

Superconductivity Practical Days at CERN

1st and 2nd March 2018

Jerome Fleiter and Amalia Ballarino

JUAS 2018 12/02/2018

- Definition
- Main properties of Superconductors
- Superconductivity Applications
- Practical work
- Agenda of the days

What will you do?

Measure electrical, magnetic and thermal characteristics of superconducting samples with the purpose of understanding the fundamental characteristics of superconductors

Superconductivity

"Superconductivity is a phenomenon occurring in certain materials at very low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect).

from Wikipedia

Superconductor

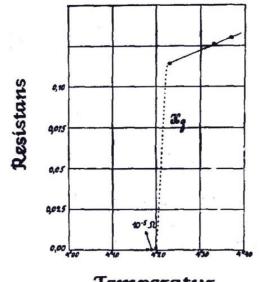
A conductor that exhibit superconducting properties. It is an assembly of low resistive metal and superconducting material.

Cryogenics

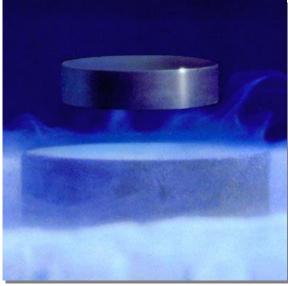
Cryogenic: for Greek "kryos", which means cold or freezing, and "genes" meaning born or produced.

"In physics, cryogenics is the study of the production and the behaviour of materials at very low temperature (<-150-180°C)"

from Wikipedia


Main Properties of Superconductors

CERN



Zero resistance

Exclusion of magnetic field Perfect diamagnets

Temperatur K. Onne's measurement on mercury (1911)

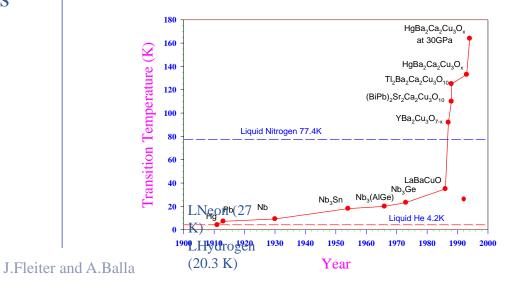
Perfect conductors

's measurement on mercury (1911) Discovered by Meissner and Oschenfeld (1933) Perfect conductivity + perfect diamagnetism = superconductors

Various Superconducting Materials

Low Temperature Superconductors (LTS)T_c<39K

Pure metals

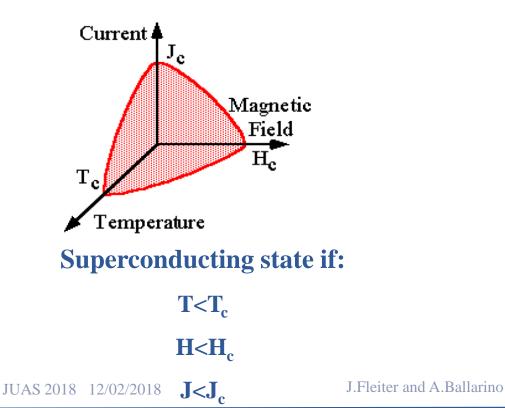

material	T_c, K	$H_c, {\sf Oe}$	year
AI	1.2	105	1933
In	3.4	280	
Sn	3.7	305	
Pb	7.2	803	1913
Nb	9.2	2060	1930

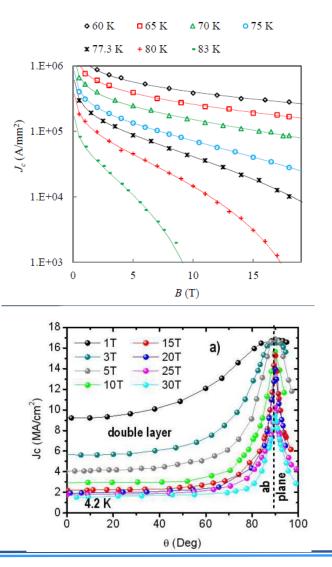
Alloys and Intermetallic compounds

	Τс (К)	Bc(T)
NbTi	10	15
V₃Ga	14.8	2.1
NbN	15.7	1.5
V₃Si	16.9	2.35
Nb₃Sn	18	24.3
Nb ₃ Al	18.7	32.4
Nb ₃ (AlGe)	20.7	44
Nb₃Ge	23.2	38

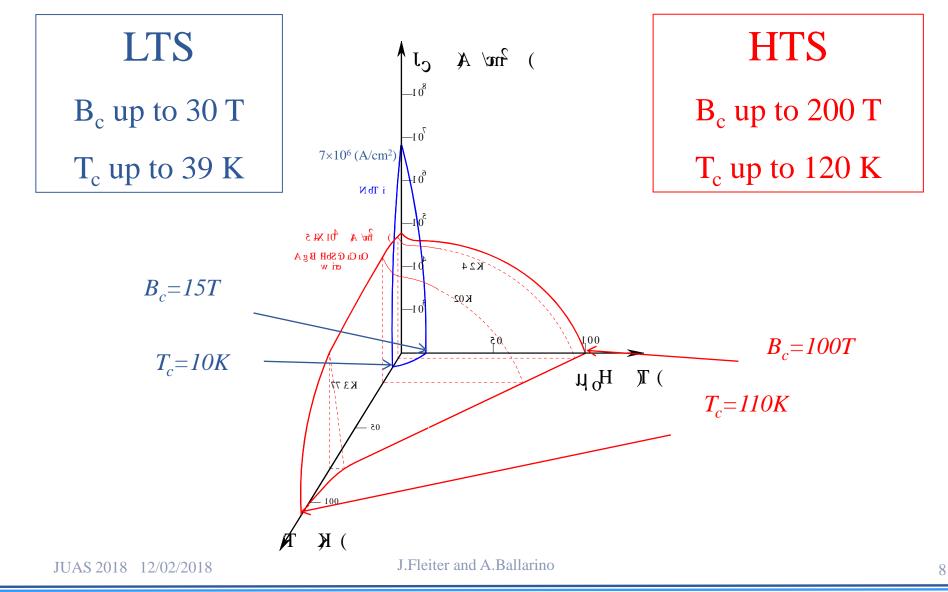
High Temperature Superconductors (HTS) T_c>39K Cuprates

	Т _с (К)
Y(123)	93
Bi(2212)	92
Bi(2223)	110
TI(1223)	122
Hg(1223)	133
	Bi(2212) Bi(2223) TI(1223)

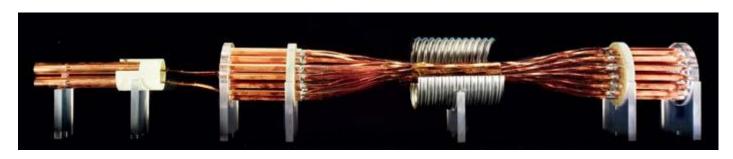

JUAS 2018 12/02/2


Phase Diagram of Superconductors

Main parameters of superconductors for magnets applications

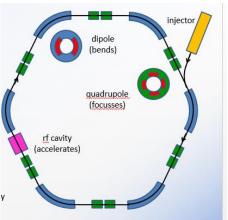

- Critical temperature (T_c)
- Critical field (H_c)
- Critical current density (J_c)

Phase Diagram of HTS versus LTS

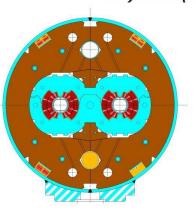


Superconductivity Applications

- CERN
- Generate high DC field: (MRI, NMR, particle Physics)
- Current limiters
- Electronics, detectors (SQUIDS)
- Power transmission
- Magnetic levitation (Maglev)
- Current leads
- **RF cavities**


Superconducting devices in LHC

Magnets


- More details in next slides
- LHC ring magnets (Nb-Ti): Rutherford cables
 - 1232 main dipoles: 8.3 T x 15 m
 - **392** Main quadrupoles **223** T/m (7 T) x 4 m
 - Zoo of **7600 others (cable or wire)**
- LHC detector magnets (Nb-Ti): Rutherford cables
 - ATLAS: Toroid **4 T**, **25 m x20 m**
 - CMS solenoid: 4 T, **12 mx15 m**

Other devices

- LHC current leads (HTS BSCCO): stack of tapes
 - ~1000, rated for I ∈[0.6,13 kA]
- **RF cavities** (N_b coating)
- Superconductivity is a key technology of LHC

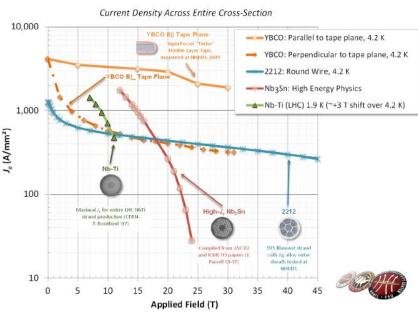
Scheme from M.N. Wilson

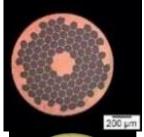
Superconducting strands (for magnets)

Relevant parameters for accelerator magnets (Nb-Ti, Nb₃Sn..)

- Large overall current density ~400–500 A/mm²
- Cu fraction of about 50% with RRR >100
- Small filaments to reduce magnetization and flux jumps
- Twist of the filaments
- Sufficient mechanical properties (axial and transverse)
- Long piece length (~1 km)
- Good uniformity of electrical performances

Practical superconductors

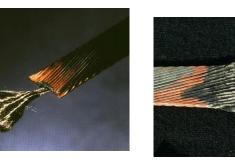

- Nb-Ti
- Nb₃Sn
- **REBCO**
- BSCCO

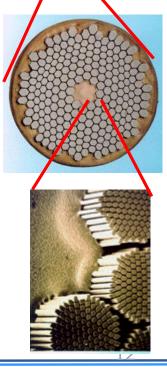

$$B_{0max} = 9 T$$

 $B_{0max} = 16 T$
 $B_{0max} > 30T$

B_{0max}> **30T**

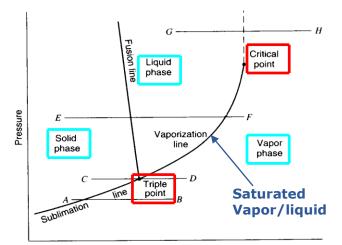
J.Fleiter and A.Ballarino




CÉRN

Rutherford cables

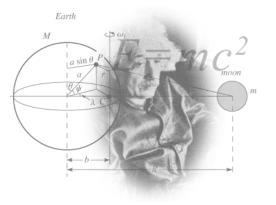
- Why cables:
 - Needs for High current
 - Reduce piece length of conductor (~1 km)
 - Improve stability
 - Make easier the winding
- The use of large current cables implies also
 - to deal with dynamic effects
 - Less freedom for magnetic optimization
- Advantages of Rutherford cables (vs. other cables)
 - Good packing factor
 - Transposition of strands
 - Good control of dimensions (+/- 6 µm on thickness)
 - Good windability



Superconductors needs Cryogens

LTS => Liquid Helium HTS =>Liquid Helium or Liquid Nitrogen

	Triple point	Boiling point	Critical Point
	(K)	(1 atm) (K)	(K)
Methane	90.7	111.6	190.5
Oxygen	54.4	90.2	154.6
Argon	83.8	87.3	150.9
Nitrogen	63.1	77.3	126.2
Neon	24.6	27.1	44.4
Hydrogen	13.8	20.4	33.2
Helium	λ -point	4.2	5.2


CERN

Temperature

In accelerator LTS are operated in liquid Helium bath

Superconductivity Practical Days at CERN

We will work with **cryogenics and superconductivity** to understand and verify the unique properties of superconductors

YBCO 123 bulk BSCCO 2223 tape SmCo, NeFeB magnets Liquid nitrogen

Levitation Flux pinning Zero resistance Jc,Tc,Hc

Experiments will be performed with HTS superconductors

- 1.Levitation experiment
- 2. Critical temperature experiment
- 3.Zero resistance experiment
- 4.Critical current experiment

JUAS 2018 12/02/2018

. . . .

. . .

Superconductors you will use for the experiments at CERN:

0.2

- 78% of atmosphere
- Boiling point (1 atm): 77 K (-196 °C)

YBCO 123 Melt Textured Bulk .Tc= 93 K

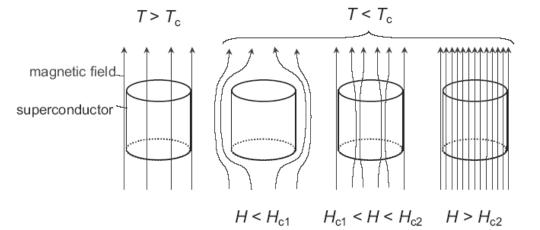
- Colorless, odorless, non-toxic
 - 4 mm **Dealing with LN2: safety first (skin burn, splashing..)**

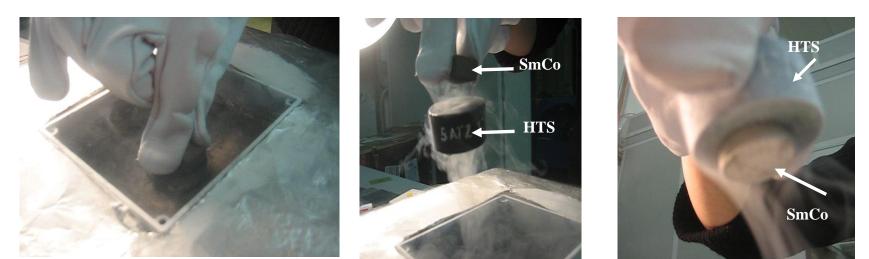
Superconductivity

BSCCO 2223 Tape Tc= 110 K

HTS

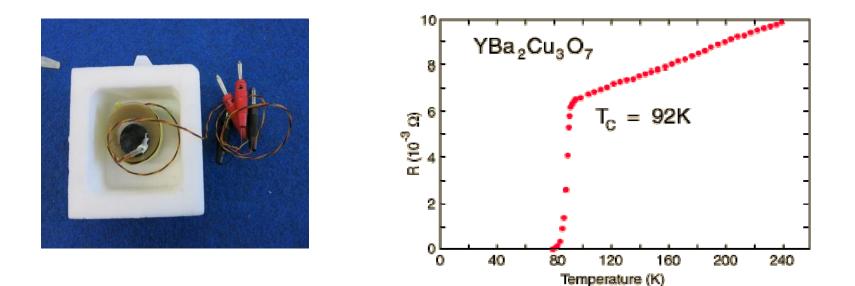
Liquid nitrogen


Cryogenics



Levitation experiment

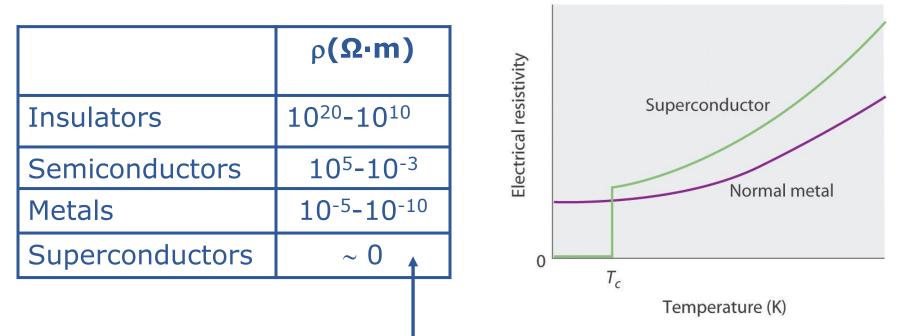
- Understand the Meissner effect and flux pinning
- Appreciate the intensity of the levitation force !



JUAS 2018 12/02/2018

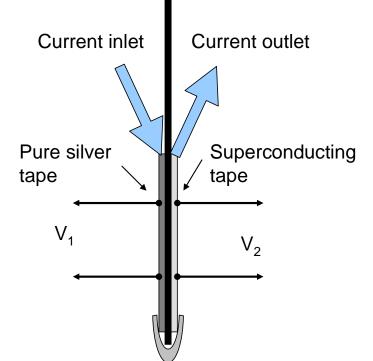
Critical temperature experiment

Measurement of critical temperature by using the Meissner effect.


The critical temperature is defined as the temperature measured on the superconductor when the permanent magnet levitating on it comes to complete rest on the superconductor's surface.

JUAS 2018 12/02/2018

Zero resistance measurements

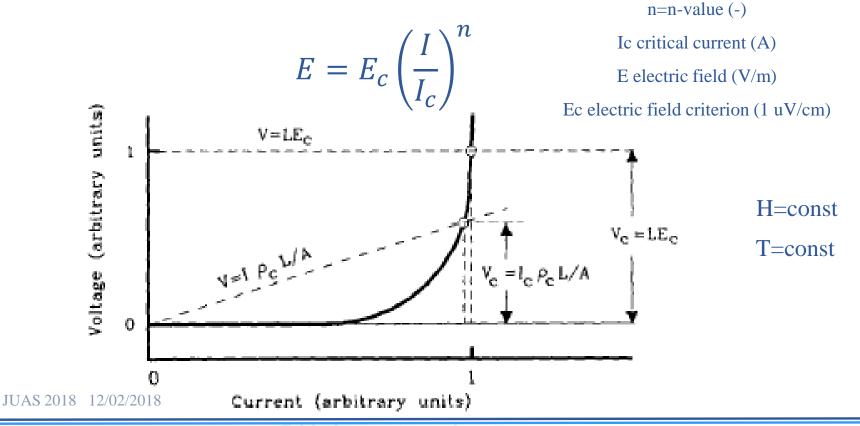

Experiments were performed on the current decaying in a superconducting loop ($\rho < 10^{-26} \,\Omega \cdot m$).

True only in the superconducting state

Zero DC resistance experiment

A superconducting tape and a pure silver tape are connected in series, Measure the voltages (resistances) as the specimens are inserted into liquid nitrogen and cooled to 77 K.

 $\begin{array}{l} \rho_{Ag}(293 \ K) \sim 1.46 \cdot 10^{-6} \ \Omega \cdot m \\ \rho_{Ag}(77 \ K) \ \sim 0.2 \cdot \ \rho_{Ag}(293 \ K) \end{array}$


A <u>see-through glass walled dewar</u> is used for the LN_2 .

HTS:BSCCO 2223 multi-filamentary tape in silver alloy matrix.

JUAS 2018 12/02/2018

DC Critical current experiment

Critical current (I_c): current at which a specified electric field criterion E_c , or resistivity criterion ρ_c is achieved in the specimen. Losses through a Type II superconductors (H_{c1} <H<H_{c2}) depend on the sample geometry and on the vortex pinning.

CERN

Program and Organization (1/2)

- Up to 12 participants per day
- Hands-on practical work in CERN laboratories
- Guided by experts
- When ? On the 1st and 2nd of March
- Where ? In the Superconductor Laboratory, Building 163

Main entrance

Program and Organization (2/2)

Practical work in building 163

Visit of Superconductor Laboratory, Building 163

- **Test stations** for the measurement of:
 - **Critical current** of superconductors (strands and cables) at liquid He temperature (1.9 K and 4.2 K, up to 15 T and up to 32-70 kA);
 - **Magnetic properties** of superconductors (magnetization curves) at variable temperatures and fields (VSM);
 - Electrical Resistivity as function of temperature;
- Cabling machine for accelerator Rutherford cables;

Visit of Laboratory, SM 18 :Test stations for magnets

We are looking forward to

working with you at CERN !

JUAS 2018 12/02/2018

