Introduction to RF: selected exercises

Andrea Mostacci
University of Rome "La Sapienza" and INFN, Italy

Transverse Eectric Mägnetic mode
Exercise
Look for a Transverse Electric Magnetic mode $E_{z}=H_{z}=0$
Hint 1 Start from a TM mode (vector potential A) $H_{z}=0$

$$
\nabla=\nabla_{t}+\hat{z} \frac{\partial}{\partial z} \quad \nabla \cdot \vec{A}=\cdots
$$

Hint $2 \quad \vec{E}_{A}=\ldots$

Exercise

Look for a Transverse Electric Magnetic mode $E_{z}=H_{z}=0$
Hint 1 Start from a TM mode (vector potential A) $\quad H_{z}=0$

$$
\nabla=\nabla_{t}+\hat{z} \frac{\partial}{\partial z} \quad \nabla \cdot \vec{A}=\cdots=-j \beta A_{z} e^{-j \beta z}
$$

Hint 2

$$
\begin{aligned}
\vec{E}_{A}=\cdots= & -j \omega \hat{z} A_{z} e^{-j \beta z}-\frac{j}{\omega \mu \epsilon}\left[\nabla_{t}+\hat{z} \frac{\partial}{\partial z}\right](-j \beta) A_{z} e^{-j \beta z}= \\
= & -\frac{j}{\omega \mu \epsilon}\left[\omega^{2} \mu \epsilon-\beta\right] A_{z} e^{-j \beta z} \hat{z}-\frac{\beta}{\omega \mu \epsilon} \nabla_{t} A_{z} e^{-j \beta z} \\
& \text { if } \beta^{2}=\omega^{2} \mu \epsilon=k^{2} \quad \Longrightarrow \quad e_{z}=0
\end{aligned}
$$

Solution For a given $A_{z} \quad \vec{H}=\frac{1}{\mu} \nabla_{t} \times\left(\hat{z} A_{z}\right) e^{-j \omega \sqrt{\mu \epsilon} z} \quad \vec{E}=-\frac{1}{\sqrt{\mu \epsilon}} \nabla_{t} A_{z} e^{-j \omega \sqrt{\mu \epsilon} z}$

1. $\nabla_{t}^{2} A_{z}=-\left(k^{2}-\beta^{2}\right) A_{z}=0 \quad$ The transverse \mathbf{E} field is "electrostatic"
2. As plane waves: $\ldots e^{-j \omega \sqrt{\mu \epsilon} z} \quad \Longrightarrow \quad v_{p}=1 / \sqrt{\mu \epsilon}$

$$
\vec{h}_{t}=\sqrt{\frac{\epsilon}{\mu}} \hat{z} \times \vec{e}_{t}=\frac{1}{Z_{T E M}} \hat{z} \times \vec{e}_{t}
$$

Single mode operation of rectansular vaveguide

Exercise
Find the smallest ratio \mathbf{a} / b allowing the largest

1. bandwidth of single mode operation
2. State the largest bandwidth of single mode operation
3. Defining the single mode bandwidth as

$$
1.25\left(f_{c}\right)_{1}<f<0.95\left(f_{c}\right)_{2}
$$

Find the single mode BW for WR-90 waveguide ($a=22.86 \mathrm{~mm}$ and $b=10.16 \mathrm{~mm}$)

$$
\begin{array}{cc}
\left(f_{c}\right)_{1,0}=\frac{1}{2 \sqrt{\mu \epsilon} a} & \left(f_{c}\right)_{2,0}=\frac{1}{\sqrt{\mu \epsilon} a}=2\left(f_{c}\right)_{2,0}
\end{array} \quad\left(f_{c}\right)_{0,1}=\frac{1}{\sqrt{\mu \epsilon} b}
$$

Single mode- peraton of rectangular waveguide

Find the smallest ratio a/b allowing the largest

1. bandwidth of single mode operation
2. State the largest bandwidth of single mode operation
3. Defining the single mode bandwidth as

$$
1.25\left(f_{c}\right)_{1}<f<0.95\left(f_{c}\right)_{2}
$$

Find the single mode BW for WR-90 waveguide ($\mathrm{a}=22.86 \mathrm{~mm}$ and $\mathrm{b}=10.16 \mathrm{~mm}$)
$a=0.9$ inches $b=0.4$ inches

$\left(f_{c}\right)_{1,0}=c / 2 a=310^{8} /\left(222.8610^{-3}\right)=6.56 \mathrm{GHz}$
$\left(f_{c}\right)_{2,0}=c / a=310^{8} /\left(22.8610^{-3}\right)=13.12 \mathrm{GHz}$

Single mode BW

$$
6.561 .25=8.2 \mathrm{GHz}<f<12.4 \mathrm{GHz}=13.120 .95
$$

Field pattera at the cross section

$T E_{m, n}^{+z} \quad \mathbf{m}(\mathrm{n})$ is the number of half periods (or maxima/minima) along the $x(y)$ axis in the crosssection.

TE11

TM21

TE21

TE31

TM11

TM31

Field patter (TL mode, rect. w/G)

$T E_{m, n}^{+z} \quad \mathbf{m}(\mathrm{n})$ is the number of half periods (or maxima/minima) along the $x(y)$ axis in the crosssection.

