Joint Universities Accelerator School JUAS 2018

Archamps, France, 26th February – 2nd March 2018

Normal-conducting accelerator magnets Lecture 3: Magnet construction

Thomas Zickler CERN

Lecture 3: Magnet construction

Magnetic materials Yoke manufacturing techniques Coil manufacturing techniques QA, tests & measurements (see practical work @ CERN)

Cost estimates and optimization

Input Design & calculations Specification & drawings **Prototyping** Series production **Tests** Magnetic Measurements Installation & comissioning Operation De-installation Storage, destruction, disposal

Magnet manufacturing

Mechanical design

Procurement

- Raw materials
- Tooling

Yoke production

Tests & measurements

Magnet assembly

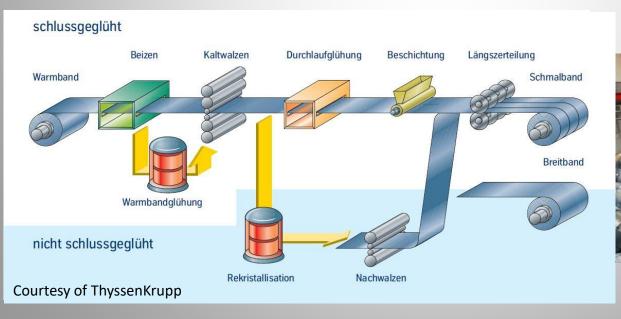
Coil production

Massive vs. laminated yokes

Historically, the primary choice was whether the magnet is operated in persistent mode or cycled (eddy currents)

- + no stamping, no stacking
- + less expensive for prototypes and small series
- time consuming machining, in particular for complicated pole shapes
- difficult to reach similar magnetic performance between magnets

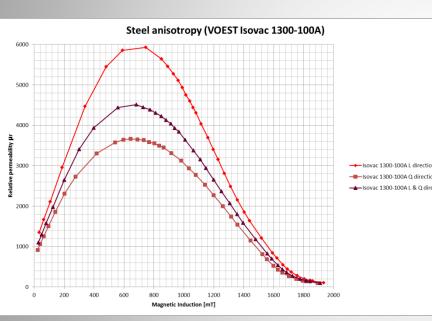
- + steel sheets less expensive than massive blocks (cast ingot)
- + less expensive for larger series
- + steel properties can be easily tailored
- + uniform magnetic properties over large series
- expensive tooling

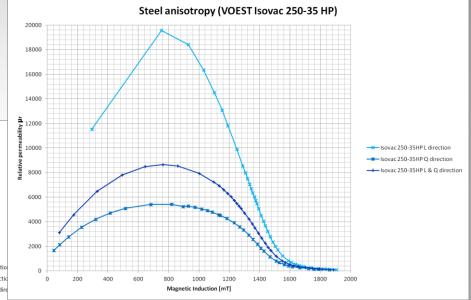


Magnetic steel

Today's standard: cold rolled, non-oriented electro-steel sheets (EN 10106)

- Magnetic and mechanical properties can be adjusted by final annealing
- Reproducible steel quality even over large productions
- Magnetic properties (permeability, coercivity) within small tolerances
- Homogeneity and reproducibility among the magnets of a series can be enhanced by selecting, sorting or shuffling
- Material is usually cheaper, but laminated yokes are labour intensive and require more expensive tooling (fine blanking, stacking)





NGO steel properties

ISOVAC 1300-100A: H_c = 65 A/m

ISOVAC 250-35HP: $H_c = 30 \text{ A/m}$

Sheet thickness:

 $0.3 \le t \le 1.5 \,\mathrm{mm}$

Specific weight:

 $7.60 \le \delta \le 7.85 \text{ g/cm}^3$

Electr. resistivity @20°C:

0.16 (low Si) $\leq \rho$ \leq 0.61 μΩm (high Si)

Steel specification

Typical steel characteristics:

Material thickness:

Parameter	Value	Unit
Nominal thickness of steel strips	1.00	mm
Max. deviation from nominal thickness	± 0.03	mm
Max. thickness variation in rolling direction	0.004	mm/2 m
Max. thickness variation perpendicular to rolling direction*)	0.007	mm

^{*)} over a width of 1100 mm

Mechanical/electrical properties:

Parameter	Value	Unit
Electrical resistivity	0.13	μΩm
Density	7.800	g/cm ³
Tensile strength R _m	380 ± 10	MPa
Yield strength Re _h	270 ± 20	MPa
Hardness HV5	138 ± 5	
Surface roughness R _a	0.4 - 0.9	μm

Magnetic properties:

Parameter	Value	Unit
Average coercivity	70 ± 2	A/m
Permeability spread at 500 A/m (~1.45 T)	± 1	%

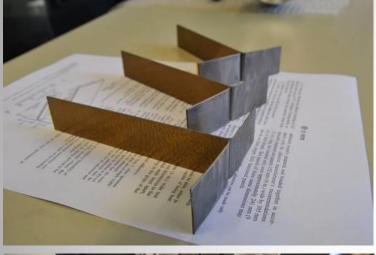
Surface coating:

Parameter	Value	Unit
Coating thickness	4 - 6	μm
Bonding strength of coating (DIN 53262)	> 6	N/mm ²
Surface resistance of coating in B-stage	> 1000	Ω cm

Sheet insulation

Surface coating:

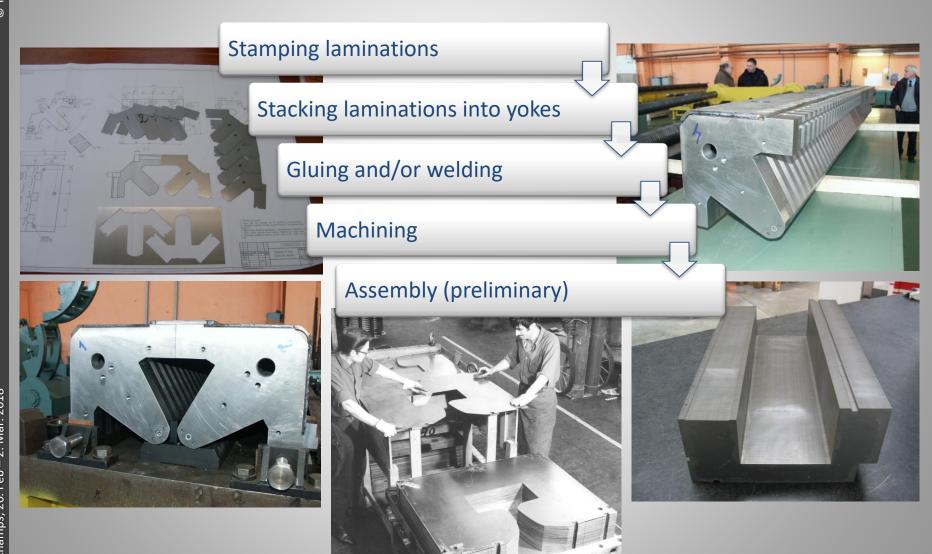
- electrical insulation of several μm thickness
- one or both sides
- oxid layer, phosphate layer, organic or inorganic coating


Insulation designation IEC 60404-1-1	Insulation type	Color ¹⁾	Coating	Coating thickness each side in µm	Insulation resistance at room temperature to ASTM A717/A717M-95 Ωm²/Lamelle
STABOLIT 10 EC-3 by prior arrangement only	organic	yellow- green	both sides	max. 1.5	> 15
STABOLIT 20 EC-5-P	inorganic with organic components	grey- green	both sides	0.5 - 1.5	> 5
STABOLIT 30 EC-5-P	inorganic with organic components	light grey	both sides	0.5 - 1.5	> 5
STABOLIT 40 EC-6	organic pigmented	grey	one or both sides	3.0 - 5.0 4.0 - 7.0 6.0 - 9.0	> 90
STABOLIT 60 EC-5	inorganic with organic components pigmented	grey	both sides	0.3 - 1.0 1.0 - 2.0 2.0 - 3.5	> 5 > 15 > 50
STABOLIT 70	organic bonding lacquer (active)	colorless	one or both sides	5.0 - 8.0	-
Combined insulation	organic bonding lacquer with one side heat treatment (passive)	colorless	both sides	active 5.0 - 8.0	-
				passive max. 1.5 Source	e: ThyssenKrupp



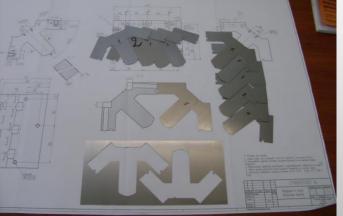
Sample testing

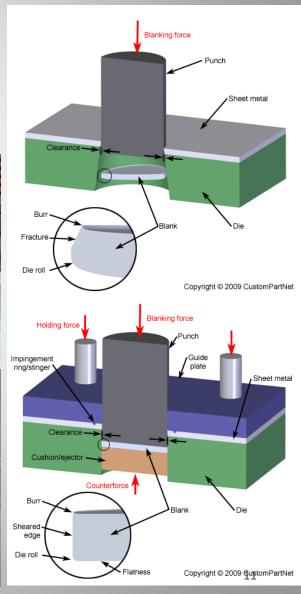
Samples are tested to validate material properties:



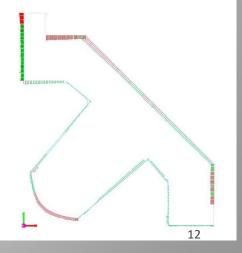
Yoke manufacturing

10


Lamination punching


- Punching or fine blanking
- Fine blanking requires more expensive tooling
- Tolerances less than +/- 8 μm achievable (depending on thickness, material and layout)
- Material can be delivered in sheets or strips (coils)

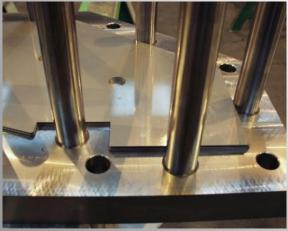
Sample testing



Samples are tested to validate the lamination contour:

```
0.017 022 08 05 012 012 04 010 06 05 04
                                                                        0.020169005004001 004007011011017036
                                                                        0.023
0.028
                   -0.002
                                                                        0.031
                   -0.004
                                                                        0.021
0.028
                   -0.002
                                                                        0.012
                   -0.001
                   0.001
                                                                                           0.067
                                                                        Коэффициент увеличения = 100 0.049
                                                                         верхний допуск = 0.0200 тр
```


Yoke stacking



Fixtures for stacking/baking/welding

Glueing vs. Welding

Welding

- + mechanically more ridgig
- + no aging
- massive end plates/tension straps needed
- continous welding introduces stress and deformation
- sophisticated welding procedure/ requires stacking fixture

Glueing

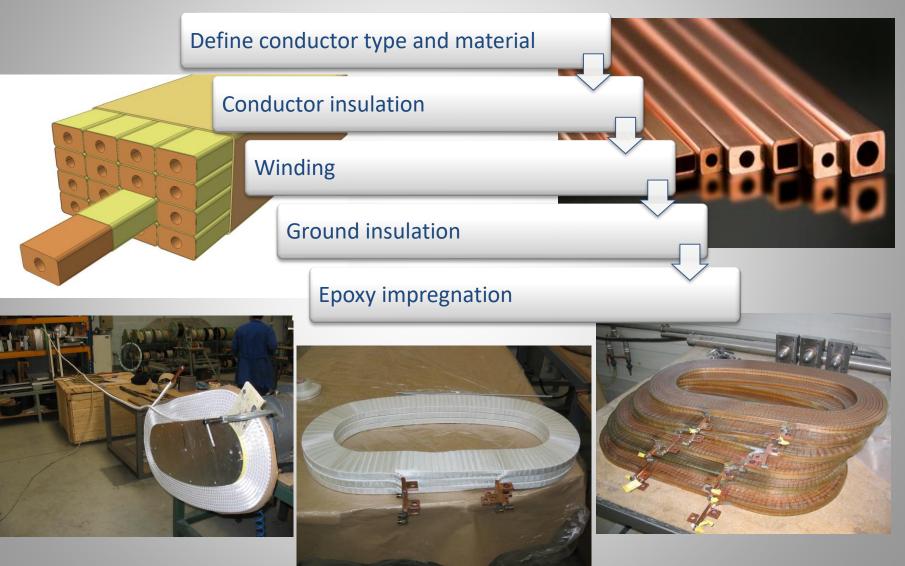
- + no stress, no distortions
- + no tension straps, no end plates (→ no eddy currents)
- glue sensitive to radiation and aging
- requires clean laminations and conditions
- requires baking oven

/ requires stacking fixture

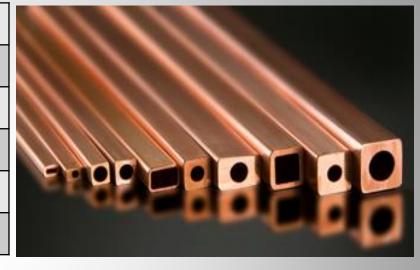
Recommendation: combine gluing, welding & bolting

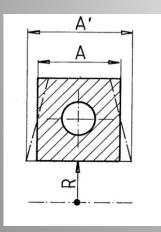
Recurrent quality issues

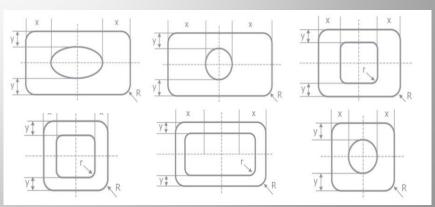
Poor lamination bonding stength



Coil manufacturing




Conductor materials


	Al	Cu (OF)
Purity	99.7 %	99.95 %
Resistivity @ 20°C	2.83 μΩ cm	1.72 μΩ cm
Thermal resistivity coeff.	0.004 K ⁻¹	0.004 K ⁻¹
Specific weight	2.70 g/cm ³	8.94 g/cm ³
Thermal conductivity	2.37 W/cm K	3.91 W/cm K

Key-stoning: risk of insulation damage & decrease of cooling duct cross-section

$$R = 3 \cdot A \Rightarrow \frac{\Delta A}{A} = 3.6\%$$

Coil insulation

In a magnet coil, the electrical insulation ensures that current flows only along the conductors and not between individual conductors or between the conductors and other parts of the magnet

Dielectric materials can be distinguished in three main classes:

- inorganic materials: ceramics, glass, quartz, cements and minerals (e.g. mica)
- organic materials: thermoplastic: Rubber, PA (Nylon), PP, PS, PVC, PC, PTFE or thermosetting: Polyethylene, PI, PEEK, Epoxy, phenolic, silicon, polyester resins
- composites: fully organic (aramidic fibres-epoxy tapes) or mixed (epoxy-mica tapes)

A weak electrical insulation may produce:

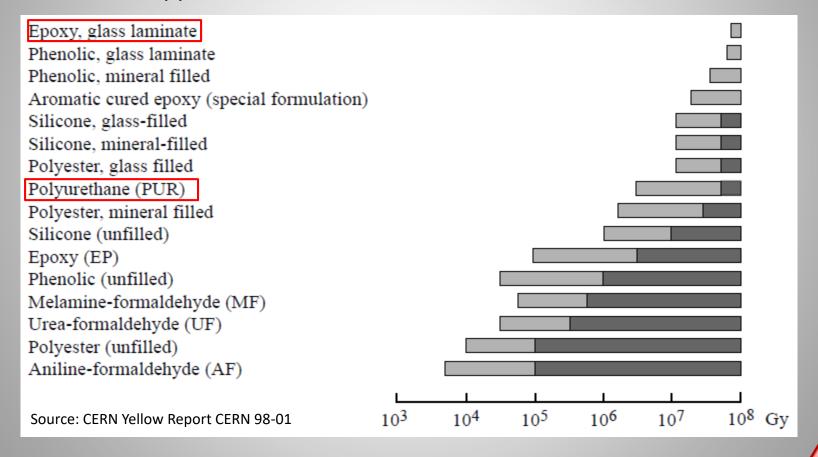
- current leaks with local heating up to melting and possible fire
- progressive damage of the leakage path up to a short circuit
- unbalanced circulating currents (→ magnetic field distortion)
- incorrect functioning of protections

The electrical insulation is stressed by several factors:

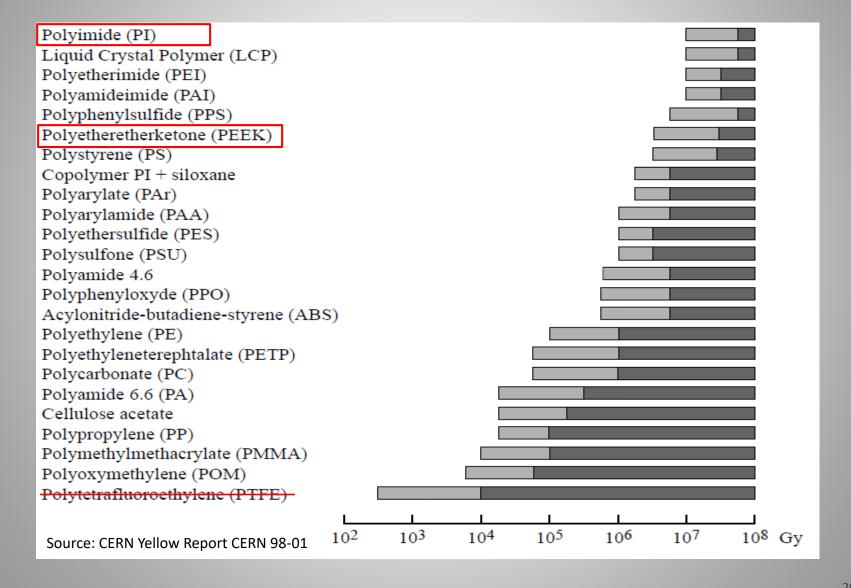
- electric
- thermal
- mechanical
- chemical (including oxidation)
- radiation

Montsinger's rule / Arrhenius equation: $L(T+10 K) \approx 0.5 t(T)$

A temperature rise of 10 K halves the expected live time of an insulation system



Radiation hardness


Radiation hardness is an important criterion for insulation materials used for accelerator applications

Radiation hardness

Coil insulation

Conductors with small cross-section:

straigthening \rightarrow cleaning \rightarrow conductor insulation \rightarrow winding \rightarrow ground insulation

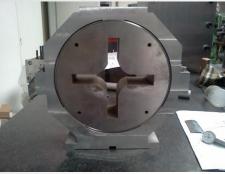
Coil impregnation

heating and evacuating mold and coil (auto-clave or vacuum mold) \rightarrow mixing resing \rightarrow heating and degassing resin \rightarrow injecting resin \rightarrow curing cycle \rightarrow cooling



Recurrent quality issues

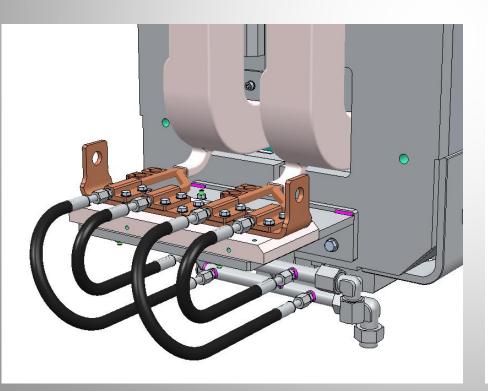
Lack of resin: bubbles, voids, fissures, cracks, poor penetration, poor wetting Electrical HV and discharge insulation test shall reveal 'hidden' defects

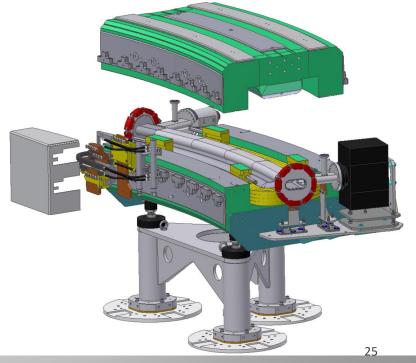


Magnet assembly

By hand....

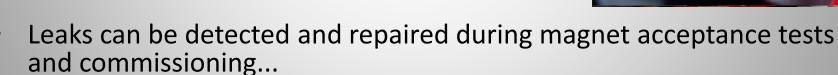
... or with the help of tooling





Auxiliary components

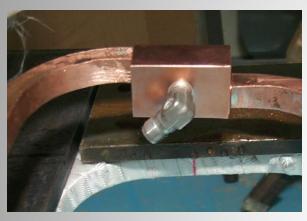
- **Electrical connections**
- **Hydraulic connections**
- Interlock sytem (temperature, pressure, water flow)
- Alignment tragets, adjustment tables and support jacks
- Magnetic measurement devices (pick-up coils, hall probes)

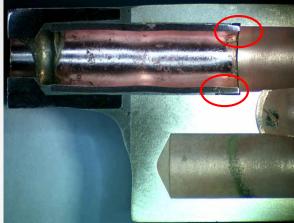


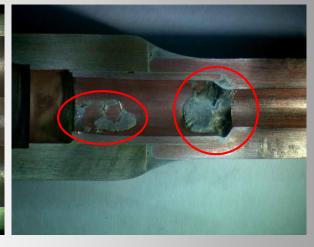
Hydraulic circuits

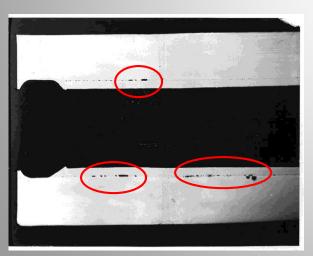
- Water cicuits are most critical items
- 95% of all magnet failures due to water leaks:
 - Corrosion
 - Errosion
 - Poor brazing quality
 - Poor welding quality
 - Failure or aging of joints
 - Inadequate materials
 - Incorrect assembly
 - Radiation damage
 - Inadequate design

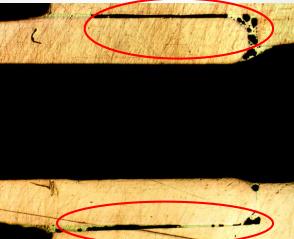
- ... but, many leaks occur only after years in operation
- Often not monitored → magnet damage (short cicuits, corrosion of iron yoke) and collateral damages on other equipment

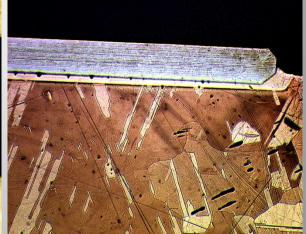


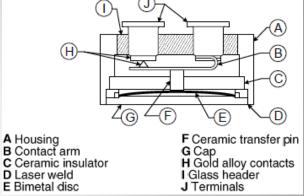



Recurrent quality issues

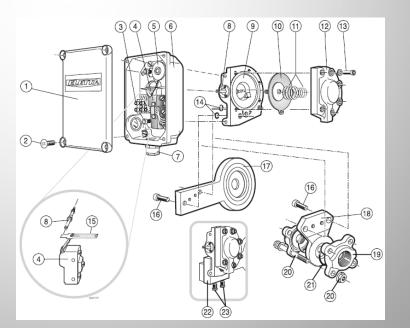



Lack/excess of brazing filler




Interlock Sensors

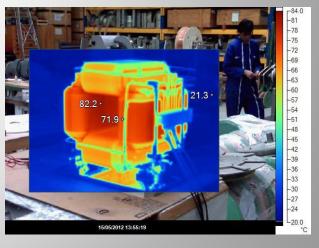
Thermo-switch:



- D Laser weld
- E Bimetal disc

Flow-switch:

QA & Acceptance tests

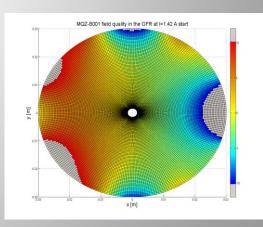


QA is important at each production stage:

- Constant monitoring of critical items from the raw material, to semi-finished parts, to subcomponents to the final product
- Sample testing (destructive or non-destructive) to qualify materials, manufacturing techniques and processes
- Acceptance test can include electrical, hydraulic, mechanical, thermal, and magnetic measurements
- Tests/measurements can be systematically (entire series) or on specific/random samples

More details: see practical work @ CERN


Magnetic measurements



Magnetic measurements are performed to:

- characterize soft (iron) and hard (permanent magnets) ferromagnetic materials
- prove that the electro-magnetic design is correct
- monitor production quality and steer manufacturing
- collect information and data for operation: polarity, transfer function, field uniformity, magnetic axis, dynamic effects (eddy currents) and magnetic cycling effects (hysteresis)
- characterize magnets after repairs or to use in different operational ranges

More details: see practical work @ CERN

Cost estimate

Production specific tooling:

5 to 15 k€/tooling

Material:

Steel sheets: 1.0 - 1.5 € /kg

Copper conductor: 10 to 20 € /kg

Yoke manufacturing:

Dipoles: 6 to 10 € /kg (> 1000 kg)

Quads/Sextupoles: 50 to 80 € /kg (> 200 kg)

Small magnets: up to 300 € /kg

Coil manufacturing:

Dipoles: 30 to 50 € /kg (> 200 kg)

Quads/Sextupoles: 65 to 80 € /kg (> 30 kg)

Small magnets: up to 300 € /kg

Contingency:

10 to 20 %

t t	Magnet type	Dipole
=		D.po.c
Magnet	Number of magnets (incl. spares)	18
Σ -	Total mass/magnet	8330 kg
ts	Design	14 kEuros
Fixed costs	Punching die	12 kEuros
xed	Stacking tool	15 kEuros
Œ \	Winding/molding tool	30 kEuros
`	Yoke mass/magnet	7600 kg
Yoke	Used steel (incl. blends)/magnet	10000 kg
۶ ۰	Yoke manufacturing costs	8 Euros/kg
9	Steel costs	1.5 Euros/kg
	Coil mass/magnet	730 kg
Coil	Coil manufacturing costs	50 Euros/kg
(Cooper costs (incl. insulation)	12 Euros/kg
-	Total order mass	150 Tonnes
	Total fixed costs	71 kEuros
osts	Total Material costs	428 kEuros
Total costs	Total manufacturing costs	1751 kEuros
Tot -	Total magnet costs	2250 kEuros
(Contingency	20 %
	Total overall costs	2700 kEuros

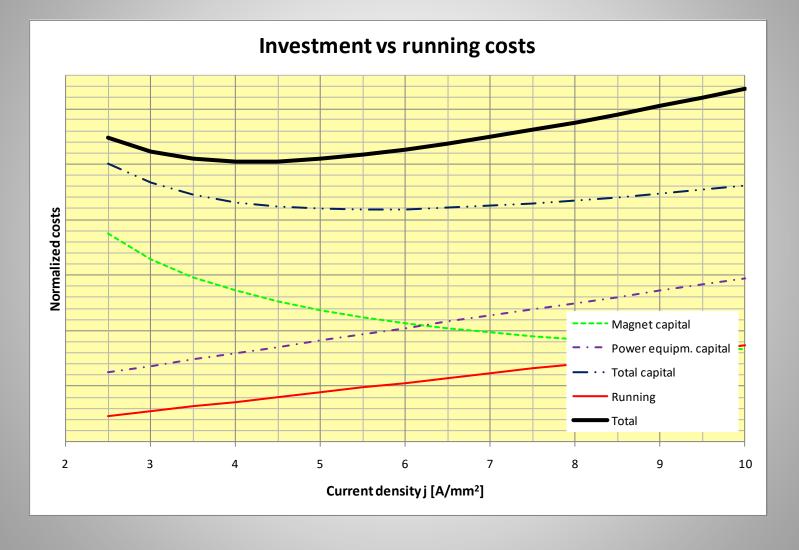
NOT included: magnetic design, supports, cables, water connections, alignment equipment, magnetic measurements, transport, installation

Prices for 2011

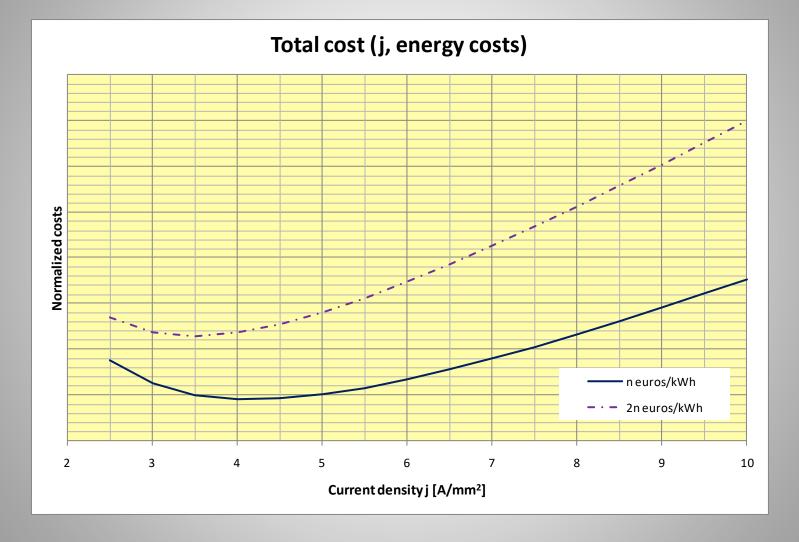
Cost optimization

Focus on economic design!

Design goal: Minimum total costs over projected magnet life time by optimization of capital (investment) costs against running costs (power consumption)


Total costs include:

Cost optimization



Cost optimization

Consider alternatives!

So far we have discussed only normal-conducting, iron-dominated magnets operated in dc... but this might not always be the best choice!

- Permanent magnets (Sm2Co17)
- Hybrid magnets
- Use of high-saturation materials
- Superconducting / super-ferric magnets
- Pulsed operation

EAST AREA ANNUAL POWER CONSUMPTION AFTER CONSOLIDATION

	PULSED MODE		DC MODE	
	Energy in MWh	Price in kCHF	Energy in MWh	Price in kCHF
Total magnet electrical consumption	557	28.3	9 128	464
Water cooling electrical consumption	79	4.0	1 294	66
Air cooling electrical consumption	26	1.3	431	22
Total electricity consumption	662	33.7	10 853	551.8
Total cooling fluid		6.2		101.5
TOTAL energy cost		40 kCHF		653 kCHF

Summary

- Magnet design has a direct impact on manufacturing (and vice versa)
- The yoke shape and dimensional accuracy is essential for magnetic field quality in iron-dominated magnets
- The manufacturing techniques shall be adapted to meet the specified requirements of the finial product in all respects
- Tight QA is the key for success and important at each production stage
 - Sample testing to qualify materials, manufacturing techniques and processes
 - Acceptance tests to verify the correct performance of the final product
 - Magnetic measurements are an essential part of the qualification process
- Cost optimization is an important design aspect, in particular in view of future energy costs