Preliminary design study of

JUICE

Joint Universities International Circular Electronsynchrotron

Joint Universities Accelerator School

Goal

$$
\text { brilliance }=\frac{\text { flux }}{4 \pi^{2} \Sigma_{x} \Sigma_{x^{\prime}} \Sigma_{y} \Sigma_{y^{\prime}}}
$$

$$
\begin{aligned}
& \Sigma_{x}=\sqrt{\sigma_{x, e}^{2}+\sigma_{p h, e}^{2}} \\
& \Sigma_{x^{\prime}}=\sqrt{\sigma_{x^{\prime}, e}^{2}+\sigma_{p h, e}^{\prime 2}}
\end{aligned}
$$

$$
\sigma_{x}=\sqrt{\varepsilon_{\mathrm{x}} \beta_{\mathrm{x}}+\left(\mathrm{D}_{\mathrm{x}} \sigma_{\varepsilon}\right)^{2}}
$$

$$
\sigma_{x^{\prime}}=\sqrt{\varepsilon_{x} / \beta_{x}+\left(\mathrm{D}_{\mathrm{x}}^{\prime} \sigma_{\varepsilon}\right)^{2}}
$$

- Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV

Goal

$$
\text { brilliance }=\frac{\text { flux }}{4 \pi^{2} \Sigma_{x} \Sigma_{x^{\prime}} \Sigma_{y} \Sigma_{y^{\prime}}}
$$

$$
\begin{aligned}
& \Sigma_{x}=\sqrt{\sigma_{x, e}^{2}+\sigma_{p h, e}^{2}} \\
& \Sigma_{x^{\prime}}=\sqrt{\sigma_{x ; e}^{2}+\sigma_{p h, e}^{\prime 2}}
\end{aligned}
$$

$$
\sigma_{\mathrm{x}}=\sqrt{\varepsilon_{\mathrm{x}} \beta_{\mathrm{x}}+\left(\mathrm{D}_{\mathrm{x}} \sigma_{\varepsilon}\right)^{2}}
$$

$$
\sigma_{x^{\prime}}=\sqrt{\varepsilon_{x} / \beta_{x}+\left(D_{x}^{\prime} \sigma_{\varepsilon}\right)^{2}}
$$

- Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV

Specifications and requirements

Storage ring

- $2 \mathrm{GeV} \rightarrow 3 \mathrm{GeV}$
- $\mathrm{C}<700 \mathrm{~m}$
- 24 cells
- Must provide
- low horizontal emittance (<10 [$\pi \mathrm{nm} \cdot \mathrm{rad}]$)
- long drift spaces for Insertion Devices
- zero dispersion in drift sections
- precision optics and orbit control
- high stability
- cost efficient
- etc...

Booster ring

- 2 GeV
- $f_{R F}=500[\mathrm{MHz}]$
- $\varepsilon_{x, y}=0.15[\pi \mathrm{~mm} \cdot \mathrm{mrad}]$
- $\ell_{\text {bunch }}=40[p s]=12[\mathrm{~mm}]$
- $\frac{\Delta p}{p}=10^{-3}$

Primary tool

- AGILE: Multi-purpose Freeware
- Lattice construction
- Linear Optics matching
- Chromaticity correction
- Radiation loss calculations
- Vacuum calculations
- Etc.......

Group structure

Experts:

Phillip Bryant
Riccardo Bartolini

Group structure

Experts:
 Phillip Bryant Riccardo Bartolini

Lattice Group

Mandates to Fulfill

- Lattice 1 :
\checkmark Try to improve the basic cell design.
\checkmark Define apertures.
\checkmark Get radiation parameters.
- Lattice 2 :
\checkmark Create a dispersion-free 1:1 module to split the ring in 2 superperiods.
\checkmark Integrate the injection and extraction into the previous module.

Basic Ring

Option 1: DBA with many FODOs

Option 2: TBA

Option 3: low cost DBA

MODULE 1:1

CENTRAL ORBIT
Transfer line

Length of beam line
Horizontal phase advance
Vertical phase advance
Horizontal chromaticity
Vertical chromaticity
$[\mathrm{m}]=20.0000$ $[\mathrm{rad}]=6.283185$ $[\mathrm{rad}]=6.283185$ dmux/dp/p= -2.560 dmuz/dp/p= -10.254

- $\beta_{x}{ }^{\text {in }}=\beta_{x}{ }^{\text {out }}$
- $\beta_{y}{ }^{\text {in }}=\beta_{y}{ }^{\text {out }}$
- $\alpha_{x}{ }^{\text {in }}=\alpha_{x}{ }^{\text {out }}$
- $\alpha_{x}^{\text {in }}=\alpha_{x}^{\text {out }}$
- $\mu_{\mathrm{x}}{ }^{\text {out }}=\mu_{\mathrm{y}}{ }^{\text {out }}=2 \pi$

As expected

Type	Beta-x [m]	Alpha-x ${ }_{\text {a }}$	Mu-x [rad]
MARK	10.000	0.0000	0.0000
DRIFT	10.000	0.0000	0.0000
QUAOPR	10.225	-0.1500	0.1489
DRIFT	11.854	-4.1091	0.1861
QUADR	34.325	-7.1265	0.2854
DRIFT	32.507	11.3365	0.2969
QUAADR	0.251	-0.0186	1.7983
DRIFT	1.027	-2.0795	2.7603
Q $\mathrm{U} A \bar{D} \mathrm{R}$	36.620	-13.7394	3.1359
DRIFT	36.608	13.7657	3.1463
QUADR	1.006	2.0576	3.5262
DRIFT	0.248	-0.0096	4.5129
QUADR	33.044	-11.4978	5.9873
DRIFT	34.856	7.3019	5.9987
QUADR	11.882	4.1852	6.0971
DRIFT	10.225	0.1500	6.1343
MARK	10.000	0.0000	6.2832

Grid step 15.000 m

			$x^{x^{2}} x^{4-7}$			$-7 \cos ^{2}$			
		on							
			Cheremat	- + Maneore					

Twiss functions of the full ring with a low cost DBA

Injection/Extraction Scheme

EXTRACTION

Injection with Orbit Bump

Many Thanks from Lattice Group!

Tune and Chromaticity control

By T. PUGNAT, V. CILENTO, E. FOL,

D. VENTURA

Tune control

Why?

Prevent the machine to reach unstable region!

3 methods to correct the tune:

- Using main quad
- Two serie families of smaller quads distributed around the ring
- Adding backleg windings to the main quadrupole

Tune control: using Quadrupole

Tune control: using Quadrupole

Tune control: Phase shifter

Length*Scale

Strength/Scale ${ }^{2}$

Tune control: Phase shifter

Tune control: Phase shifter

Chromaticity control

Achromaticity

$$
\Delta Q_{x}=\Delta Q_{y}=0
$$

Relation between chromaticity, stength of the quadrupole and strength of the Sextupole:

$$
\begin{gathered}
\Delta \mathrm{Q}_{\mathrm{x}}=\Delta \mathrm{k}_{\mathrm{q}} \beta_{\mathrm{x}} \mathrm{~L}_{\mathrm{q}}+\Delta \mathrm{K}_{\mathrm{s}} \beta_{\mathrm{x}} \mathrm{D}_{\mathrm{x}} \mathrm{~L}_{\mathrm{s}} \\
\Delta \mathrm{Q}_{\mathrm{y}}=\Delta \mathrm{k}_{\mathrm{q}} \beta_{\mathrm{y}} \mathrm{~L}_{\mathrm{q}}+\Delta \mathrm{K}_{\mathrm{s}} \beta_{\mathrm{y}} \mathrm{D}_{\mathrm{x}} \mathrm{~L}_{\mathrm{s}} \\
\beta_{\mathrm{x}} / \beta_{\mathrm{y}} \gg 1 \text { or } \beta_{\mathrm{x}} / \beta_{\mathrm{y}} \gg 1 \\
\beta_{\mathrm{x}} \mathrm{D}_{\mathrm{x}} \gg 0
\end{gathered}
$$

Chromaticity control

Chromaticity control

$\Delta Q_{x}=-1.318417 \quad \& \quad \Delta Q_{y}=0.299031$

Chromaticity control

$X D: k 2=11.8527043000 \mathrm{~m}-3$
XF: k2 = -13.3217690166m-3

Chromaticity control: W-vector

Global chromaticity provide beam stability and control of the working line

Local chromaticity prevent error from propagating from one cell to an other and necessary for undulator

Chromaticity control: W-vector

Chromaticity control: try...

 strength of the sextupole after injection

Dynamic aperture

Lyapunov exponant

$$
\lambda=\lim _{t \rightarrow \infty} \lim _{\delta \mathbf{Z}_{0} \rightarrow 0} \frac{1}{t} \ln \frac{|\delta \mathbf{Z}(t)|}{\left|\delta \mathbf{Z}_{0}\right|}
$$

Quantity that characterizes the rate of separation of infinitesimally close trajectories.

Multi-turn Tracking

$$
D(N)=D_{\infty}\left(1+\frac{b}{[\log N]^{\kappa}}\right)
$$

"Proposed scaling law for intensity evolution in hadron storage rings based on dynamic aperture variation with time", M. Giovannozzi

Closed Orbit Prognosis \&
 Correction

Costanza, Antonio, Alan

Prognosis: Statistic for Closed Orbit

HOW IT WORKS?

These prognosis are made by generating large numbers of virtual machines with estimated errors and calculating the statistics of the raw closed orbits and the corrected closed orbits.

The error is interpreted as dipole kicks.
For example, a longitudinal position error of 1 mm for a dipole is represented as a missing-field kick at one end of the dipole and an additionalfield kick at the other end.
This is done randomly with a uniform or Gaussian distribution.

WHAT WE HAVE DONE

- To perform our prognosis we set a shift error in the position of the quadrupoles of 0.001 m , first in the horizontal and then in the vertical plane.
- We used a Gaussian distribution of the kicks.
- We run a simulation of $\mathbf{1 0 0 0}$ machines and we studied separately the correction of a single closed orbit in the two planes.

STATISTICS FOR RANDOMLY GENERATED CLOSED ORBITS

GLOBAL STATISTICS

No. of machines in sample 1000

Max. horiz. peak-peak [m] 1.016603 Av. horiz. peak-peak [m] 0.363808 RMS horiz. peak-peak [m]0.173713

Max. vert. peak-peak [m] 1.065598 Av. vert. peak-peak [m] 0.404006 RMS vert. peak-peak [m] 0.137809

MAX.HORIZONTAL PEAK-PEAK: 1.016603m

AVERAGE HORIZONTAL PEAKPEAK:
0.363808m

MAX. VERTICAL PEAK-PEAK:
1.065598m

AVERAGE VERTICAL PEAKPEAK:
0.404006 m

The closed orbit was measured and corrected by:

- 158(x2) vertical (VPU) and horizontal (HPU) BPMs,
- 158(x2) vertical (VCORR) and horizontal (HCORR) correctors

We placed BPMs and Correctors next to the Dipoles and close to Quadrupoles and Sextupoles, which represent the main sources of misalignment.

Unit no. 1		$\begin{array}{l\|l\|} & \text { Type } \\ \hline 2 & \\ \hline 2 \end{array}$	Length [m]
1	S0	DRIFT	3.5609
2	QD1	QUADR	0.4000
3	S2	DRIFT	0.2446
4	BpmV	VPU	0.0000
5	CorrV	VCORR	0.0000
6	BpmH	HPU	0.0000
7	Corri	HCORR	0.0000
8	S2	DRIFT	0.2446
9	Dipole1	RBEND	0.9200
10	S3a	DRIFT	0.1500
11	XD	SEXTU	0.4000
12	S3b1	DRIFT	0.2527
13	BpmH	HPU	0.0000
14	CorrH	HCORR	0.0000
15	BpmV	VPU	0.0000
16	CorrV	VCORR	0.0000
17	S3b2	DRIFT	0.2527
18	QD2	QUADR	0.4000
19	S4a1	DRIFT	0.0499
20	BpmV	VPU	0.000
21	CorrV	VCORR	0.0000
22	BpmH	HPU	0.0000
23	CorrH	HCORR	0.0000
24	S4a2	DRIFT	0.0499
25	XF	SEXTU	0.4000
26	S4b	DRIFT	0.1000
27	QF2	QUADR	0.2000

Correction

Before studying the 'Statistic for Corrected Closed Orbit', we investigated the behaviour of a single closed orbit and its correction.

Horizontal closed orbit

- We corrected the previous closed orbit using all the available correctors (158 in the horizontal plane).
- Once fixed the number of correctors and the plane to be corrected, the routine computes a selection of the 'best' correctors out of those available.
- The Computation Method used to select the best correctors is a Least Square Fit (also an SVD method is available)

ZOOM of the corrected Closed Orbit:

Starting from a closed orbit with maximum amplitude of around 0.45 m we reached a final amplitude of 1.5 mm in the horizontal plane!

Vertical CO before the correction

Vertical CO after the correction

Starting from a closed orbit with maximum amplitude of around 0.15 m we reached a final amplitude of 0.7 mm in the vertical plane!

Statistic for Corrected Closed Orbit

- Although there may be a large number of correctors available, it is usually advantageous to check if a small number of correctors will correct the orbit. This increases reliability because :
- \quad there are fewer power converters working
- it increases the currents delivered by those that are working, helping to prevent instabilities.
- The maximum number of calculations for a statistical analysis is 1000 , but it is recommended that a test run is made with around 100 calculations.
- What we have done to compute the Statistic for Corrected Closed Orbit in a timesaving way was to run a test with $\mathbf{1 0 0}$ machines, limiting the number of the corrector to 20.

STATISTICS FOR RANDOM CLOSED ORBITS BEFORE AND AFTER CORRECTION

GLOBAL STATISTICS

No. of machines in sample 100

Max. initial horiz. pk-pk [m] 1.109000 Av. initial horiz. pk-pk [m] 0.487449 RMS initial horiz. pk-pk [m] 0.225425

MAX.HORIZONTAL PEAK-
PEAK: 1.09000m
AVERAGE HORIZONTAL PEAK-
PEAK:
0.487449m

MAX.HORIZONTAL PEAK-PEAK: 0,197763m
AVERAGE HORIZONTAL PEAKPEAK:
0.086300m

Horizontal closed orbit

Space charge study for JUICE

Tune diagram

	Value
Tune H	26.96856
Tune V	6.633655
r_{e}	$2.82 * 10^{-15} \mathrm{~m}$
N	$2.22 * 10^{8}$ electrons
l_{o}	0.01 m
ρ	7.029 m
ϵ_{x}	$0.15 \pi \mathrm{~mm} \mathrm{mrad}$
ϵ_{y}	$0.15 \pi \mathrm{~mm} \mathrm{mrad}$
E	3 GeV
Periodicity	2

Computation of Space Charge in WinAgile

Free space wavelength $=0.6 \mathrm{~m}$
Bunch length $=0.012 \mathrm{~m}$
Bunching Factor $=0.6 / 0.012=5$

Incoherent Space Charge

WinAgile

- No change

Theoretical

$$
\begin{aligned}
& d Q h=-1.92 \mathrm{e}-8 \\
& \mathrm{dQv}=-1.92 \mathrm{e}-8
\end{aligned}
$$

$$
\Delta Q_{x}=-\frac{N r_{e, p}}{2 \pi \varepsilon_{x} \beta^{2} \gamma^{3}}\left(\frac{2 \pi \rho_{x}}{l_{o}}\right)
$$

Inconerent Space Charge

WinAgile

- No change

Theoretical
dQh $=-1.92 \mathrm{e}-8$
$d Q v=-1.92$ e-8

$$
\Delta Q_{x}=-\frac{\lambda x_{x}}{2 \pi \varepsilon_{x} \beta^{2} \gamma}\left(\frac{2 \pi \rho_{x}}{l_{0}}\right)
$$

Coherent Space charge

WinAgile

Tune $\mathrm{H}=26.967827 \rightarrow \mathrm{dQh}=-0.000739$ *5 $=-3.695 \mathrm{e}-3$
Tune $V=6.632407 \rightarrow \quad d Q v=-0.001248 * 5=-6.240 \mathrm{e}-2$

Theoretical
$d Q h=-0.000132=-1.320 e-4$
$d Q v=-0.000529=-5.294 e-4$

$$
\Delta Q_{x c}=-\frac{r_{e} \rho_{x}^{2}}{\beta^{2} \gamma Q_{x 0}} \frac{N}{b^{2} l_{0}}
$$

Change of Vacuum chamber aperture

Change of magnets' gap

Lower Energy

Energy equal to 2 GeV

- Incoherent:

No change

- Coherent:

Tune $\mathrm{H}=26.967457 \rightarrow \quad \mathrm{dQh}=-0.001109 * 5=-5.55 \mathrm{e}-3$
Tune $V=6.631783 \rightarrow \quad \rightarrow \quad d Q v=-0.001872 * 5=-9.36 e-3$

JUICE Vacuum System Design

Helene, Vacuum Team Leader

February 2, 2018

JUICE Vacuum chamber design

$$
P_{\text {dynamic }}=10^{-9} \text { Torr }
$$

\rightarrow low enough not to constitute a limitation to the operation of the machine
Horizontal beam size :

$$
\sigma_{x}=\sqrt{\frac{\epsilon_{x}}{\pi} \beta_{x}^{\max }+\left(D_{x} \frac{\Delta P}{P}\right)}=2.74 \mathrm{~mm}
$$

Injection parameters :

$$
\epsilon_{x}=\epsilon_{y}=0.15 \pi \mathrm{mrad} . \mathrm{mm}
$$

Beam parameters : $\beta_{x}^{\max }=50 m \quad \beta_{y}^{\max }=39 m \quad D_{x}^{\max }=0.4 m \quad \frac{\Delta P}{P}=10^{-3}$
Chamber apertures :

$$
5 \times 4 \mathrm{~cm}
$$

WinAGILE Simulations

- Stainless steel baked chambers
- Area that degasses :

$$
2 \pi \sqrt{\frac{5^{2}+4^{2}}{2}} \times 1.40
$$

- Outputs : static Pressures

$$
P_{\max } \sim 10^{-11} \text { Torr }
$$

Figure 1: WinAGILE vacuum simulation tool

WinAGILE Simulations

Figure 2: WinAGILE vacuum simulation tool

- Stainless steel baked chambers
- Area that degasses :

$$
2 \pi \sqrt{\frac{5^{2}+4^{2}}{2}} \times 1.40
$$

- Outputs : static Pressures

$$
P_{\max } \sim 10^{-11} \text { Torr }
$$

$$
2-2
$$

Pumping System

Vacuum pumps pressure range

16 orders of magnitude !

Pumping System

Figure 3: Turbomolecular pump system
$\rightarrow 10^{-6} \mathrm{mbar}$

Figure 5: Sputter Ion Pump (SIP) datasheet

Figure 4: NEG pump: speed $100 \mathrm{~L} / \mathrm{s}$ datasheet

Gauges

Vacuum gauges pressure range

16 orders of magnitude !

Practical Considerations

Figure 6: JUICE example cell

- Critical places : dipoles, kickers, septums, ID, crotches...
- NEG pumps (SAES), SIP (Agilent)
- Pirani and Penning gauges
- ID chambers Aluminium + NEG coating (\rightarrow very low outgassing rate) (ESRF)

Thank you for your attention

Come to JUAS $2^{\text {nd }}$ Course: Accelerator Technologies

SR workshop (R. Bartolini)

The goal of the workshop is to design synchrotron light source based on a DBA lattice. The beam energy is 3 GeV .

From the initial DBA cell from P. J. Bryant
-compute critical frequency of bending, energy loss, total power radiated

- Install IDs to reach 5 keV
- compute tuning range, bandwidth, energy loss per turn, total power
emitted by the IDs, brilliance, tuning curves
- compute the RF power needed for 300 mA
- assume 8 DBA cells with 3.2 m straight sections
- complete matching (achieve betay $=\mathbf{2 m}$ in SS, check tunes)
- play with optics to reduce the emittance (break the achromatic condition)
- Investigate other cells (TBA)

Radiation from bendings

Bending field 1.4 T - bending radius 7.1 m energy loss per turn: Bending magnets

$$
U_{\{0, b e n d\}}=88.46 \frac{E[\mathrm{GeV}]^{4}}{\rho[\mathrm{~m}]} \approx 1.0 \mathrm{MeV}
$$

Critical energy

$$
\varepsilon_{c}=2.218 \frac{E[\mathrm{GeV}]}{\rho[\mathrm{m}]}=8.4[\mathrm{keV}]
$$

Power emitted as Synchrotron Radiation:

$$
P[k W]=U_{0}[\mathrm{keV}] \cdot I_{\text {beam }}=1.0 \cdot 10^{3}[\mathrm{keV}] \cdot 0.3[A]=300[\mathrm{~kW}]
$$

Assuming 50\% efficiency the RF power must be:

$$
P[k W]=600[k W]
$$

With this equipment, we choose to work:
$\lambda=25 \mathrm{~mm}$
$\mathrm{Br}=1.0 \mathrm{~T}$
Energy required

From the following formula is possible to obtain K (the undulator parameter)

$$
\begin{array}{llc}
\varepsilon_{n}(\mathrm{eV})=9.496 \frac{n E[\mathrm{GeV}]^{2}}{\lambda_{u}[\mathrm{~m}]\left(1+\frac{K^{2}}{2}\right)} & K=\sqrt{\frac{9.496 \cdot n \cdot \mathrm{E}[\mathrm{GeV}]^{2}}{\lambda_{u}[\mathrm{~m}] \cdot \varepsilon_{n}[\mathrm{eV}]}-1} \\
\text { The value obtained is } & \begin{array}{l}
\mathrm{K}=1.56
\end{array} & \mathrm{n}=5 \\
\mathrm{~K}=1.03 & \mathrm{n}=3
\end{array}
$$

Such photon energy can be radiated only in harmonics

After to check the feasibility of the project we go down to check the value of the remnant field B_{r} using the following formula:

$$
\mathrm{K}=0.168 \mathrm{~B}_{\mathrm{r}} \lambda_{\mathrm{u}} \mathrm{e}^{-\frac{\pi \text { gap }}{\lambda_{\mathrm{u}}}}
$$

Mind that different parameterisations can be found

$$
B_{y_{0}}=1.72 B_{r} e^{-\pi g / \lambda_{u}}
$$

NOTE: First formula use lengths in mm
After we want to evaluate the B field at the centre of the structure $\left(B_{0}\right)$:

$$
K=\frac{e B_{0} \lambda_{u}}{2 \pi m c}
$$

n	B_0	Gap	B_r
3	0.45 T	11.2 mm	1
5	0.67 T	7.9 mm	1

Tuning range:
K min ~ 0.5
$K \max (4 \mathrm{~mm})=2.54$

Tuning range:
Third harmonics ~ $2.4-9.1 \mathrm{keV}$
Fifth harmonics ~ 4.0-15.2 keV

Energy loss per electron in one wiggler in 1 turn:

$$
E_{l o s s}=0,07257 \frac{E^{2}[\mathrm{GeV}] K^{2} l_{w}}{\lambda_{w}}=
$$

Energy loss per turn (K=1.03) = 83 keV
Energy loss per turn ($\mathrm{K}=1.56$) = 190 keV

Why not adding 22 WIGGLERS?

- Total energy loss: Bending magnets + all wigglers
- K = 1.03

$$
\begin{gathered}
U_{\{0, \text { wigglers }\}}=N_{\text {wig }} \cdot U_{\{0,1 \text { wiggler }\}}=22 \cdot 83[\mathrm{keV}]=1.83[\mathrm{MeV}] \\
U_{\{0, \text { total }\}}=1.0[\mathrm{MeV}]+1.83[\mathrm{MeV}]=2.83[\mathrm{MeV}]
\end{gathered}
$$

- $\mathrm{K}=1.56$
$U_{\{0, \text { wigglers }\}}=N_{\text {wig }} \cdot U_{\{0,1 \text { wiggler }\}}=22 \cdot 190[\mathrm{keV}]=4.18[\mathrm{MeV}]$ $\boldsymbol{U}_{\{0, \text { total }\}}=1.0[\mathrm{MeV}]+4.18[\mathrm{MeV}]=5.018[\mathrm{MeV}]$
- Power emitted as Synchrotron Radiation:

$$
\begin{gathered}
\boldsymbol{P}[\mathbf{k W}]=U_{0}[\mathrm{keV}] \cdot I_{\text {beam }}=2.83 \cdot 10^{3}[\mathrm{keV}] \cdot 0.3[\mathrm{~A}]=\mathbf{8 4 9}[\mathbf{k W}] \\
\boldsymbol{P}[\boldsymbol{k W}]=U_{0}[\mathrm{keV}] \cdot I_{\text {beam }}=5.18 \cdot 10^{3}[\mathrm{keV}] \cdot 0.3[\mathrm{~A}]=\mathbf{1 5 5 0}[\mathbf{k W}]
\end{gathered}
$$

Compared to 300 kW for dipoles only we obtained a factor between 3 and 5

RF Design workshop

- Goal: Design RF System
- Input Parameters:
- To operate at 500 MHz frequency (f_{rf})
- To accelerate from 2 GeV to 3 GeV
- Compensate Energy Losses (Synchrotron Radiation, Wiggler)
- Pill-Box RF Cavity
- Define RF System and RF Programme
- Calculate Voltage (V_{rf}), RF- Power

Presented by RF-Team
Francesco GIORDANO
Markus JAEGER
Mohamed KARIMELDIN
Rakesh Chandra PRAJAPATI

Pill-Box RF-Cavity for acceleration

TM_{010} resonance frequency independent of h

$x_{01}=2.405 \quad R=\frac{x_{01}}{2 \pi} \lambda=0.383 \lambda$

- Magnetic field is concentrated at the cylindrical wall, responsible for RF losses.
- Electric field is concentrated near axis, responsible for acceleration.

RF Parameters (Frequency, Voltage, Power)
$\mathrm{f}_{\mathrm{rf}}=\mathbf{5 0 0} \mathrm{MHz}$
Circumference of Main Ring $\left(\mathrm{C}_{\text {ring }}\right)=406.195 \mathrm{~m}$ $f_{\text {rev }}=c / C_{\text {ring }}=3 \times 10^{8} / 406.195=738.561 \mathrm{kHz}$ Harmonic Number (h) $=\mathrm{f}_{\mathrm{rf}} / \mathrm{f}_{\text {rev }} \approx 677$

Pill-Box RF Cavity:
Radius of Cavity $=0.383 \lambda=0.383 \times 60=23 \mathrm{~cm}$ Length of Gap inside the Cavity $=10 \mathrm{~cm}$

Accelerating Voltage (RF-Voltage)

$\Delta E[\mathrm{keV}]=88.5 \frac{E^{4}[\mathrm{GeV}]}{\rho[\mathrm{m}]} \begin{aligned} & \text { Partical Energy }(\mathrm{E})=3 \mathrm{GeV} \\ & \text { Bending Radius }(\rho)=7 \mathrm{~m}\end{aligned}$

- Synchrotron Radiation (SR) Loss per Turn ($\mathbf{\Delta E}$) =1 MeV
- Hence, to compensate SR Energy Loss, accelerating voltage of 1 MV is required.
- For sufficient beam life-time, Over Voltage Factor of at least 2 is required.
- Therefore, we provide 2.5 MV accelerating voltage in the Main Ring through 4 RF-Cavities. $\left(\mathrm{N}_{\text {cavity }}=4\right)$

RF Power requirement

- 2.5 MV voltage in the Main Ring through 4 RF-Cavities. $\left(\mathrm{N}_{\text {cavity }}=4\right)$
- Therefore, each RF-cavity operates at $2.5 \mathrm{MV} / 4=625 \mathrm{kV}$
- 1. Power Required To Generate Accelerating Voltage
- RF Cavity Power $\left(\mathrm{P}_{\mathrm{acc}}\right)=\mathrm{V}^{2} / \mathrm{R}_{\text {sh }}=(625 \mathrm{kV})^{2} / 3.5 \mathrm{M} \Omega=112 \mathrm{~kW}$ (each RF cavitiy)
- 2. Power Required To Compensate for SR Loss
- SR Loss Power ($\mathrm{P}_{\text {SRL }}$) = Stored Current X Voltage for SR Loss Compensation

$$
=300 \mathrm{~mA} \mathrm{X} \mathrm{1MV} \mathrm{=} 300 \mathrm{~kW}
$$

- 3. Power Required To Compensate Wiggler Loss
- Wiggler Loss Power (Pwiggler) = 1550 kW
- Total Power Required $\left(P_{\text {totat }}\right)=\left(N \times P_{\text {acg }}\right)+P_{\text {SRL }}+$ Pwiggler $=4 \times 112 \mathrm{~kW}+300 \mathrm{~kW}+1550 \mathrm{~kW}=748 \mathrm{~kW}+1550 \mathrm{~kW}$
$=2.3 \mathrm{MW}$

RF Voltage per Cavity vs. SynchtRon Loss

$$
\begin{gathered}
E_{\text {inj. }}=2 G e V \\
E_{t o p}=3 G e V \\
E_{\text {inj }}<E<E_{t o p} \\
V_{R F}=\frac{2 \cdot \pi \cdot \rho \cdot R \cdot \dot{B}+\Delta E}{N \cdot \sin \left(\varphi_{s}\right)}
\end{gathered}
$$

Gamma vs. synchtron loss

$$
\gamma=\frac{E}{E_{0}} \quad 2 \mathrm{GeV}<\mathrm{E}<3 \mathrm{GeV}
$$

$$
\Delta E[k e V]=88.5 \frac{E^{4}[G e V]}{\rho[m]}
$$

Synchtron Radiation Loss Per Turn is 1 MeV .

Synchtron radiation loss compensation

4 RF cavities are compensating the energy loss of the beam due to Synchtron Radiation.

RF-Cavity design (from pill-box to Elliptical/spherical)

- Improving the 3 Figures of Merit: $\omega_{r f}$ (fixed), Q, R_{s}
- Quality factor $\mathrm{Q}=$ stored field energy / ohmic loss per RF oscil

$$
Q=\frac{\omega U}{P_{t i s s}}=\frac{R L}{\delta_{\text {sin }}(R+L)} \approx \frac{2 V}{\delta_{\text {sin }} A} \longleftarrow \text { volume }
$$

- Shunt lmpedance $\mathrm{R}_{\mathrm{s}}=(\text { (voltage gain per particle) })^{2}$ / ohmic loss

$$
R_{s}=\frac{\left(E_{0} L T\right)^{2}}{P_{\text {diss }}} \propto \delta_{\text {skin }} \propto \frac{1}{\sqrt{\omega}} \propto \sqrt{\text { cavitysize }}
$$

RF System from 'diamond' Light source

Table 2. Basic Storage Ring RF System Parameters.
(Our Design Parameters)

Cavity Voltage	5.1 MV
No. Cavities	6
Cavity Shunt Impedance	$3.5 \mathrm{M} \Omega$
Voltage/cavity	0.85 MV
Cavity Quality Factor (unloaded)	30000
RF Frequency	499.654 MHz
Overvoltage	2.28
Synchrotron Frequency	9.6 kHz
Quantum Lifetime	1 E 205 hrs
Radiation Damping Time	0.76 ms
Natural Bunch Length	13.7 ps
Total Beam Power	670 kW
Total Cavity Power	620 kW
Required Cavity Coupling	2.1
Window throughput Power	215 kW
Total Source Power	1420 kW

RF Engineering design consideration

- Tuning Mechanism:
- Frequency tuning of RF cavity should be non-contacting plunger, normal plunger movement can cause beam movement of the order $20 \mu \mathrm{~m}$.
- Cooling System:
- Power Dissipate per Cavity $=748$ kW / $4=187$ kW. Thus, we need water-cooling mechanism. Specific heat capacity of water is $C_{P}=$ $4185.5 \mathrm{~J} /(\mathrm{kg} . \mathrm{K})$, thus, 400 liters $/ \mathrm{min}$ cooling system will have $4^{\circ} \mathrm{C}$ difference in inlet and outlet. Proper cooling system should be used to keep uniform temperature gradient, otherwise, distortion in cavity geometry can result, and consequently change the frequency.
- Ohmic Heating/ Power dissipation: $\quad P_{\text {diss }} \propto \frac{\rho_{c}}{\delta_{s k i n}} \quad \delta_{s k i n}=\sqrt{\frac{2 \rho_{c}}{\mu \omega}}$

Block-diagram of accelerator rf system

Fig. 13: Block-diagram scheme of an accelerator RF system
"Radio frequency for particle accelerators - evolution and anatomy of a technology"
By M. Vretenar, CERN, Geneva, Switzerland

Thank you!

[^0]?
European Scientific Institute

[^0]: juas
 Joint Universities Accelerator School

