# JUAS 2016 – RF Exam

 $\mu = \mu_0 \mu_r$  $\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/(Am)}$  $\mathcal{E} = \mathcal{E}_0 \mathcal{E}_r$  $\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ As/(Vm)}$  $c_0 = 3 \cdot 10^8 \,\mathrm{m/s}$ 

Name:

Points: \_\_\_\_\_ of 20 (23 with bonus points)

Utilities: JUAS RF Course 2016 lecture script, personal notes, pocket calculator, ruler, compass, and your brain! (No cell- or smartphone, no iPad, laptop, or wireless devices, no text books or any other tools)

Please compute and write your results clear and readable, if appropriate on a separate sheet of paper. Any unreadable parts are considered as wrong.

### 1. "Pillbox" Cavity

A scaled model of a simple cylindrical "pillbox" cavity is characterized in the RF laboratory (the beam-pipe ports are neglected). The cavity is made out of stainless steel ( $\sigma_{ss} = 2 \cdot 10^6$  S/m,  $\mu = \mu_0$ ), and its unloaded E010-mode eigen-frequency measures 600 MHz, with a 3-dB bandwidth of 70 kHz.

- a) What is the Q-value of the cavity?
- b) What are the physical dimensions, radius (or diameter) and height, of the cylindrical resonator?
- c) Sketch the *RLC* equivalent parallel circuit, and determine the values of the  $E_{010}$ -mode. (Therefore the "geometry factor", also known as "characteristic impedance" R/Q, needs to be calculated, based on the exact formula! Why the approximate expression cannot be applied?) (2 points)
- d) The E<sub>010</sub>-mode is the fundamental eigen-mode of the pillbox cavity,
  - longitudinal field components. and its magnetic field has only (½ point) transverse

(Mark the correct answer: )

Assuming a ratio height-to-diameter  $\cong$  0.9, another resonance mode is observed in close proximity of the E<sub>010</sub> frequency!

- e) Which type of higher order mode (HOM) is measured close to 600 MHz? (½ point) (Hint: The "Mode chart of a Pillbox cavity – Version 1" is a helpful tool!)
  - E<sub>011</sub> H<sub>111</sub> H<sub>112</sub> E<sub>010</sub> E<sub>110</sub>

## (8 points)

(1½ points)

(2 points)

2a h

f) What dimension needs to be changed, to keep the fundamental mode at 600 MHz, while shifting this higher order mode to higher frequencies, and staying well separated to other HOMs? (½ point)

> Increase the diameter increase the height decrease the diameter decrease the height

Bonus points: (the full score can be reached without examining these questions) (1 points) The final version of the resonator is made of of copper, ( $\sigma_{cu}$  = 58  $\cdot$  10<sup>6</sup> S/m), with both dimensions reduced by a factor 10. (Hint: Apply the "scaling laws")

| g) | What is the frequency of the fundamental mode? | (¼ point) |
|----|------------------------------------------------|-----------|
|----|------------------------------------------------|-----------|

h) What values for Q-factor and shunt impedance can be expected? (¾ point)

### 2. S-Parameters

Match the ideal S-parameters in matrix form to the corresponding components.

$$\boldsymbol{S}_{\boldsymbol{A}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \boldsymbol{S}_{\boldsymbol{B}} = \begin{bmatrix} 0 & j0.1 & 0.995 & 0 \\ j0.1 & 0 & 0 & 0.995 \\ 0.995 & 0 & 0 & j0.1 \\ 0 & 0.995 & j0.1 & 0 \end{bmatrix} \quad \boldsymbol{S}_{\boldsymbol{C}} = \begin{bmatrix} 0 & -j \\ -j & 0 \end{bmatrix} \quad \boldsymbol{S}_{\boldsymbol{D}} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

a) Assign the S-matrices  $(S_A \dots S_D)$  to the components:

| component | dB directional coupler | transmission line,<br>electrical length = $\lambda/$ | circulator | isolator |
|-----------|------------------------|------------------------------------------------------|------------|----------|
| S-matrix  |                        |                                                      |            |          |

b) Fill the missing dB and  $\lambda$  information (...).

(1 point)

(1 point)

### (2 points)

### 3. Resonator analysis in the complex plane (3 points)

A 500 MHz resonator is critically coupled ( $Q_0 = Q_{ext}$ ) by means of a coupling loop to a RF generator of  $Z_g = 50 \Omega$  source impedance. The coupling parameter of the loop coupler is k = 16 (Hint: See the "Equivalent Circuit" on page 50 of the course material).

- a) What is the value of the shunt impedance  $R_p$  of the resonator? (1 point)
- b) With help of compass and ruler, sketch the locus *Z*<sub>resonator</sub>(*f*) of the unloaded resonator in the complex Z-plane. (On the separate sheet provided at the end.)
  - Indicated upper and lower 3-dB points, as well as the points for resonant frequency and frequency limits ( $f = 0, f \rightarrow \infty$ ). (1 point)
  - Use the ruler to estimate the value of the impedance Z at  $f_{3dB}$ . (½ point)
- c) Through a second, very weakly coupled loop the 3-dB bandwidth of the resonator at critical coupling was measured as 1 MHz. Determine  $Q_0$  of the (unloaded) resonator? ( $\frac{1}{2}$  point)

### 4. Multiple choice

Tick the correct answer(s) like this:  $\bigotimes$ .

- 1. A sinusoidal RF signal is measured with an oscilloscope, having and internal 50  $\Omega$  termination. The cursors display a peak-to-peak voltage of 500 mV. What is the signal power in dBm?
  - **-1 dBm**
  - -2 dBm
  - +4 dBm

# 2. For a "H"(or "TE") mode, the following is true: (½ point) Its magnetic field has only transverse components Its magnetic field has transverse and longitudinal components Its electric field has only transverse components 3. Changing the height h of a cylindrical cavity oscillating on the E<sub>010</sub>-mode will: (½ point) change its resonant frequency change its quality factor change its R/Q

- 4. For which material an AC current flows closest to its surface (assume  $\mu_r = 1$ )? (½ point)
  - Aluminium ( $\sigma = 35 \cdot 10^6$  S/m)
  - $\circ$  Silver ( $\sigma$  = 63  $\cdot$  10<sup>6</sup> S/m)
  - Copper ( $\sigma = 58 \cdot 10^6$  S/m)

### (4 points)

(½ point)

- 5. What is the limiting factor when using air-filled coaxial lines for transmitting signals of high frequencies?  $(\frac{1}{2} point)$ 
  - There is no frequency limit
  - The propagation of higher order (waveguide) modes
  - Signal leakage (escaping electrons)
- 6. In a RF accelerating cavity, the transit time factor expresses:
  - The time it takes for the energy to transfer from the electric field to the magnetic field
  - The time variation of the accelerating field during the bunch passage
  - The time it takes the bunch to travel through the cavity
- 7. Which coaxial cable has the highest propagation velocity (for TEM)? (½ point)
  - Filled with Teflon (PTFE) dielectric
  - Filled with Polyethylene (PE) dielectric
  - Filled with air dielectric
- 8. A gridded tube (triode) operates on the principle of
  - Electron density modulation
  - Electron temperature modulation
  - Electron velocity modulation

### 5. Smith chart

a) Indicate points  $P_1...P_5$  in the Smith chart, assuming a reference impedance  $Z_0 = 50 \Omega$ . From the Smith chart, determine the missing Z or  $\Gamma$ , and complete the table. (1½ points) (Use the provided Smith chart)

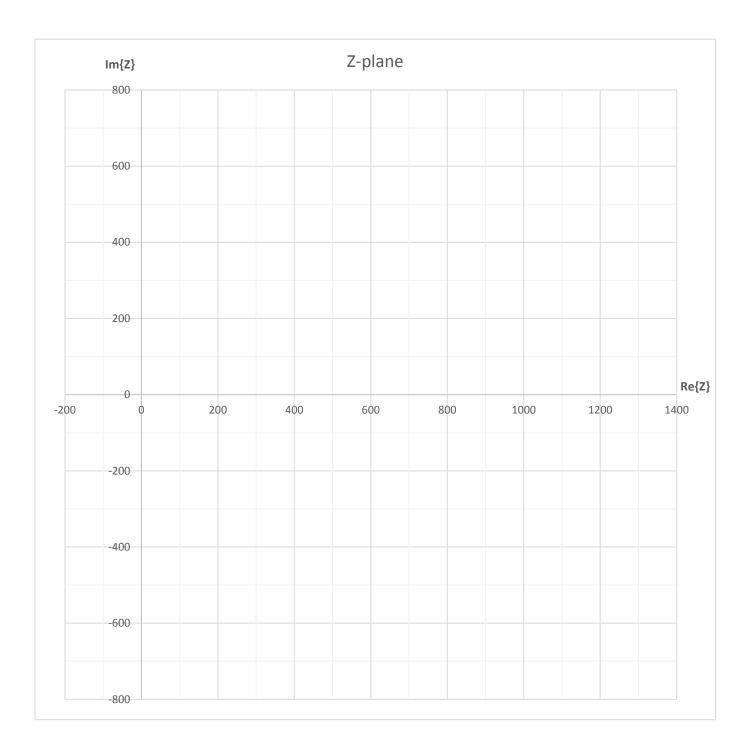
| Point no. | <b>P</b> <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|-----------|-----------------------|----------------|----------------|----------------|----------------|
| Ζ / Ω     | 8                     |                | 0              |                | 100 + j 100    |
| г         |                       | 0              |                | 0.7∠-62°       |                |

- b) Indicate  $|\Gamma| = 0.5$  in the Smith chart. (Hint: It is not a point) (½ point)
- c) Point  $P_5$  represents a complex load impedance  $Z_{load}$ .
  - i. Indicate the normalized *z*<sub>load</sub> in the Smith chart, and look up
    - the reflection coefficient,
    - the (voltage) standing wave ratio,  $(\frac{1}{2} point)$
    - the return loss (in dB),  $(\frac{1}{2} point)$
    - the reflection loss (in dB)  $(\frac{1}{2} point)$ •

again assuming a reference impedance of  $Z_0 = 50 \Omega$ .

(Hint: Use a ruler to determine  $|\Gamma|$  of  $z_{load}$ , and compare it with value found at the "radially scaled parameters" Smith chart ruler at the bottom.)

### (6 points)


(½ point)

### $(\frac{1}{2} point)$

(½ point)

### **Bonus points:** (the full score can be reached without examining these questions) (2 points)

- ii. With help of the Smith chart, design a passive compensation network to match  $Z_{load}$  of point **P**<sub>5</sub> for f = 400 MHz to a 50  $\Omega$  source impedance of the RF generator.
  - Define the locus path of two circuit elements to route from *z*<sub>load</sub> to the normalized reference impedance. (1 point) (Hint: Remember the Dellsperger Smith Chart computer exercises, and the Smith chart navigation examples pages 178-180. Only 2 circuit elements are required. Different solutions are possible.)
  - Determine the values of the circuit elements, and sketch the circuit of the matching network. (1 points)

