (s) describes the deviation of the closed orbit for an off-momentum particle. It is
rewritten as xD (s) = D (s) ∆P

P0
, where D (s) is the solution of the equation

D′′ (s) + K (s)D (s) =
1
ρ

is that special orbit that an ideal particle would have for ∆P/P0 = 1

D (s) is the dispersion function.
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Dispersion function and orbit

The dispersion function D (s) is the solution of the inhomogeneous Hill’s equation:

D ′′ (s) + K (s) D (s) =
1
ρ

It can be shown that the solution is:

D (s) = S (s)

ˆ s

0

1
ρ (s ′)

C
(
s ′
)
ds ′ − C (s)

ˆ s

0

1
ρ (s ′)

S
(
s ′
)
ds ′

Once we know D (s), the orbit x (s) = xβ (s) + xD (s), with xD (s) = D (s) ∆P
P0

, can be
rewritten as

x (s) = xβ (s) + xD (s)

= C (s) x0 + S (s) x ′0 + D (s)
∆P
P0
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Dispersion function and orbit

The equation of motion:

x (s) = xβ (s) + xD (s)

= C (s) x0 + S (s) x ′0 + D (s)
∆P
P0

can be written in matrix form:(
x
x ′

)
s

=

(
C S
C ′ S ′

)(
x
x ′

)
0

+
∆P
P0

(
D
D ′

)
0

Or, in a more compact way: x
x ′

∆P/P0


s

=

 C S D
C ′ S ′ D ′

0 0 1

 x
x ′

∆P/P0


0
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Closed orbit of off-momentum particles

Orbit x (s) = xβ (s) + D (s) ∆P
P0

.

Closed orbit for particles with momentum P 6= P0 in
a weakly (a) and strongly (b) focusing circular accelerator.

I xD (s) describes the deviation from the reference orbit of an off-momentum
particle with P = P0 + ∆P

I xβ (s) describes the betatron oscillation around the orbit xD (s)
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Dispersion and orbit propagation
The dispersion orbit is solution of D ′′ (s) + K (s)D (s) = 1

ρ
:

D (s) = S (s)

ˆ s

0

1
ρ (s ′)

C (s ′) ds ′ − C (s)

ˆ s

0

1
ρ (s ′)

S (s ′) ds ′

Now the orbit:

x (s) = xβ (s) + xD (s)

x (s) = C (s) x0 + S (s) x ′0 + D (s)
∆P
P0

In matrix form (
x
x ′

)
s

=

(
C S
C ′ S ′

)(
x
x ′

)
0

+
∆P
P0

(
D
D′

)
0

We can rewrite the solution in matrix form: x
x ′

∆P/P0


s

=

 C S D
C ′ S ′ D′

0 0 1

 x
x ′

∆P/P0


0

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions D0 = D ′0 = 0.
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Examples of dispersion function

Let’s study, for different magnetic elements, the solution of:

D (s) = S (s)

ˆ s

0

1
ρ (s ′)

C (s ′) ds ′ − C (s)

ˆ s

0

1
ρ (s ′)

S (s ′) ds ′

at the exit of the element: that is, D (s) with s = Lmagnet

I Drift space:

MDrift =

(
1 L
0 1

)
C (t) = 1, S (t) = L, ρ (t) =∞ ⇒ the integrals cancel

MDrift =

 1 L 0
0 1 0
0 0 1
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Dispersion function in a quadrupole

I Focusing quadrupole, K > 0:

MQF =


cos
(√

KL
)

1√
K

sin
(√

KL
)

0

−
√
K sin

(√
KL
)

cos
(√

KL
)

0

0 0 1

 ;

I Defocusing quadrupole, K < 0:

MQD =


cosh

(√
|K |L

)
1√
|K |

sinh
(√
|K |L

)
0√

|K | sinh
(√
|K |L

)
cosh

(√
|K |L

)
0

0 0 1
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Dispersion function in a sector dipole

I Sector dipole:
K = 1

ρ2
:

MDipole =

 cos
(√

KL
)

1√
K

sin
(√

KL
)

−
√
K sin

(√
KL
)

cos
(√

KL
)  =

(
cos L

ρ
ρ sin L

ρ

− 1
ρ

sin L
ρ

cos L
ρ

)
which gives

D (L) = ρ

(
1− cos

L
ρ

)
D ′ (L) = sin

L
ρ

therefore

Mdipole =

 cos L
ρ ρ sin L

ρ ρ
(
1− cos L

ρ

)
− 1
ρ sin L

ρ cos L
ρ sin L

ρ

0 0 1



φ =
L
ρ
is the bending angle, L is the length of magnet.
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Exercise: Thin-lens approximation

I Starting from the transfer matrix of a thick dipole magnet of small bending angle,
φ

Mdipole =

 cosφ ρ sinφ ρ (1− cosφ)
− 1
ρ sinφ cosφ sinφ

0 0 1


derive its thin-lens approximation. L is the length of the dipole

[Hint: compute the limit for L→ 0, while keeping the bending angle, φ = L
ρ
,

constant]
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Dispersion propagation through the lattice

I The equation:

D (s) = S (s)

ˆ s

0

1
ρ (s ′)

C (s ′) ds ′ − C (s)

ˆ s

0

1
ρ (s ′)

S (s ′) ds ′

allows to compute the dispersion inside a (dipole) magnet, which does not
depend on the dispersion that might have been generated by the upstreams
magnets.

I At the exit of a magnet of length Lm the dispersion reaches the value D (Lm)

I The dispersion (also indicated as η, with its derivative η′ ) propagates from there,
through the rest of the machine, just like a particle with ∆P/P = 1: η

η′

1


s

=

 C S D
C ′ S ′ D ′

0 0 1

 η
η′

1


0
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Periodic dispersion
In a periodic lattice, also the dispersion must be periodic:
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Periodic dispersion

That is, for

 η
η′

1

 we need to have:

 η
η′

1

 =

 C S D
C ′ S ′ D ′

0 0 1

 η
η′
1


Let’s rewrite this in 2× 2 form:(

η
η′

)
=

(
C S
C ′ S ′

)(
η
η′

)
+

(
D
D ′

)
(

1− C −S
−C ′ 1− S ′

)(
η
η′

)
=

(
D
D ′

)
The solution is:(

η
η′

)
=

1
(1− C) (1− S ′)− C ′S

(
1− S ′ S
C ′ 1− C

)(
D
D ′

)
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Dispersion function in a FODO lattice

The dispersion function in a FODO cell is a periodic function with maxima at the

focusing quadrupoles and minima at the defocusing quadrupoles:

D± =
Lφ
(
1± 1

2 sin
µ
2

)
4 sin2 µ2

where:
I L is the total length of the cell
I φ is the total bending angle of the cell
I µ is the phase advance of the cell
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Impact of dispersion on the beam size
In this example from the HERA storage ring
(DESY) we see the Twiss parameters and the
dispersion near the interaction point. In the pe-
riodic region,

xβ (s) = 1 . . . 2 mm

D (s) = 1 . . . 2 m

∆P/P0 ≈ 1 · 10−3

Remember:

x (s) = xβ (s) + D (s)
∆P
P0

Beware: the dispersion contributes to the beam size:

σx =

√
σ2xβ + std

(
D ·

∆P
P0

)2
=

√
εgeometric · β + D2 ·

σ2P
P2
0

I We need to suppress the dispersion at the IP !
I We need a special insertion section: a dispersion suppressor

I Remember: εgeometric =
εnormalised

βrelγrel
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The momentum compaction factor
The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate

The general solution of the equation of motion is

x (s) = xβ (s) + D (s)
∆P
P0

The dispersion changes also the length of the off-energy
orbit.

particle with offset x w.r.t. the design orbit:

ds′

ds
=
ρ+ x
ρ

→ ds′ =

(
1 +

x
ρ

)
ds

The circumference change is ∆C , that is C ′ =
¸ (

1 + x
ρ

)
ds = C + ∆C

We define αp as “momentum compaction factor”, such that:

∆C
C

= αp
∆P
P0

→ to the lowest order in ∆P/P0 : αp =
1
C

˛
D (s)

ρ
ds ≈

1
Q2
x
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Summary

inhomogeneous Hill’s equation x ′′ + K (s) x = 1
ρ

∆P
P0

...and its solution x (s) = xβ (s) + D (s) ∆P
P0

new closed orbit of off-momentum particle xD (s) = D (s) ∆P
P0

dispersion function D (s) [m] (closed orbit for a particle with ∆P
P0

= 1)

how to compute dispersion in an element D (s) = S (s)
´ s
0

1
ρ(t)

C (t) dt − C (s)
´ s
0

1
ρ(t)

S (t) dt

definition of momentum compaction, αP ∆C
C = αp

∆P
P0
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Part 5.

Imperfections, chromaticity
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Fringe fields
I We use a "hard-edge" model:

x ′′ (s) +

(
1
ρ2

+ k
)
x (s) = 0

(e.g. ρ 6= 0 inside bending dipoles, ρ = 0 outside of them) but this cannot be
really correct, because it would violate the Maxwell equations at the magnet edges

I At the edges, bending and focusing fields depend on the position s smoothly

Fringe field of a dipole magnet (in this case:
a combined dipole + quadrupole magnet, no-
tice the slope of the field along the x axis)
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Effective length

B0 · Leff =

ˆ lmag

0
B (s) ds

99/146 A. Latina - Transverse beam dynamics - JUAS 2018



Magnetic imperfections
High-order multipolar components and misalignments

Taylor expansion of the B field:

By (x) = By0︸︷︷︸
dipole

+
∂By

∂x︸︷︷︸
quad

x +
1
2
∂2By

∂x2︸ ︷︷ ︸
sextupole

x2 +
1
3!

∂3By

∂x3︸ ︷︷ ︸
octupole

x3 + . . . divide by By0

There can be undesired multipolar components,
due to small fabrication defects

Or also errors in the windings, in the gap h, ...

remember: B =
µ0nI
h

Moreover: “feed-down” effect ⇒ a misalign magnet of order n, behaves like a magnet of order
n, plus a magnet of order n − 1 overlapped
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Dipole magnet errors

Let’s imagine to have a magnet with B = B0 + ∆B. This will give an additional kick to
each particle, and will distort the ideal design orbit

Fx = ev (B0 + ∆B) ; ∆x ′ = ∆Bds/Bρ

A dipole error will cause a distortion of the closed orbit, that will „run around“ the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error(
x
x ′

)
s

= Mlattice

(
0

∆x ′

)
0

In order to have bounded motion the tune Q must be non-integer, Q 6= 1. We see that
even for particles with reference momentum P0 an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

We consider a single thin dipole field error at the location s = s0, with a kick angle ∆x ′.

X− =

(
x0

x ′0 + ∆x ′

)
, X+ =

(
x0
x ′0

)
are the phase space coordinates before and after the kick located at s0. The closed-orbit
condition becomes

MLattice

(
x0
x ′0

)
=

(
x0

x ′0 + ∆x ′

)
The resulting closed orbit at s0 is

x0 =
β0∆x ′

2 sinπQ
cosπQ; x ′0 =

∆x ′

2 sinπQ
(sinπQ − α0 cosπQ)

where Q is the tune. The orbit at any other location s is

x(s) =

√
βsβ0∆x ′

2 sinπQ
cos (πQ − |µs − µ0|)
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Orbit distortion for distributed dipole field errors

One single dipole field error

x(s) =

√
βsβ0∆x ′

2 sinπQ
cos (πQ − |µs − µ0|)

Distributed dipole field errors

x(s) =

√
βs

2 sinπQ

∑
i

√
βi∆x ′i cos (πQ − |µs − µi |)

I orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point s0

I the β function describes the sensitivity of the beam to external fields
I the β function acts as amplification factor for the orbit amplitude at the

given observation point
I there is a singularity at the denominator when Q integer ⇒ it’s called

resonance
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Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

MPerturbed =

(
1 0

∆kds 1

)
︸ ︷︷ ︸

perturbation

(
cosµ0 + α sinµ0 β sinµ0
−γ sinµ0 cosµ0 − α sinµ0

)
︸ ︷︷ ︸

ideal ring

Let’s see how the tunes changes: one-turn map

MPerturbed =

(
cosµ0 + α sinµ0 β sinµ0

∆kds (cosµ0 + α sinµ0)− γ sinµ0 ∆kdsβ sinµ0 + cosµ0 − α sinµ0

)

with µ0 = 2πQ. Remember the rule for computing the tune:

2 cosµ = trace (M) = 2 cosµ0 + ∆kdsβ sinµ0
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Quadrupole errors: tune shift (cont.)
We rewrite cosµ = cos (µ0 + ∆µ)

cos (µ0 + ∆µ) = cosµ0 +
1
2

∆kdsβ sinµ0

from which we can compute that

∆µ =
∆k ds β

2
shift in the phase advance

∆Q =

˛
quads

∆k (s)β (s) ds
4π

tune shift

Important remarks:
I the tune shift if proportional to the β-function at the location of the

quadrupole
I field quality, power supply tolerances etc. are much tighter at places where β

is large

I β is a measurement of the sensitivity of the beam
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Quadrupole errors: tune shift example
Deliberate change of a quadrupole strength in a synchrotron:

∆Q =

˛
quads

∆K (s)β (s) ds
4π

≈ ∆K (s) Lquad β
4π

The tune is measured permanently

⇒

We change the strength of "trim" quads to
fix Q

Horizontal axis is a scan of K1 (quad
integrated focusing strength):

I tune shift is proportional to β
through ∆Q ∝ ∆K · β

I En passant, we use this to
measure β.
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Tune shift correction
Errors in the quadrupole fields induce tune shift:

∆Q =

˛
quads

∆k (s)β (s) ds
4π

Cure: we compensate the quad errors using other (correcting) quadrupoles

I If you use only one correcting quadrupole, with 1/f = ∆k1L
I it changes both Qx and Qy :

∆Qx =
β1x
4πf1

and ∆Qy = − β1y
4πf1

I We need to use two independent correcting quadrupoles:

∆Qx =
β1x
4πf1

+
β2x
4πf2

∆Qy = − β1y
4πf1

− β2y
4πf2

(
∆Qx

∆Qy

)
=

1
4π

(
β1x β2x
β1y β2y

)(
1/f1
1/f2

)
I Solve by inversion:(

1/f1
1/f2

)
=

4π
β1xβ2y − β2xβ1y

(
β2y −β2x
−β1y β1x

)(
∆Qx

∆Qy

)
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Quadrupole errors: beta beat
A quadrupole error at s0 causes distortion of β-function at s: ∆β(s) due to the errors
of all quadrupoles:

∆βs
βs

=
1

2 sin 2πQ

∑
i

βi∆ki cos (2πQ − 2 (µi − µs))

Note: Unstable betatron motion if tune is half integer!

This imperfection can be corrected with an appropriate distribution of tuneable
sextupoles.
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Tunes and resonances
The particles – oscillating under the influence of the external magnetic fields – can be
excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.

The cure:

1. avoid large magnet errors

2. avoid forbidden tune values in both planes

m·Qx+n·Qy 6=p

with m, n, p integer numbers
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Resonance diagram

m·Qx+n·Qy 6=p where |m|+|n| is the order of the resonance

A resonance diagram for the Diamond light source. The lines shown are the resonances
and the black dot shows a suitable place where the machine could be operated.
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Quadrupole errors: chromaticity, ξ
[VIDEO!] Chromaticity is an optical aberration occurring in quadrupoles when
∆P/P0 6= 0:

The chromaticity ξ is the variation of tune ∆Q with the relative momentum error:

∆Q = ξ
∆P
P0

⇒ ξ =
∆Q

∆P/P0

Remember the quadrupole strength:

k =
G
P/q

with P = P0 + ∆P = P0 (1 + δ)

then

k =
qG

P0 + ∆P
=

k0
1 + δ

≈ q
P0

(
1− ∆P

P0

)
G = k0 + ∆k

∆k = −∆P
P0

k0
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Quadrupole errors: chromaticity (cont.)

∆k = −∆P
P0

k0

⇒ Chromaticity acts like a quadrupole error and leads to a tune spread:

∆Qone quad = − 1
4π

∆P
P0

k0β (s) ds ⇒ ∆Qall quads = − 1
4π

∆P
P0

˛
k (s)β (s) ds

Therefore the definition of chromaticity ξ is

ξ = − 1
4π

˛
quads

k (s)β (s) ds

The peculiarity of chromaticity is that it isn’t due to external agents, it is generated by
the lattice itself!

Remarks:
I ξ is a number indicating the size of the tune spot in the working diagram
I ξ is always created by the focusing strength k of all quadrupoles
I natural chromaticity of a focusing quad is always negative

In other words, because of chromaticity the tune is not a sharp point, but is a spot
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Example: Chromaticity of the FODO cell
Consider a FODO cells like in figure, with two thin quads, each with focal length f ,
separated by length L/2, and total phase advance µ:

The natural chromaticity ξN of the cell is:

ξN = −
1
4π

˛
β(s)k(s)ds

= −
1
4π

ˆ
cell
β(s) k(s)ds︸ ︷︷ ︸

k(s)ds=KL= 1
f

= −
1
4π

[
β+

f
−
β−

f

]

= −
1

4π sinµ

[(
L +

L2

4f

)
1
f
−
(
L−

L2

4f

)
1
f

]
= −

1
4π sinµ

[
L
f
−

L
f

+
L2

2f 2

]
= −

1
8π sinµ

L2

f 2
' −

1
π

tan
µ

2

For Ncell cells, the total chromaticity is Ncell times the chromaticity of each cell
ξN,Ncell = −Ncell

π
tan µ
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Quadrupole errors: chromaticity
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Chromaticity correction
Remember what is chromaticity: the quadrupole focusing experienced by particles
changes with energy

I it induces tune shift, which can cause beam lifetime reduction due to resonances

Cure: we need additional, energy-dependent, focusing. This is given by sextupoles

I The sextupole magnetic field rises quadratically:

Bx = G̃xy

By =
1
2
G̃
(
x2 − y 2

) ⇒ ∂Bx

∂y
=
∂By

∂x
= G̃x a "moving" quadrupole gradient

it provides a linearly increasing quadrupole gradient
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Chromaticity correction (cont.)

Now remember:

I Normalised quadrupole strength is

k1 =
G

P0/q
[m−2]

I Sextupoles are characterised by a normalised sextupole strength k2, which carries a
focusing quadrupolar component k1:

k2 =
G̃

P0/q
[m−3]; k̃1 =

G̃x
P0/q

= k2x [m−2]
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Cure for chromaticity: we need sextupole magnets installed in the storage ring in order to
increase the focusing strength for particles with larger energy

I A sextupole at a location with dispersion does the trick: x = D · ∆P
P0

k̃1 =
G̃
(
D ∆P

P0

)
P/q

[m−2]

I for x = 0 it corresponds to an energy-dependent focal length

1
fsext

= k̃1Lsext =

k̃1︷ ︸︸ ︷
G̃
P/q︸ ︷︷ ︸
k2

D
∆P
P0︸ ︷︷ ︸

[m]

·Lsext = k2D ·
∆P
P0
· Lsext

Now the formula for the chromaticity rewrites:

ξ = −
1
4π

˛
k (s)β (s) ds︸ ︷︷ ︸

chromaticity due to quadrupoles

+
1
4π

˛
k2 (s)Dβ (s) ds︸ ︷︷ ︸

chromaticity due to sextupoles
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Design rules for sextupole scheme

I Chromatic aberrations must be corrected in both planes ⇒ you need at least two
sextupoles, SF and SD (sextupole strengths)

I In each plane the sextupole fields contribute with different signs to the
chromaticity ξx and ξy :

ξx = − 1
4π

˛
βx (s) [ k (s)− SFDx (s) + SDDx (s)] ds

ξy = − 1
4π

˛
βy (s) [−k (s) + SFDx (s)− SDDx (s)] ds

I To minimise chromatic sextupoles strengths, sextupoles should be located near
quadrupoles where βxDx and βyDx are large

I For optimal independent chromatic correction SF should be located where the
ratio βx/βy is large, SD where βy/βx is large.
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Example of chromaticity correction scheme
I Chromatic aberrations introduced by quadrupoles are locally cancelled by sextupoles

placed near the quadrupoles, in dispersive regions (in straight sections dispersion is
generated using an upstream bending magnet)

I Notice that the sextupoles affect also the on-momentum particles: i.e. they introduce
geometric aberrations. These can be cancelled by adding one additional sextupoles (per
each direction), in opposite phase with them (∆µ = π)

The phase advance between the two sextupoles S1 and S2 must be π, so that:

(
x
x ′

)
s1

→

∆µ = π
m

M =

(
−1 0
0 −1

)
︸ ︷︷ ︸

s1→s2

→
(
−x
−x ′

)
s2
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Summary of imperfections

Error Effect Cure

fabrication imperfections
unwanted multipolar better fabrication /

components multipolar corrector coils

transverse offsets “feed-down” effect
better alignment /
corrector kickers

roll effects couplings x − y skew quads

dipole kicks along orbit distortion ∝ βkick location, corrector kickers
the ring residual dispersion

quad field errors tune shift trim special quadrupoles

chromaticity tune spread design / sextupoles

power supplies closed orbit distortion try to correct /
tune shift / spread improve power supplies
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Summary

stability condition & resonances m ·Qx + n ·Qy 6= p with n,m, p integers

closed orbit distortion due to
dipole errors

x(s) =
√
βs

2 sinπQ
∑

i
√
βi∆x ′i cos (πQ − |µs − µi |)

tune shift ∆Q = 1
4π

¸
quads ∆k (s)β (s) ds

beta beat

∆β (s)

β (s)
=

1
2 sin 2πQ

·

·
˛
β (t) ∆k (t) cos (2πQ − 2 (µ (t)− µ (s))) dt

chromaticity ξ = ∆Q
∆P/P0

= − 1
4π

¸
quads k (s)β (s) ds
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Part 6.

Insertions
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Insertions

L =
NbNe−Ne+ frev

4πσ∗x σ∗y
[cm−2s−1]
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Dispersion suppressor
In an arc, the FODO dispersion is non-zero everywhere. However, in straight sections, we often
want to have η = η′ = 0. ⇒ for instance to keep small the beam size at the interaction
point.

We can “match” between these two conditions with a “dispersion suppressor”: a non-periodic
set of magnets that transforms FODO η, η′ to zero

Consider two FODO cells with length L and different total bend angles: θ1, θ2: we want to have(
η
η′

)
entrance

≡
(

η0
0

)
and

(
η
η′

)
exit
≡
(

0
0

)
Note:

I the two cells have the same quadrupole strengths, so that they have also the same β, and
µ (phase advance per cell)

I remember that α = 0 at both ends, and that, if the incoming beam comes from a FODO
cell with the same length L, phase advance µ, and with a total bending angle θ, then the
initial dispersion is

η0 = η+
FODO

[ η+
FODO ≈ 4f 2

L

(
1 + L

8f

)
θ in thin-lens approximation ]
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Dispersion suppressor (cont.)
Transport for the dispersion: 0

0
1

 =

 C S D
C ′ S ′ D′

0 0 1


suppressor

 η0
0
1


In 2× 2 form reads (

0
0

)
=

(
C S
C ′ S ′

)(
η0
0

)
+

(
D
D′

)
which has solution (

D
D′

)
= −

(
C S
C ′ S ′

)(
η0
0

)
The transfer matrix for the suppressor is

Msuppressor = MFODO 2 ·MFODO 1

For each FODO cell, MFODO = M1/2F ·Mdipole ·MD ·Mdipole ·M1/2F, in thin-lens
approximation:

MFODO j =


1− L2

8f 2 L
(
1 + l

4f

)
L
2

(
1 + L

8f

)
θj

− L
4f 2

(
1− L

4f

)
1− L2

8f 2

(
1− L

8f −
L2

32f 2

)
θj

0 0 1


where j = 1, 2 (1=first cell, 2=second cell)
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Dispersion suppressor (cont.)

If we do the math, we find the expressions that we have to set to zero:
D (s) =

L
2

(
1 +

L
8f

)[(
3− L2

4f 2

)
θ1 + θ2

]
D ′ (s) =

(
1− L

8f
− L2

32f 2

)[(
1− L2

4f 2

)
θ1 + θ2

]
From lecture 3, we remember that the phase advance µ for a FODO cell, in terms of
the length L and the focal length f , is∣∣∣sin

µ

2

∣∣∣ =
L
4f

Thus, one can write the solution as a function of the phase advance µ, and of
θ = θ1 + θ2: 

θ1 =

(
1− 1

4 sin2 µ2

)
θ

θ2 =
1

4 sin2 µ2
θ
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Dispersion suppressor (summary)
Dispersion suppressor, a non-periodic set of magnets that transforms FODO η, η′ to
zero:

One possibility: two FODO cells with length L, phase advance µ, and different total
bend angles: θ1, θ2: 

θ1 =

(
1− 1

4 sin2 µ
2

)
θ

θ2 =
1

4 sin2 µ
2

θ

An interesting solution is for µ = 60◦: in this case

I then θ1 = 0, and θ2 = θ ⇒ we just leave out two dipole magnets in the first
FODO cell insertion

I this is called the “missing-magnet” scheme
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Optics functions in the dispersion suppressor, with
µ = 60◦

x

β
y

β
x

Arc Dispersion suppressor Straight section

D

This is the "missing-magnet" scheme.
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Often the insertions are bigger than few meters...
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The most problematic insertion: the drift space

The most problematic insertion is the drift space !

Let’s see what happens to the Twiss parameters α, β, and γ if we stop focusing
for a while  β

α
γ


s

=

 C 2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′

C ′2 −2S ′C ′ S ′2

 β
α
γ


0

for a drift:

Mdrift =

(
C S
C ′ S ′

)
=

(
1 s
0 1

)
⇒


β (s) = β0 − 2α0s + γ0s2

α (s) = α0 − γ0s
γ (s) = γ0
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Let’s find the location of the waist: α = 0

I the location of the point of smallest beam size, β?

Beam waist:
α (s) = α0 − γ0s = 0 → s =

α0

γ0
= lwaist

Beam size at that point

γ (l) = γ0

α (l) = 0

}
→ γ (l) =

1 + α2 (l)
β (l)

=
1

β (l)
→ βmin =

1
γ0

This beta, at l = lwaist, is also called “beta star”:

⇒ β? = βmin

It’s at l = lwaist that the interaction point (IP) is located.
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A drift space with L = lwaist : the Low β-insertion
We can assume we have a symmetry point at a distance lwaist:

β (s) = β0 − 2α0s + γ0s2, at α (s) = 0 → β? =
1
γ0

On each side of the symmetry point

we have

β (s) = β? +
s2

β?

⇒ β grows quadratically with s.

A drift space at the interaction point, with length L = lwaist, is called “low-β insertion”:

typical low-β insertion suitable to accommodate a detector
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Phase advance in a low-β insertion

We have:

β (s) = β? +
s2

β?

The phase advance across the straight section is:

∆µ =

ˆ Lwaist

−Lwaist

ds

β? + s2
β?

= 2 arctan
Lwaist
β?

which is close to ∆µ = π for Lwaist � β?.

In other words: in the interaction region the tune increases by half an integer!
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Achromatic insertions

There exist insertions (arcs) that don’t introduce dispersion: they are called
achromatic arcs

I In principle, dispersion can be suppressed by one focusing quadrupole and
one bending magnet

I With one focusing quad in between two dipoles, one can get achromat
condition: In between two bends, we call it arc section. Outside the arc
section, we can match dispersion to zero. This is called “Double Bend
Achromat” (DBA) structure

I We need quads outside the arc section to match the betatron functions,
tunes, etc.

I Similarly, one can design “Triple Bend Achromat” (TBA), “Quadruple Bend
Achromat” (QBA), and “Multi Bend Achromat” (MBA or nBA) structure

I For FODO cells structure, dispersion suppression section at both ends of
the standard cells (see previous slides)
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The Double Bend Achromat lattice (DBA)
Consider a simple DBA cell with a single quadrupole in the middle (plus external quadrupoles
for matching).

MDBA = MB ·Mdrift ·M1/2F ·M1/2F︸ ︷︷ ︸
MF

·Mdrift ·MB

In thin-lens approximation, the dispersion matching condition: Dcenter
0
1

 =

 1 0 0
− 1

2f 1 0
0 0 1

 1 L1 0
0 1 0
0 0 1

 1 L Lθ/2
0 1 θ
0 0 1

 0
0
1


where f is the focal length of the quad, θ and L are the bend angle and the length of the
dipole, and L1 is the distance between the dipole and the centre of the quad.

f =
1
2

(
L1 +

1
2
L
)

; Dcenter =

(
L1 +

1
2
L
)
θ
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DBA optical functions
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Triple Bend Achromat (TBA)
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QBA, OBA, and nBA
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Completing the picture: 6-D phase space

In the real life the state vector is six-dimensional:(
x x ′ y y ′ z ∆P/P0

)T
and the transfer matrix is typically

x
x ′

y
y ′

z
∆P
P0


s

=


R11 R12 0 0 0 R16
R21 R22 0 0 0 R26
0 0 R33 R34 0 0
0 0 R43 R44 0 0
R51 R52 0 0 1 R56
0 0 0 0 0 1





x
x ′

y
y ′

z
∆P
P0


0

· In bold the elements that would couple the x − y motion.
· In a ring: R56 = −C α (circumference × momentum compaction).

Nota bene: this matrix can still represent only linear elements.

I if we want to consider high-order elements: e.g. sextupoles, octupoles, etc. ⇒ we need
computer simulations ! “particle tracking” or “maps” (MAD-X, for instance)

I because such elements introduce non-linear motion, which is too difficult to treat
analytically
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Coupled motion: skew quadrupoles

Certain elements might be used to intentionally couple horizontal and vertical motions,
for example: skew quadrupoles, ...

Mskew quad = Rrot (φ)×Mquad × Rrot (−φ) =

=

 cosφ 0 sinφ 0
0 cosφ 0 sinφ

− sinφ 0 cosφ 0
0 − sinφ 0 cosφ

×

×


cos
√
KL 1√

K
sin
√
KL 0 0

−
√
K sin

√
KL cos

√
KL 0 0

0 0 cosh
√
|K |L 1√

|K|
sinh

√
|K |L

0 0
√
|K | sinh

√
|K |L cosh

√
|K |L



×

 cosφ 0 − sinφ 0
0 cosφ 0 − sinφ

sinφ 0 cosφ 0
0 sinφ 0 cosφ



×

A skew-quadrupole is a rotated quadrupole with φ = 45◦

Notice: coupling can be induced even by normal elements, including quadrupoles and
dipoles, just because of alignment errors (“roll error”, i.e. small angles about the optical
axis).
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Coupled motion: solenoid magnets

Solenoids are magnets with only Bz 6= 0. Their transfer matrix reads

Msolenoid =


C2 SC

K SC S2
K

−KSC C2 −KS2 SC
−SC − S2

K C2 SC
K

KS2 −SC −KSC C2


with: L = effective length of the solenoid, K = Bz/ (2Bρ) = Bz/ (2P/q), C = cosKL,
S = sinKL.

Remark: a rotation of the transverse coordinates x and y about the optical axis at the exit of
the solenoid by an angle −KL, decouples the x and y first order terms:

C S
K 0 0

−KS C 0 0
0 0 C S

K
0 0 −KS C

 = Rrot (−KL)×Msolenoid

⇒ a solenoid behaves like a rotating quadrupole that focuses in both x and y .
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Non-linear dynamics
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Dynamic aperture in a FODO

Phase space portraits of a FODO storage ring without (left) and with (right)
sextupoles for correction of chromaticity.
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Particle tracking and dynamic aperture

Dynamic aperture: is a method used to calculate the amplitude threshold of stable
motion of particles. Numerical simulations of particle tracking aim at determining the
“dynamic aperture”.

Dynamic aperture for hadrons

I in the case of protons or heavy ion accelerators, (or synchrotrons, or storage
rings), there is minimal radiation, and hence the dynamics is symplectic

I for long term stability, a tiny dynamical diffusion can lead an initially stable orbit
slowly into an unstable region

I this makes the dynamic aperture problem particularly challenging: One may need
to consider the stability over billions of turns

For the case of electrons

I in bending magnetic fields, the electrons radiate which causes a damping effect.
I this means that one typically only cares about stability over few (~thousands) of

turns
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Emittance growth

An initially Gaussian electron bunch, filamenting after traveling through the CLIC Drive Beam
Recombination Complex, under the effects of non-linear fields and other imperfections...
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...The End!

Thank you

for your attention!
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