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Outline and motivation

Collaborative European R&D for particle accelerators
Why R&D ?
Why collaborative ?
Why European ?

This is not a lecture, is a seminar that goes through:
90 years of history of particle accelerators
The reasons and limitations of particle accelerator success
The need for innovation
Collaborations and the European perspective
The roadmaps to the future
Some work for you...
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Particle accelerators: 90 years of history!

In 2018 we celebrate the 90 anniversary of the invention

of modern particle accelerators (using periodic acceleration
provided by Radio-Frequency fields)

Rolf Wideroe’s PhD thesis, 1928

Acceleration of potassium ions 1+ with 25kV of RF at 1 MHz — 50 keV acceleration
(“at a cost of four to five hundred marks”...) in a 88 cm long glass tube.
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At the root of iInnovation

What were the ingredients of Rolf Widerde’s innovation?
He was a PhD student (ideas and time available)

He was under pressure to complete his thesis (necessity is the
mother of invention)

He was merging information and experience from different
fields (cross-fertilisation)

He was going all the way down to practical realisation (to
«innovate»).

The Oslo Manual
(OECD/Eurostat, 2005),
defines innovation as “the
implementation of a new
or significantly improved
product or process ...”
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90 years, from infancy to maturity...

1928 - ] 2018

c e clotron: cyclic
Widerde yacceleratiZn Strong focusing End of Large
builds the first T — - (Courant, Hadron
modern (Lawrence) Livingston, Snyder, Collider Run 2

accelerator Christofilos)

Application of WW2 Superconductivity
radar technology to — magnets and

accelerators (Hansen, cavities
Alvarez)

Succession of enabling technologies (technology leaps)
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(GaV)

Constituent Center-of-Mass Energy

Particle Accelerators in 2018

Are we coming to a saturation?

But the field has never been so flourishing...
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Figure 2.1: Total number of current personnel (blue) engaged in accelerator science activities a
research institutes. The number of personnel expected in 3 years is shown in red.

TIARA, Need for Accelerator Scientists report, 2013: 3’700 people
engaged in accelerator science in Europe, expected growth to
4’400 by 2018.

CONSTRUCTION
@ PROJECTS AND
UPGRADES
B OF PARTICLE
ACCELERATORS

As many as 50 ongoing accelerator construction or upgrade
projects listed in the introductory documentation to the
2017 IPAC Conference (13 America, 11 Asia, 26 Europe)




Sustainabllity of large accelerator facilities

Particle physics has been from the -
development of particle acce!~
energies has motivated *
accelerators. And r-

7

Physics:

After the discovery of \ “"//
Standard Model is com|. \ fi
remain open (e.g. dark m .
asymmetry, etc.) and their =

probably related to new unk
but so far no clear predictions
verified by an accelerator.
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«Nature», July 2014
COLLISION COURSE

Particle physicists arcund the world are desgning colliders that are much larger in size
than the Large Hadron Collider at CERN, Europe's particle-physics laboratory
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Accelerators In transition

1. Transition to new more affordable and sustainable technologies for basic science

2. Transition from basic science as main technology driver to a multiple system where
applied science, medicine and industry can drive accelerator development.

3. Transition from a centralised configuration based on large laboratories to a
distributed scheme (project clusters of small and large laboratories and industry)

Limitations related to size, cost, energy. » .‘ ) ’ *:

New ideas,

/ technologies

Basic science

: : Societal
Applied science (photon .
applications
and neutron sources) .
(medicine,
industry,

environment,
etc.)
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From basic science to society

We are moving from a paradigm where basic science is the driving force for the
development of new accelerators to a new paradigm where applied science (photon and
neutron science) and health appear as new driving forces for innovation in accelerator
science. Medicine and materials are becoming the technology drivers of the XXIst century!

There are
more than
30’000
particle
accelerators

Where are
they?

in the world.
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Particle Physics 0,5%
Nuclear Physics, solid state, materials 0,2a0,9%
Biology 5%

Diagnostics/treatment with X-ray or electrons  33%

Radio-isotope production 2%
Proton or ion treatment 0,1%
e N

lon implantation 34%
Cutting and welding with electron beams 16%
Polymerization 7%

Neutron testing 3.5%
Non destructive testing 2,3%




Driving and powering the transition

Drive and favour this process
Develop and test new ideas (innovation)
In a collaborative environment (synergies and cross-fertilization)

Since more than 10 years the European Commission is
supporting collaborative R&D actions for particle
accelerators, in particular

EuCARD2 (European Coordinated Accelerator Research
and Development), 2013-2017, http://eucard2.web.cern.ch/

ARIES (Accelerator Research and Innovation for European
Science and Society), 2017-2021, https://aries.web.cern.ch/
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EU support to particle accelerator R&D

Integrating Activities

Design Studies,
Preparatory Phases

01/2004 —12/2008
5 years, 15.2 M€ EU contribution

EuroNu DS, 2008/12, 4AM€

04/2009 — 03/2013
4 years, 10.0 M€ EU contribution

SLHC-PP, 2008/11, 5.2M€

ILC-HiGrade, 2008/12, 5SM€

e ——————
TIARA-PP, 2011/13, 3.9M€

05/2013 - 04/2017

4 years, 8.0 M€ EU contribution HILUMIERC, 20117154 :Sve

EuroCirCol, 2016/19

05/2017 — 04/2021 EUPRAXIA, 2016/19

4 years, 10.0 M€ EU contribution

oo e

Integrating Activities:
Cross-boundary subjects, not directly followed by large laboratories, with
added value coming from collaboration and sharing of resources

C.)
 ARIES




The ARIES Structure and Themes

WP1

WP3
Management, NA  Industrial and
Dissemination, Ensuring ’ Societal
Sustainability Applications
WP2
Training, Communication TA

and Outreach for
Accelerator Science in
Europe

WP15
Thin Film for
Superconducting
RF Cavities SRF

WP14 JRA

Promoting Innovation —

Magnet Testing ll Material Testing

W4 EU.::III::EIH
Sustainahle Network for
Accelerator
Technolo dats

&Y Accelerators

WP11
Electron and

proton beam
testing

WP1E WP17
Intense, RF Materials for
modulated E-  Extreme Thermal

beams Management

WPB
Accelerator

Performance and

Concepts

Wp12

Radio Frequency
Testing

WP18
Very High
Gradient
Acceleration
Technigues

WiPs
WPp?
. . Advanced
Rings with Ultra- . .
. Diagnostics at
Low Emittance
Accelerators

WP13

Plasma beam
testing

5 Networks on strategic themes:

applications, sustainability, new concepts,
extreme designs and instrumentation

5 Pools of testing facilities to prove new concepts

5 Joint Research Activities for experimental valiadation of selected technologies

Budget (4 years): 15 M€ from the partners, 10 M€ from the European Commission
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The ARIES community

42 partners from 18 European countries (+CERN and ESS).

Connecting the technological core of Europe with its dynamic periphery
and large laboratories with universities, research centres and industries.

INDUSTRY:
Focus, market
experience,
effectiveness

Laboratories and research | Universities and research | Industriesand | Total
institutions hosting large | centres industrial
accelerator infrastructures associations

Based in the high-technology PSI, DESY, GSI, KIT, CEA, UNIGE, JGU, SIEGEN, HZB, FEP, HIT,

European hub: DE, UK, FR, IT, CNRS, SOLEIL, CERN, INFN, IAP, FAU, POLITO, POLIMI, BRUKER, CNI,

CH STFC UOXF, HUD BREVETTI

Based in other EU-15 ESS, ALBA CIEMAT, UT, UU, UL, IST RHP, IBA 9
countries: BE, NL, PT, ES, AT, SE

Based in other EU countries: WIGNER RCP, RTU, UM, COSYLAB 8
HU, LT, MT, PL, RO, SI, SK WUT, INCT, ELI-NP, IEE/SAS

12 22

8
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Multiple dimensions of accelerator R&D

The Economist, October 2013
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Frontier accelerators

Specific cost vs center-of-mass energy of CERN accelerators|
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2 04 Option 2: reduction in cost with new
i ? technologies (plasma colliders? low-cost
b Graph courtesy of P. Lebrun, CERN (and JUAS) superconductivity? pipeline tunnels?)
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What is the overall cost that our (globalised) society

is ready to accept?
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Smaller accelerators?

Synchrotrons: p/q=Bp
Need to maximise magnetic field
Limitations: critical current density Jc for SC magnets

THE SMALLER THE THING YOU WANT TO OBSERVE,
THE BIGGER THE

o
o

\ / / rp— Linear accelerators: W=E¢

it b Need to maximise electric field
Limitations: sparking, field emission, etc.

+
ARIES To edit /remove footer: Insert -> Header & Footer


http://commons.wikimedia.org/wiki/File:Wideroe_linac_en.svg

The dipole field frontier

Central field (T)

20 Dipole Field for Hadron Collider
HE-LHC
18
16 HTS e
14 o=
HL-LHC
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& ' NbTi s LHC
6 =
. Tevatrog— /’*HERA éRHIC
2 (==
0 SPS & Main Ring (resistive)
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Year

R&D towards a 20 T HTS dipole magnet, develop 10 kA
cable

First results: REBCO material in Roebel cables, (rare-
earth based YBCO, high current density but mechanical
issues still to be cleared)

NbTi mature technology but limited to 9T

Nb3Sn technology has seen a great boost in the

past decade (factor 3 in J. w/r to ITER) but is not
yet used in an accelerator — HL-LHC as first step.

High-Temperature Superconductor

technology still in the experimental phase
(Production quantities, homogeneity and cost need to
evolve!) but can be the disruptive technology for
future high-field magnets

EuCARD-2 and ARIES are the European projects to
push HTS magnet technology.

A 20 T HE-LHC dipole
L. Rossi & E. Todesco, (CERN)

NbsSn
b nrs IR
o R
N

40 60 80 100 120 140 160 180 200220 240 260
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HTS magnets — reaching the limit?

Cost of high-field magnets

Mb-TI . Mb.Sn HTS

W

(courtesy of L. Rossi)
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. technology
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0
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Superconducting magnet technology approaching saturation;
increasing costs for minor performance improvements
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HTS allows reducing the size of the
accelerator but not (yet) the cost

Cost of 2 100 TeV pp collider
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—CtUnnEl]  =—laccelerator Ciraral]
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Eacc [MV/m]

"he electric gradient frontier - superconducting
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Coating of Nb with a thin layer of Nb;Sn
(allows operation at larger T, improved
cryogenic efficiency)

Coating of Cu cavites with Nb by HiPIMS
(High Power Impulse Magnetron Sputtering,

EuCARD2 RF: R&D new higher-gradient superconductors: bulk Nb3Sn and
nanometric multilayers of high Tc SC.

Support to the CLIC R&D for high-gradient NC: wakefield
management, RF sources.

(+ Nb sputtering, beam generation, beam diagnostics)

Long-term goal: 60 - 90 MV/m



The electric gradient frontier — normal conducting

® T18-CERN-SLAC Most advanced results by the CLIC study
le05: m IEKEKSAC . atCERN
(some design supported by EUCARD2,

TD18-KEK-KEK
testing supported by ARIES)

TD18-KEK-SLAC
|| ® T24-KEK-KEK
B T24-Tsinghua-KEK
|| ® TD24-KEK-KEK
B TD24r058#4-KEK-KEK
8 TD26cc-CERMN-CERN
B T240pen-SLAC-CERN
1e-06- ® TD24r05K1-KEK-KEK
B TD24r05K2-KEK-KEK

ALLHELERRELERRR I3 2

BDR [1/pulse/m]

k‘ LR

rf structure

CLIC BDR Criteria

3e-07
| B meas.
@ En scaled to 180 ns

b En scaled to 180 ris & BDR = 3x107
80 a0 10H) 110 120
Unloaded Accelerating Gradient [MV/m]

Pulsed systems, characterised by a BreakDown Rate (BDR),
pulses lost because of vacuum arcing in the structure

100 MV/

1e-07¢

100 MV/m gradient can be achieved (and exceeded)

... but the power scales as the square of the gradient!
High gradient means smaller dimensions but higher

ARIES power consumption.




Efficient energy management

Total electricity
consumption (GWh/y)

PS| 125 Example: the ILC needs about 1/3 of a Fukushima-type nuclear reactor.
ESRF 60 Going green? to supply CLIC500 or ILC would be needed 200 large windmills
ISIS 70 (80m diameter, 2.5 MW, 50% efficiency) covering a 100 km distance.
KVI 4
INFN 25
ALBA-CELLS |20
n: per beamline:

GsI 60 B on 10¥s:@ 10eV = 20uW
CERN 1200 RF Systems targets ®—> u’:per beamline
SOLEIL 37 ko 1.3MW 510%-* @ 30MeV/c
ESS 317 2 X

-

l Magnets
DESY 150 B s

o ;_J
Electrical power consumption (MW) for LHC §

and future projects (estimated) = _— Systems
normal Stand-by P Instruments
~3.3MW

LHC 122 89
HL-LHC 141 101 heat —» to river, to air | a
ILC 230
CLIC 500 GeV 235 167 £ | f i the PS| |
ClicalsEay Sei 190 Xample: power 1iIow In the CycC otron

facility (analysed in EuCARD?2)
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Some Initiatives to improve power efficiency

EuCARD-2 WP3: energy recovery from cooling, more efficient RF systems, energy storage, virtual
power plant, low-power transport channels.

Largest impact for reducing energy consumption of accelerators by RF power generation

Increase of 5% efficiency for RF generation
=10 MW less electricity consumed
=>gain 50 GWhiyear (2M€/year)

Development
of high-

efficiency RF
Increase of 5% efficiency of 12 GHz klystrons

=2 10% less electricity consumed
=>gain 100 GWh (4 ME) powe r

sources
Photo: CLIC Xbox 12 GHz facility for
cavities conditioning
LIQuid HYdrogen & | wind or sotar Piant | | Eiectricat Gria | Flow of Flow of
Elecirical Ensrgy GHI
SMES t t -+ -—
Tunable hlgh'gradlent development by KIT for general | PCC: Power Conversion & Control |
purpose: & |
permanent magnet hybrid SMES/LH2 — v Lsu:
[M.5ander, R.Gehring, KIT] Electrachemion | [ LIOHYSMES-
q u a d ru pOIeS . o oo E::;LIM wctralyser Storage Unit
* rge power ia
= capaclty to ~70 GWh ::.f.:"mf;".:’;.m ar
SMESto ~10G) Synthesis & Utilization of H2-rich
+  synergy with existing cryogenics Compounds (#.g. Methane)

+
ARIES Energy storage systems for accelerators



Material challenges for future accelerators

Future machines are set to reach unprecedented Energy and Energy Density.

No existing material can meet extreme requirements for Beam Interacting Devices (Collimators,
Absorbers, Windows ...) as to robustness and performance.

New materials are being developed to face such extreme challenges, namely Metal- and
Ceramic-Matrix Composites with Diamond or Graphite reinforcements.

Molybdenum Carbide - Graphite composite (MoGr) is the most promising candidate material
with outstanding thermo-physical properties.

BREVETT) BIZZ o

MoGr Key Properties

Density [g/cm3] 2.5
Melting Point T, [°C] ~2500
CTE [10°6 K] ~1
Thermal Conductivity [W/mK] 770

Electrical Conductivity [MS/m] ~1

= Understanding of unexplored conditions call for state-of-the-art numerical simulations
completemented by advanced tests in dedicated facilities

ARIES Courtesy S. Redaelli




New acceleration techniques using lasers and plasmas

Accelerating field of today’s RF cavities or microwave technology is limited to <100 MV/m
Several tens of kilometers for future linear colliders

Plasma can sustain up to three orders of magnitude much higher gradient
SLAC (2007): electron energy doubled from 42GeV to 85 GeV over 0.8 m = 52GV/m gradient

RF Cavity Plasma Cavity

- —J

e
| m=> 100 MeV Gain Imm => 100 MeV
Electric field < 100 MV/m Electric field = 100 GV/m

V. Malka e o, Science 298, 1596 {2002)

An essential part of the EUCARD-2 and ARIES programmes
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Two directions

Lasers can produce huge transverse electric fields (TV/m!)

Can we convert the transverse fields into longitudinal and
use them for acceleration?

-~ e

(1) Micro/Nano- (2) Plasma
Accelerators Accelerators

Send THz Laser into Dielectric  yge g plasma to convert the
Waveguide (Micro-Accelerator) transverse electrical field of the
- laser (or the space charge
force of a beam driver) into a
longitudinal electrical field in
the plasma.




Accelerator on a chip

“Accelerator on a Chip” grant from Gordon & Betty Moore
foundation for work by/at Stanford, SLAC, University
Erlangen, DESY, University Hamburg, PSI, EPFL, University
Darmstadt, CST.

i
RACHIP

Accelerator on a Chip International Program

GORDON AND BETTY

MOORE

FOUNDATION

Courtesy R. Assmann
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Laser Plasma-Acceleration (Internal Injection)

Laser Pulse (200 TW, ~30fs,E___ ~ TV/m)
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Plasma electrons
(plasma cell, ~10™ cm?)
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Laser Plasma-Acceleration (Internal Injection)

Bubble

Laser Puls
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Plasma electrons
(plasma cell, ~10" cm?)
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Laser Plasma-Acceleration (Internal Injection)

Bubble (€, ~ 100 GVv/m)

Trapped electron beam

Laser Pulse (E.  ~ TV/m)

transv
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Plasma electrons
(plasma cell, ~10™ cm?)
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Laser Plasma-Acceleration (Internal Injection)

Bubble (€, ~ 100 GVv/m)

Trapped electron beam
Laser Pulse (E

transv
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~35 um Plasma electrons
(120 fs) (plasma cell, ~10" cm?)
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| aser Plasma Accelerators for Electron Beams

Plasma channel

Laser pulse
200 TW -1 PW

\

Electron




Towards a plasma-based linear collider?

= Based on 10 GeV modules (n~10'7 cm-3)
= Quasi-linear wake: e- and e+, wake control
= Staging & coupling modules

Lagq,

= Requires high rep-rate (10’s kHz)

= Requires development of high ?:s
average power lasers (100’s kW) J

W.P. Leemans & E. Esarey,
Physics Today, March 2009

Courtesy B. Cros
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Main challenges

Beam acceleration with small energy spread
Preservation of small e-beam emittance

Concepts for positron acceleration with high
brightness

High efficiency of acceleration for e-and e*
Staging required to reach very high energies
Repetition rates averaging 10s of kHz

Beam stability and reproducibility

2017 - 2022 2022 - 2027

e- sources: e- acceleration :
optimization Optimization of all

2027 - 2032 2032-2037

20 Ys

arameters
p Advanced
15Ys L
. inear
e+ sources: e+ acceleration: — -
Conceptdevt demonstration Collider

Reliable CDR

staged
accelaration,

10 GeV

module

——————

Driver development

and
TDR

Accelerating structures

X10
Improved
beam quality
at higher
energy

Beam transport
and coupling

5Ys

Address specific challenges :

Injector, Staging =
Accelerator Reliability =
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The European Network for Novel Accelerators

A wide European Network towards novel accelerators, supported by EUCARD2 and ARIES
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The future of accelerators ?

Future goals

100 TeV : - :
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Accelerators for medicine and industry

>30000 accelerators in use w(orld-wid% Treating cancer
44% for radiotherapy / Making better semi-conductors

41% for ion implantation

“Curing” materials:
/s‘rerilisa‘rion; carbon dating;

9% for industrial applications treating flue gases or water; etfc

4% low energy research <«—— Microanalysis of materials, mass

; i ] spectroscopy, PIXE, etfc
1% medical isotope production <pcr g SPECT medical imaging

<1% research | 3 i

WP4 Accelerator Applications: Workshops on

 Modern hadron therapy gantry developments

e Accelerators for accelerator driven systems

* Accelerator based neutron production

* Electron beams for industrial and environmental a8
applications o

* Compact/cheap muon sources

e Copnpact accelerators for radioisotope production
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Accelerator production of radioisotopes

e Used for imaging:

- Positron Emission Tomography (PET)
- Single Particle Emission Computed Tomography (SPECT)
e Therapy:

- brachytherapy [

Commonly used for PET:
18F — 2*511 keV photons, 2 hour half-life
Produced in large cyclotron-based production centres youst
and shipped overnight to hospitals
Interest in compact accelerators that can produce the
isotopes directly in the hospitals:
- Shorter supply chain, easier availability
- Allows using shorter lifetime isotopes that can
provide better resolution:

- 11C: ~20 min

- 13N: ~10 min

- 150: 72 min
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Compact accelerators for radioisotope production

AMIT superconducting cyclotron for
isotope production in hospitals
(CIEMAT, Spain)

Radio Frequency Quadrupole linac system
for isotope production in hospitals (CERN)
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Environmental applications of accelerators

Low-energy electrons can break molecular bounds and be used for:

- Flue gas treatment (cleaning of SOx and NOx from smokes of fossil fuel
power plants)

- Waste water and sewage treatment

A recent example:

Workshop organized by ARIES on
ship exhaust cleaning by an electron
beam (100-300 keV).

Maritime transport is nowadays the
largest contributor to air pollution
and strict limitations are going to be
introduced over the next years.
ARIES plans to start the
development of an accelerator-
based system that could be used to
retrofit existing ship diesel engines.
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The goal: building bridges across communities

Convergence between
synchrotron light ring facilities and
electron rings for particle physics
pioneered by EuUCARD-2 WP6.

The goal is to expand this
collaboration in the next
Integrating Activity
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EuroNNAC2 (WP7) is a global collaboration with precise
objectives, as defined in the EUPRAXIA Design Study
proposal.

Build
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At the roots of Innovation

We need innovative ideas, but what are the ingredients of
innovation? Remember the first slide on Widerée’s invention!

1. Merge inputs from different science and technology fields (look
around you!)

2. Challenge the established traditions (but respect experience!)

3. Take risks (but foresee mitigations!)

An innovation is the implementation of a new or significantly improved
product (good or service), or process, a new marketing method, or a new

organizational method. (from the Oslo Manual, Guidelines for collecting and interpreting
innovation data, OECD, 2005)

Innovation is the process of translating an idea or invention into something (object
or service) that creates value.
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http://www.businessdictionary.com/definition/invention.html
http://www.businessdictionary.com/definition/final-good-service.html
http://www.businessdictionary.com/definition/create.html
http://www.businessdictionary.com/definition/value.html

The final word...

Particle accelerators are a vibrant and
growing field, just starting the transition
from basic science to applied science and
to wider societal applications.

But to drive this transition and to push
further the frontiers of accelerators we
need fresh ideas, technology jumps, and
(why not!), some change in paradigm...

The secret for the success are novel ideas
by young people developed in a
collaborative environment, jumping across
borders between different scientific fields.

To achieve this we need multinational
supporting bodies like the European
scientific programmes, but above all...
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Thank you for your attention

maurizio.vretenar@cern.ch s




