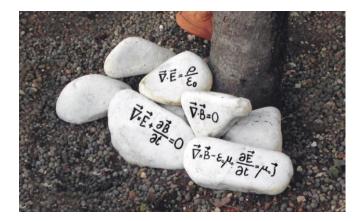


Introduction to RF

Andrea Mostacci University of Rome "La Sapienza" and INFN, Italy

1


Outline

Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

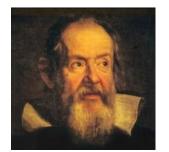
Maxwell equations

General review The lumped element limit The wave equation Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials Plane waves

Boundary value problems for metallic waveguides

The concept of mode Maxwell equations and vector potentials Cylindrical waveguides: TM, TE and TEM modes Solving Maxwell Equations in metallic waveguides Rectangular waveguide (detailed example)

Outline


Maxwell equations

General review The lumped element limit The wave equation Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials Plane waves

Boundary value problems for metallic waveguides

The concept of mode Maxwell equations and vector potentials Cylindrical waveguides: TM, TE and TEM modes Solving Maxwell Equations in metallic waveguides Rectangular waveguide (detailed example)

... The universe is written in the mathematical language and the letters are triangles, circles and other geometrical figures ...

Maxwell equations

Schedule 2018	Monday Feb 12 th	Tuesday Feb 13 th	Wednesday Feb 14 th	Thursday Feb 15 th	Friday Feb 16 th
09:00					
		Introduction to RF lecture	Vacuum systems lecture	RF Engineering lecture	RF Engineering lecture
40.00		A. Mostacci	V. Baglin	F. Caspers	F. Caspers
10:00 10:15		Coffee Break	Coffee Break	Coffee Break	RF Engineering
10.15		Introduction to RF lecture	Vacuum systems lecture	Vacuum systems lecture	tutorial F. Caspers / M. Wendt
44.48		A. Mostacci	V. Baglin	V. Baglin	Coffee Break
11:15		Vacuum systems lecture	Vacuum systems tutorial	Vacuum systems tutorial	Bus leaves at 11:30 from JUAS
12:15	12:00 OFFICIAL OPENING (welcome & building visit)	V. Baglin	V. Baglin / R. Kersevan	V. Baglin / R. Kersevan	
	13:00 WELCOME LUNCH	BREAK	BREAK	BREAK	(Lunch at CERN, R2, offered by ESI)
14:00	14:00 Presentation of JUAS & Presentation of students	Vacuum systems lecture	RF Engineering lecture	RF Engineering lecture	VISIT AT
45.00	P.Lebrun	V. Baglin	F. Caspers	F. Caspers	CERN
15:00	Introduction to CERN practical days	RF Engineering lecture	RF Engineering tutorial	RF Engineering tutorial	
	Magnet, Superconductivity	F. Caspers	F. Caspers / M. Wendt	F. Caspers / M. Wendt	AD / ELENA LINAC / LEIR
16:00 16:15	Coffee Break	Coffee Break	Coffee Break	Coffee Break	
10.10	Introduction to CERN practical days	RF Engineering lecture	Accelerator driven system Seminar	RF Engineering lecture	
17:45	RF, Vacuum,CLEAR	F. Caspers	J-L. Biarotte	F. Caspers	Bus leaves at 18:00 from CERN
18:15	CHECK-IN AT THE RESIDENCE & SHOPPING FOR GROCERIES				

HIIIIIIII

Mandal desired whether

Maxwell equations in vacuum

 $\nabla \cdot \vec{E} = \rho / \epsilon_0$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$

 $\mu_0 = 4\pi \ 10^{-7} \ (H/m)$

Magnetic constant (permeability of free space)

Divergence operator

$$\nabla \cdot \vec{A} = \dots$$

The source of \vec{A} is ...

- $ec{E}$ Electric Field
- \vec{B} Magnetic Flux Density
- ho Electric Charge Density $\left(C/m^3
 ight)$
- \vec{J} Electric Current Density (A/m^2)

$$\epsilon_0 = 1/c^2 \mu_0 = 8.8542 \ 10^{-12} \ (F/m)$$

Electric constant (permittivity of free space) $c=1/\sqrt{\mu_0\epsilon_0}=299792458~(m/s)$ Speed of light

fields

sources

(V/m)

 (Wb/m^2)

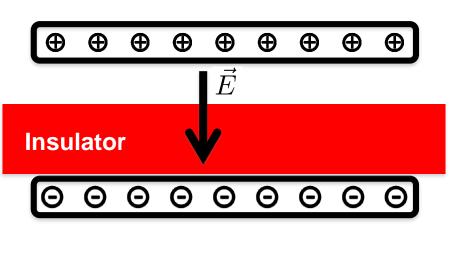
 Curl operator

 $\nabla \times \vec{A} = \vec{C}$
 \vec{C}
 \vec{C}
 \vec{C}

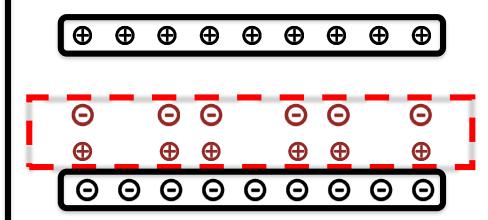
 \vec{A} is chained to \vec{C}

Andrea.Mostacci@uniroma1.it

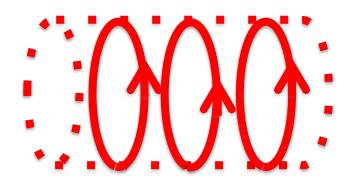
5

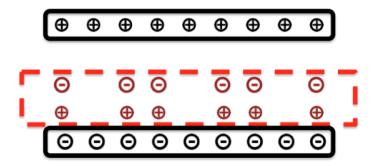

Maxwell equations logo

 \vec{E} well $\nabla \cdot \vec{E} = \rho / \epsilon_0$ source 🟵 \vec{B} A FIEM BY ACADEMY AWARD[•] WINNER RUSSELL CROWE THE WATER • DIVINER $\nabla \cdot \vec{B} = 0$ \vec{E} $\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\epsilon_0 \partial \vec{E} / \partial t$ \vec{J} $\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$ \vec{B}

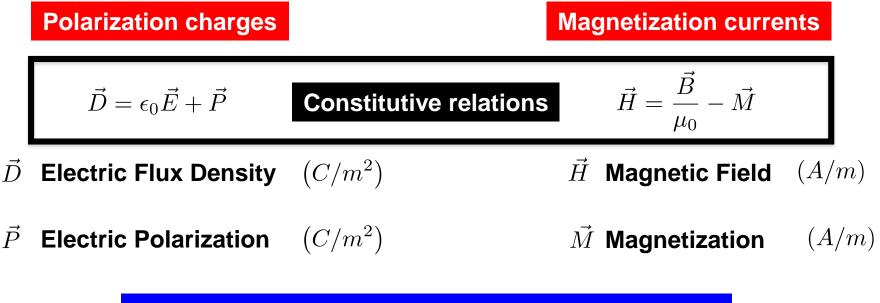

Maxwell equations in matter: the physical approach

The reality ...

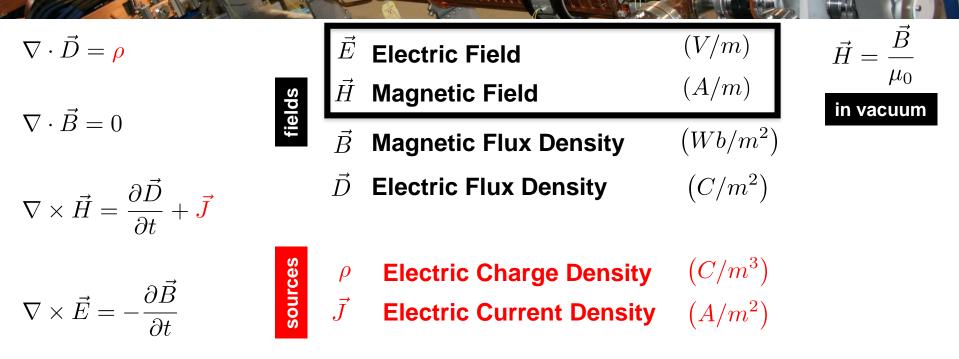

... the model



charges and currents IN VACUUM


Maxwell equations in matter: the mathematics

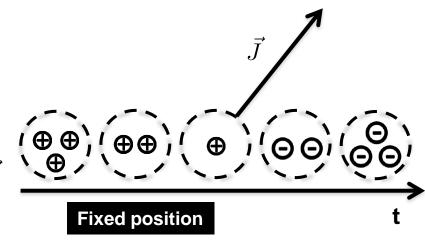
Electric insulators (dielectric)

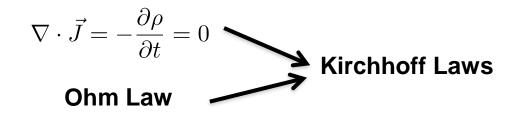


Magnetic materials (ferrite, superconductor)

Equivalence Principles in Electromagnetics Theory

Maxwell equations: general expression


Continuity equation is included


$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

At a given position, the source of \vec{J} is the decrease of charge in time

0

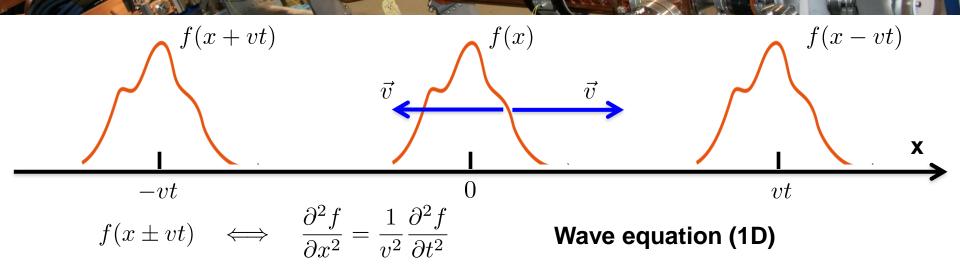


Lumped elements (electric networks)

The **lumped elements model** for electric networks is used also when the field variation is negligible over the size of the network.

 $\nabla\times\vec{E}=0$

The E field is conservative.


The energy gain of a charge in closed circuit is zero.

No static, circular accelerators (RF instead!).

Electrostatics

$$\nabla \times \vec{E} = 0 \implies \vec{E} = -\nabla V \qquad \overrightarrow{\nabla \cdot \vec{E}} = 0$$
free space
 $\nabla^2 V = 0$
Laplace
equation
Andrea.Mostacci@uniroma1.it

Solution of Maxwell Equations: the EM waves

Maxwell Equations: free space, no sources

$$\begin{array}{c} \nabla \cdot \vec{E} = 0 & \nabla \cdot \vec{H} = 0 \\ \nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t} \\ \nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{E}}{\partial t} \end{array} \end{array} \xrightarrow{} \begin{array}{c} \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E} = -\nabla^2 \vec{E} \\ & || \\ \nabla \times \nabla \times \vec{E} \\ & || \\ -\mu_0 \frac{\partial}{\partial t} (\nabla \times \vec{H}) = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t} \\ \nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} \\ \nabla^2 \vec{H} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{H}}{\partial t^2} \end{array} \xrightarrow{} \begin{array}{c} \frac{1}{v^2} = \mu_0 \epsilon_0 \Longrightarrow v = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c \\ \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c \end{array} \end{aligned}$$
 Wave equation (3D) And rea. Mostacci@uniroma1.it

Harmonic time dependence and phasors

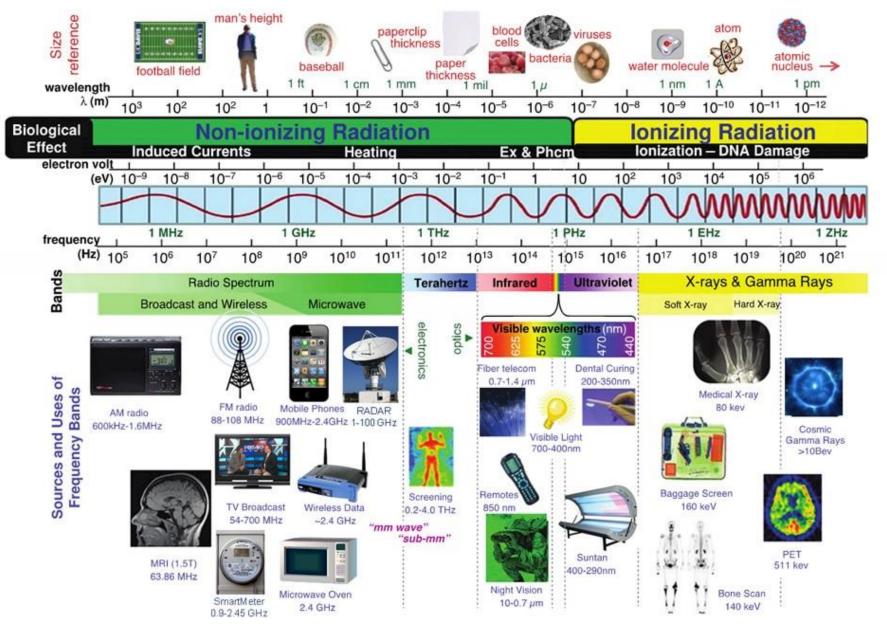
Assuming sinusoidal electric field (Fourier)

Time dependence $\longrightarrow e^{j\omega t} = e^{j2\pi f t} \longrightarrow \frac{\partial}{\partial t} \cdots = j\omega \dots$

$$\vec{E}(\vec{r},t) = Re\left\{\vec{E}(\vec{r},\omega)e^{j\omega t}\right\}$$

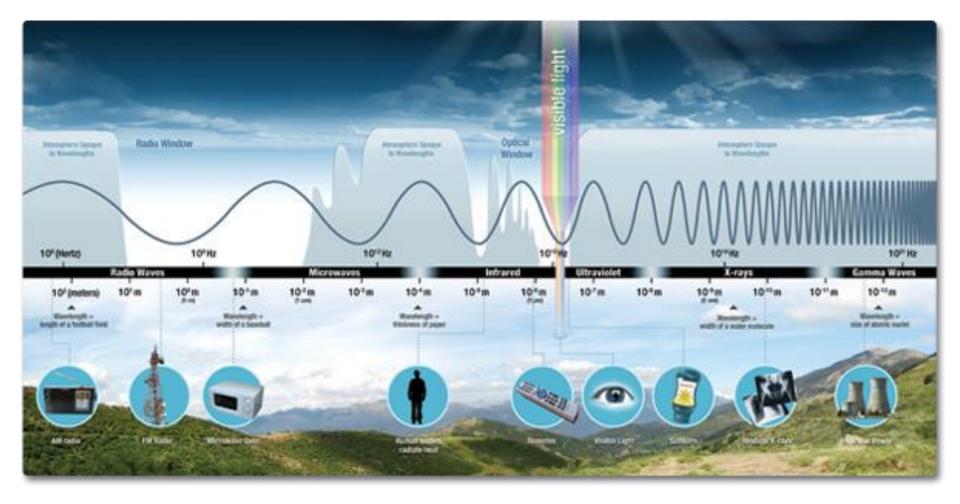
Phasors are complex vectors

Power/Energy depend on time average of quadratic quantities

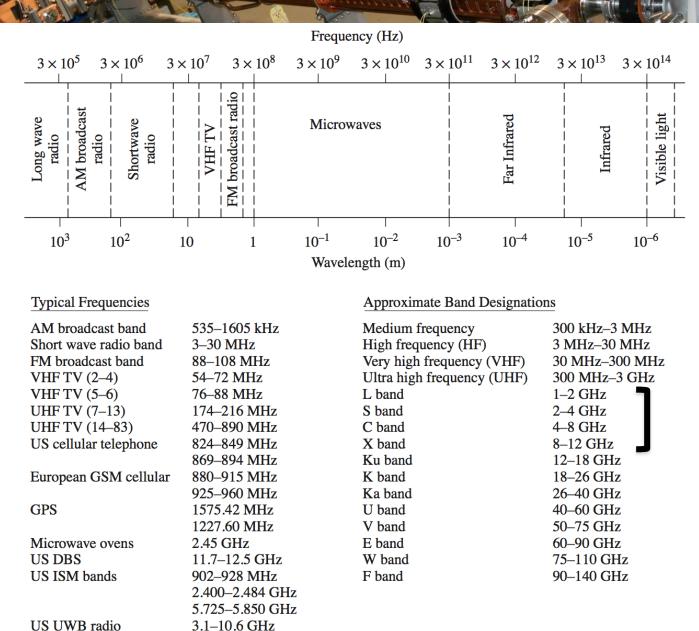

$$\left. \vec{E}(\vec{r},t) \right|_{average}^{2} = \frac{1}{T} \int_{0}^{T} \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) dt = \cdots = \frac{1}{2} \vec{E}(\vec{r},\omega) \cdot \vec{E^{*}}(\vec{r},\omega) = \left| \vec{E}_{RMS}(\vec{r},\omega) \right|^{2} \left| \vec{E}_{RMS}(\vec{r},\omega) - \vec{E}_{RMS}(\vec{r},\omega) \right|^{2}$$

In the following we will use the same symbol for

Real vectorsComplex vectors $\vec{E}(\vec{r},t), \vec{H}(\vec{r},t), \dots$ $\vec{E}(\vec{r},\omega), \vec{H}(\vec{r},\omega), \dots$

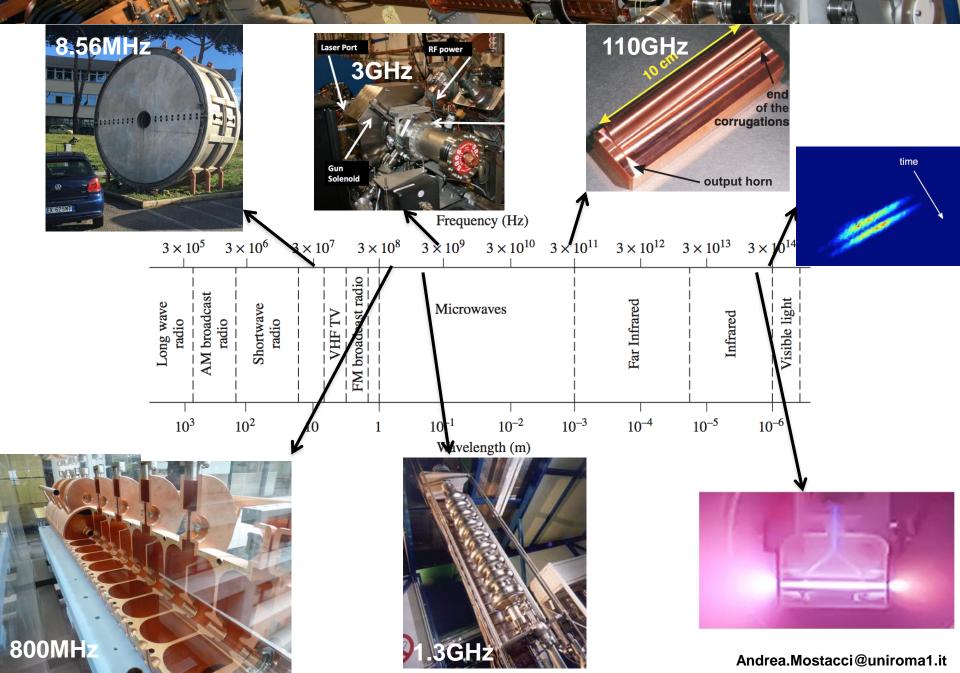

Note that, with phasors, a time animation is identical to phase rotation.

Electromagnetic radiation spectrum



Source: Common knowledge (Wikipedia)

Electromagnetic radiation spectrum: users point of view



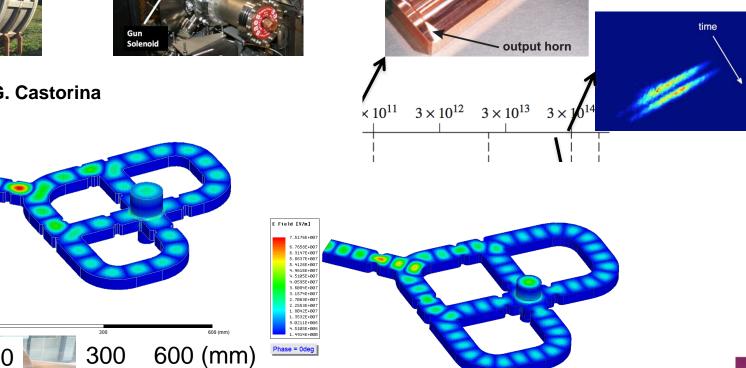
The electromagnetic spectrum for RF engineers

Source: Pozar, Microwave Engineering 4ed, 2012

The RF spectrum and particle accelerators

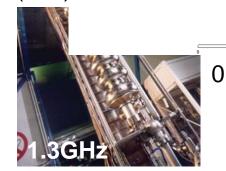
The RF spectrum and particle accelerators

E Field [V/n] 2.1085E+007 1.0976E+007 1.7711E+007 1.5181E+007 1.3181E+007 1.3581E+007 1.3561E+007 1.3551E+007 1.0121E+007 5.0551E+006 5.0502E+006 5.0502E+006 5.0502E+006 5.0502E+006


> 2.5301E+006 1.2651E+006 1.6381E-002

Phase = 0deg

800MHz

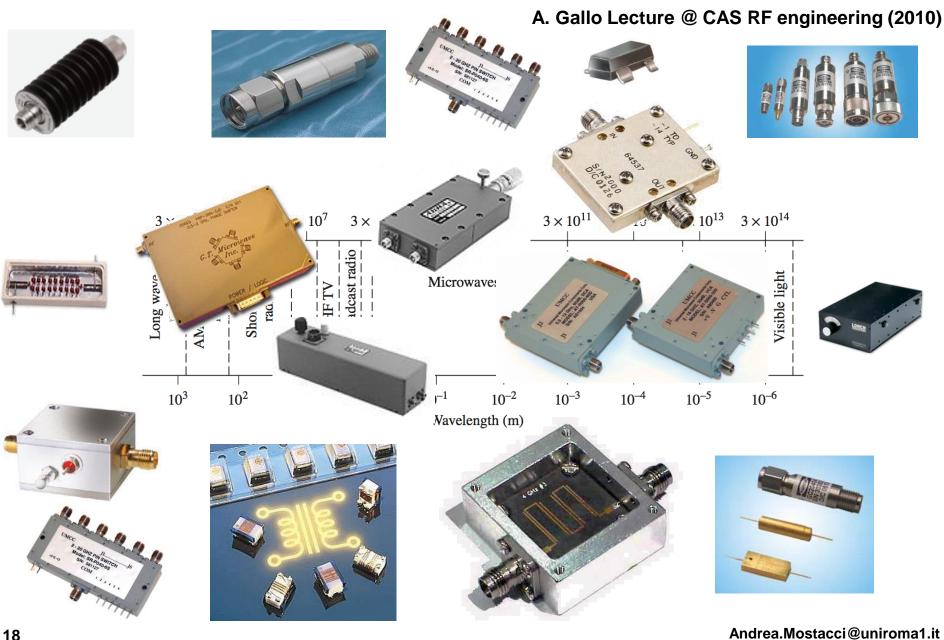

Animations by G. Castorina



110GHz

end

of the corrugations



200 (mm)

100

The RF spectrum and particle accelerators

Harmonic fields in media: constitutive relations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \qquad \vec{D} = \epsilon_c \vec{E} \qquad \epsilon_c = \epsilon' - j\epsilon''$$
Losses (heat) due to damping of vibrating dipoles
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \qquad \vec{B} = \mu \vec{H} \qquad \mu = \mu' - j\mu''$$

complex permittivity

complex permeability

Ohm Law

 $\vec{J_c} = \sigma \vec{E}$

 σ conductivity (2

(S/m)

Losses (heat) due to moving charges colliding with lattice

Material	Conductivity S/m (20°C)	Material	Conductivity S/m (20°C)
Aluminum	3.816×10^{7}	Nichrome	1.0×10^{6}
Brass	2.564×10^{7}	Nickel	1.449×10^{7}
Bronze	1.00×10^{7}	Platinum	9.52×10^{6}
Chromium	3.846×10^{7}	Sea water	3–5
Copper	5.813×10^{7}	Silicon	4.4×10^{-4}
Distilled water	2×10^{-4}	Silver	6.173×10^{7}
Germanium	2.2×10^{6}	Steel (silicon)	2×10^6
Gold	4.098×10^{7}	Steel (stainless)	1.1×10^{6}
Graphite	7.0×10^{4}	Solder	7.0×10^{6}
Iron	1.03×10^{7}	Tungsten	1.825×10^{7}
Mercury	1.04×10^{6}	Zinc	1.67×10^{7}
Lead	4.56×10^{6}		

Source: Pozar, Microwave Engineering 4ed, 2012

Harmonic fields in media: Maxwell Equations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \qquad \vec{D} = \epsilon_c \vec{E} \qquad \epsilon_c = \epsilon' - j\epsilon'' \qquad \text{complex permittivity}$$
Losses (heat) due to damping of vibrating dipoles
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \qquad \vec{B} = \mu \vec{H} \qquad \mu = \mu' - j\mu'' \qquad \text{complex permeability}$$
Ohm Law
$$\vec{J_c} = \sigma \vec{E} \qquad \sigma \qquad \text{conductivity} \qquad (S/m) \qquad \begin{array}{c} \text{Losses (heat) due to} \\ \text{moving charges} \\ \text{colliding with lattice} \end{array}$$

$$\vec{\nabla} \cdot \vec{D} = \rho \qquad \nabla \cdot \vec{B} = 0$$

$$\vec{\nabla} \cdot \vec{E} = -j\omega\mu\vec{H}$$

$$\vec{\nabla} \times \vec{E} = -j\omega\mu\vec{H}$$

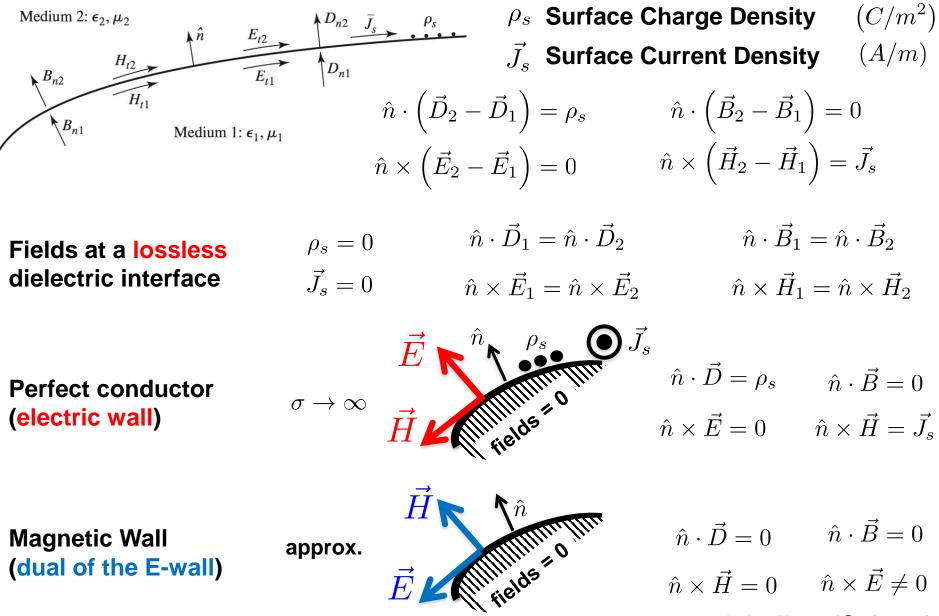
$$\vec{\nabla} \times \vec{H} = j\omega\vec{D} + \vec{J_c} + \vec{J} = \dots = j\omega\epsilon\vec{E} + \vec{J} \qquad \epsilon = \epsilon' - j\epsilon'' - j\frac{\sigma}{\omega}$$

$$\tan \delta = \frac{\omega\epsilon'' + \sigma}{\omega\epsilon'} = \frac{\text{Losses}}{\text{Displacement current}} \qquad \epsilon = \epsilon_r \epsilon_0 (1 - j \tan \delta)$$

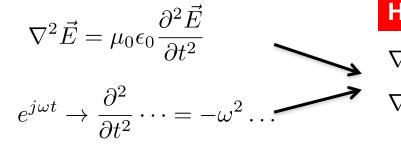
$$\vec{E} = \epsilon_r \epsilon_0$$

Harmonic fields in media: Maxwell Equations

DIELECTRIC CONSTANTS AND LOSS TANGENTS FOR SOME MATERIALS


Material	Frequency	ϵ_r	$\tan \delta (25^{\circ}C)$
Alumina (99.5%)	10 GHz	9.5–10.	0.0003
Barium tetratitanate	6 GHz	$37 \pm 5\%$	0.0005
Beeswax	10 GHz	2.35	0.005
Beryllia	10 GHz	6.4	0.0003
Ceramic (A-35)	3 GHz	5.60	0.0041
Fused quartz	10 GHz	3.78	0.0001
Gallium arsenide	10 GHz	13.0	0.006
Glass (pyrex)	3 GHz	4.82	0.0054
Glazed ceramic	10 GHz	7.2	0.008
Lucite	10 GHz	2.56	0.005
Nylon (610)	3 GHz	2.84	0.012
Parafin	10 GHz	2.24	0.0002
Plexiglass	3 GHz	2.60	0.0057
Polyethylene	10 GHz	2.25	0.0004
Polystyrene	10 GHz	2.54	0.00033
Porcelain (dry process)	100 MHz	5.04	0.0078
Rexolite (1422)	3 GHz	2.54	0.00048
Silicon	10 GHz	11.9	0.004
Styrofoam (103.7)	3 GHz	1.03	0.0001
Teflon	10 GHz	2.08	0.0004
Titania (D-100)	6 GHz	$96\pm5\%$	0.001
Vaseline	10 GHz	2.16	0.001
Water (distilled)	3 GHz	76.7	0.157

Source: Pozar, Microwave Engineering 4ed, 2012


complex permittivity							
complex permeability							
e							

Dielectric constant

Boundary Conditions

Helmotz equation and its simplest solution

Helmotz equation

$$\nabla^2 \vec{E} + \omega^2 \mu \epsilon \vec{E} = 0$$
$$\nabla^2 \vec{H} + \omega^2 \mu \epsilon \vec{H} = 0$$

 $k = \omega \sqrt{\mu \epsilon} \qquad (1/m)$

Propagation/phase constant Wave number

The simples solution: the plane wave

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0 \qquad \qquad \frac{d^2 E_x}{dz^2} + k^2 E_x = 0$$

$$\hat{\vec{x}} \qquad \hat{\vec{x}} \qquad \text{Uniform in x, y} \\ \text{Lossless medium} \qquad \hat{\vec{x}} \qquad \hat{$$

 $E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$

 $E_x(z,t) = Re\left\{E(x,\omega)e^{j\omega t}\right\} = E^+ \cos\left(\omega t - kz\right) + E^- \cos\left(\omega t + kz\right)$

It is a wave, moving in the +z direction or -z direction

Phase velocityVelocity at which a fixed phase point on the wave travels $\omega t \mp kz = \text{const}$ $v_p = \frac{dz}{dt} = \frac{d}{dt} \left(\frac{\omega t \mp \text{const}}{k} \right) = \frac{\omega}{k} = \frac{1}{\sqrt{\mu\epsilon}}$ Speed of light

Plane waves and Transverse Electro-Magnetic (TEM) waves

Wave length Distance between two consecutive maxima (or minima or ...)

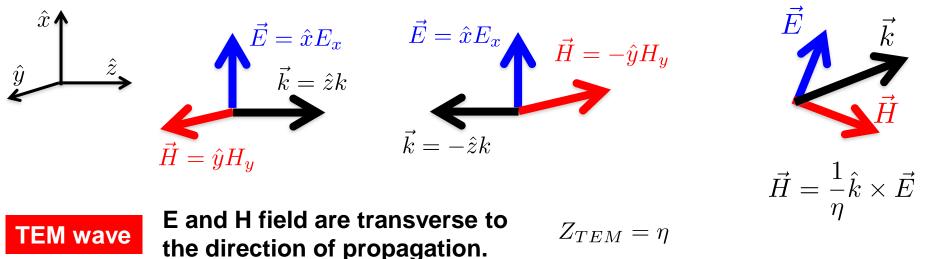
$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi \qquad \qquad \lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$$

 $\nabla \times \vec{E} = -j\omega\mu\vec{H}$

Compute H ...

$$E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$$

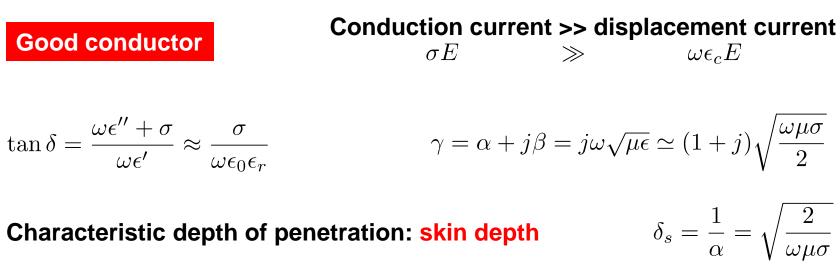
Plane waves and Transverse Electro-Magnetic (TEM) waves


Wave length Distance between two consecutive maxima (or minima or ...)

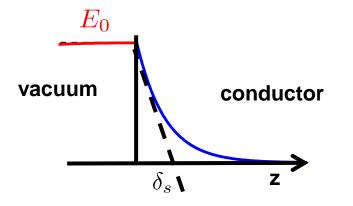
$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi$$
 $\lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$

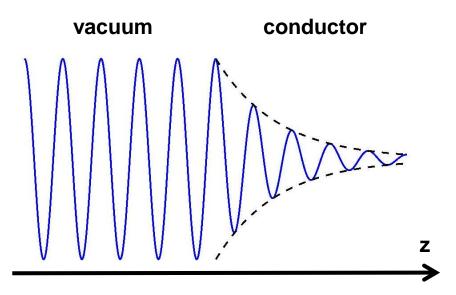
$$\nabla \times \vec{E} = -j\omega\mu\vec{H} \qquad \qquad H_x = H_z = 0 \qquad \qquad H_y = \frac{j}{\omega\mu}\frac{\partial E_x}{\partial z} = \frac{1}{\eta}\left(E^+e^{-jkz} - E^-e^{jkz}\right)$$

$$\eta = \frac{\omega\mu}{k} = \sqrt{\frac{\mu}{\epsilon}}$$
 Intrinsic impedance of the medium (Ω) $\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \ \Omega$


The ratio of E and H component is an impedance called wave impedance

Plane wave in lossy media


$$\nabla^{2}\vec{E} + \omega^{2}\mu\epsilon\vec{E} = 0 \qquad \epsilon = \epsilon_{r}\epsilon_{0}\left(1 - j\tan\delta\right) \qquad \tan\delta = \frac{\omega\epsilon'' + \sigma}{\omega\epsilon'}$$
Definition: $\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} = j\omega\sqrt{\mu\epsilon_{0}\epsilon_{r}(1 - j\tan\delta)}$
Attenuation constant
$$\begin{array}{c} \vec{x} & \vec{E} = E_{x}\hat{x} \\ \vec{y} & \vec{E} = E_{x}\hat{x} \\ \text{Uniform in x, y} & \frac{d^{2}E_{x}}{dz^{2}} - \gamma^{2}E_{x} = 0 \\ \text{Positive z direction} & e^{-\gamma z} = e^{-\alpha z}e^{-j\beta z} \\ \text{Positive z direction} & e^{-\gamma z} = e^{-\alpha z}e^{-j\beta z} \\ H_{y} = \frac{j}{\omega\mu}\frac{\partial E_{x}}{\partial z} = -\frac{j\gamma}{\omega\mu}\left(E^{+}e^{-\gamma z} - E^{-}e^{\gamma z}\right) = \frac{1}{\eta}\left(E^{+}e^{-\gamma z} - E^{-}e^{\gamma z}\right) \qquad \eta = \frac{j\omega\mu}{\gamma} \\ \vec{y} & \vec{k} = \hat{z}\beta \\ \vec{H} = \frac{1}{\eta}\hat{\beta} \times \vec{E} \\ \vec{H} = \frac{1}{\eta}\hat{\beta} \times \vec{E} \\ \text{Attenuating TEM "wave" ...} \\ \text{Andrea.Mostacci@uniromet.if} \\ \end{array}$$


Plane waves in good conductors

$$s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}}$$

 $\omega \epsilon_c E$

Plane waves in good conductors

Good conductorConduction current >> displacement current
$$\sigma E$$
 $\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'} \approx \frac{\sigma}{\omega \epsilon_0 \epsilon_r}$ $\gamma = \alpha + j\beta = j\omega \sqrt{\mu \epsilon} \simeq (1+j)\sqrt{\frac{\omega \mu \sigma}{2}}$ Characteristic depth of penetration: skin depth $\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega \mu \sigma}}$ $L_s = \frac{E_0}{\sqrt{\alpha \omega \sigma}}$ Al $\delta_s = 8.14 \ 10^{-7} \ m$ $U = \frac{E_0}{\sqrt{\delta_s \sqrt{z}}}$ Al $\delta_s = 6.60 \ 10^{-7} \ m$ Al $\delta_s = 7.86 \ 10^{-7} \ m$ AlAl $\delta_s = 6.40 \ 10^{-7} \ m$

 $\begin{array}{ll} \text{impedance of} & \eta \\ \text{the medium} & \end{array}$

$$\eta = \frac{j\omega\mu}{\gamma} \simeq (1+j)\sqrt{\frac{\omega\mu}{2\sigma}} = (1+j)\frac{1}{\sigma\delta_s}$$

? Copper @ 100 MHz

Maxwell equations and boundary value problem

Maxwell equation with sources + boundary conditions = boundary value problem

Sources

 \vec{J}, ρ

Homogeneous medium

$$\nabla \cdot \vec{E} = \rho / \epsilon \qquad \qquad \nabla \cdot \vec{H} = 0$$

$$abla imes \vec{E} = -j\omega\mu\vec{H}$$
 $abla imes \vec{K} = +j\omega\epsilon\vec{E} + \vec{J}$

Do you see asymmetries?

Maxwell equations and boundary value problem

Maxwell equation with sources + boundary conditions = boundary value problem

Homogeneous medium

$$abla \cdot ec E =
ho / \epsilon \qquad \qquad
abla \cdot ec H =
ho_m / \mu \qquad \qquad ec J, \
ho$$

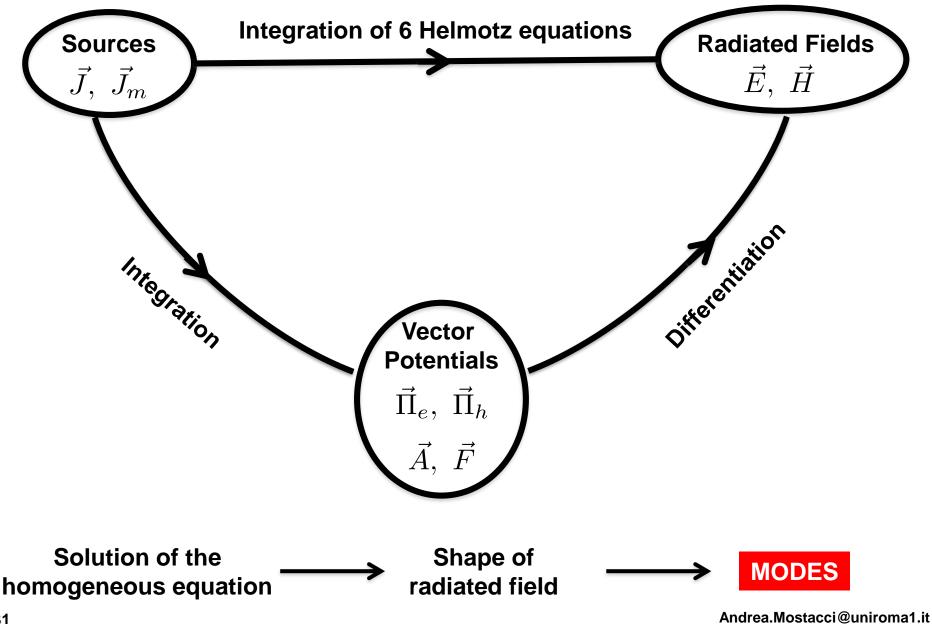
Sources

Actual or equivalent

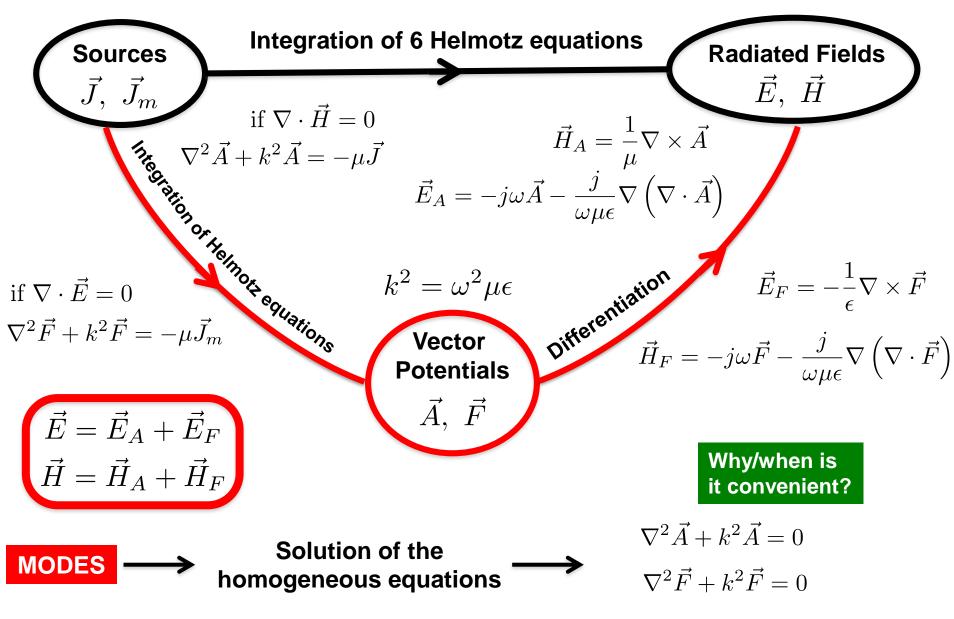
$$abla imes \vec{E} = -j\omega\mu\vec{H} - \vec{J}_m \qquad \nabla imes \vec{H} = +j\omega\epsilon\vec{E} + \vec{J} \qquad \vec{J}_m, \ \rho_m \qquad \text{equivalent}$$

Vector Helmotz Equation

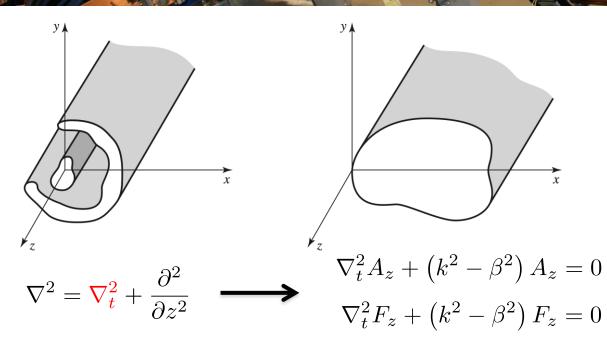
$$\nabla^{2}\vec{E} + k^{2}\vec{E} = \nabla \times \vec{J}_{m} + j\omega\mu\vec{J} + \frac{1}{\epsilon}\nabla\rho$$


$$\nabla^{2}\vec{H} + k^{2}\vec{H} = -\nabla \times \vec{J} + j\omega\epsilon\vec{J}_{m} + \frac{1}{\mu}\nabla\rho_{m}$$

$$k^{2} = \omega^{2}\mu\epsilon$$


Step 1Source free region $\vec{J} = \vec{J}_m = \rho_m = \rho = 0$ Homogeneous problemStep 2Solution $= \sum_k C_k \left(\vec{J}, \vec{J}_m, \rho_m, \rho \right)$ Solution-Homogeneous-Problem

Solution


Method of solution of Helmotz equations

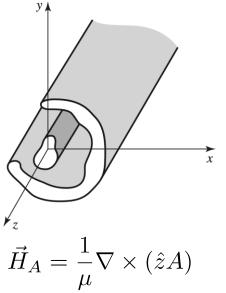
Solution of Helmotz equations using potentials

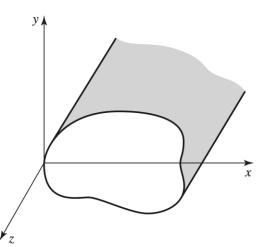
Modes of cylindrical waveguides: propagating field

Field propagating in the positive z direction

 $\vec{A} = \hat{z} A_z(x, y) e^{-j\beta z} = \hat{z} A$

$$\vec{F} = \hat{z} \ F_z(x,y) \ e^{-j\beta z} = \hat{z} \ F$$

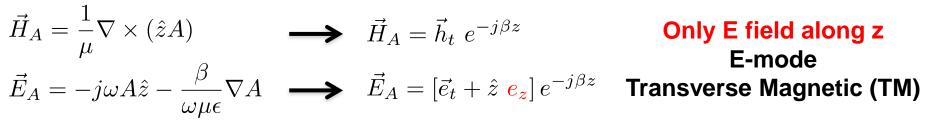

2 Helmotz equations (transverse coordinates)


$$\vec{H}_{A} = \frac{1}{\mu} \nabla \times (\hat{z}A) \longrightarrow \vec{H}_{A} = \vec{h}_{t} e^{-j\beta z} \qquad \begin{array}{c} \text{Only E field along z} \\ \text{E-mode} \\ \vec{E}_{A} = -j\omega A \hat{z} - \frac{\beta}{\omega\mu\epsilon} \nabla A \longrightarrow \vec{E}_{A} = [\vec{e}_{t} + \hat{z} \ \boldsymbol{e}_{z}] e^{-j\beta z} \\ \end{array} \qquad \begin{array}{c} \text{Only E field along z} \\ \text{E-mode} \\ \text{E-mode} \\ \end{array}$$

$$\vec{E}_{F} = -\frac{1}{\epsilon} \nabla \times (\hat{z}F) \longrightarrow \vec{E}_{F} = \vec{e}_{t} \ e^{-j\beta z} \qquad \begin{array}{c} \text{Only H field along z} \\ \text{H-mode} \\ \text$$

1

Modes of cylindrical waveguides: propagating field

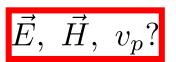


Field propagating in the positive z direction

 $\vec{A} = \hat{z} \ A_z(x, y) \ e^{-j\beta z} = \hat{z} \ A$

$$\vec{F} = \hat{z} F_z(x,y) e^{-j\beta z} = \hat{z} F$$

$$\vec{E}_{F} = -\frac{1}{\epsilon} \nabla \times (\hat{z}F) \longrightarrow \vec{E}_{F} = \vec{e}_{t} \ e^{-j\beta z} \qquad \begin{array}{c} \text{Only H field along z} \\ \text{H-mode} \\ \text{H-mode} \\ \vec{H}_{F} = -j\omega F \hat{z} - \frac{\beta}{\omega\mu\epsilon} \nabla F \longrightarrow \vec{H}_{F} = \left[\vec{h}_{t} + \hat{z} \ h_{z}\right] e^{-j\beta z} \quad \begin{array}{c} \text{Transverse Electric (TE)} \end{array}$$


$$\vec{E} = \vec{E}_A + \vec{E}_F \qquad \vec{H} = \vec{H}_A + \vec{H}_F \longrightarrow$$

TE

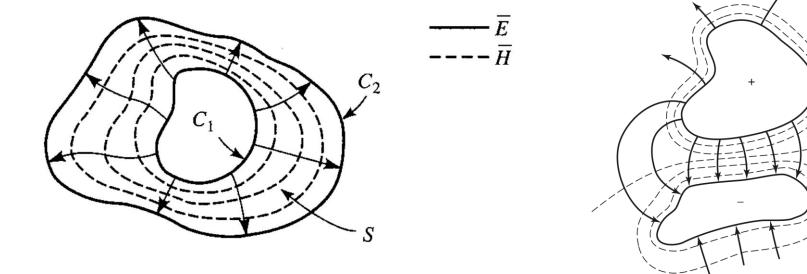
Transverse Electric Magnetic modes

Look for a Transverse Electric Magnetic mode $E_z = H_z = 0$

Exercise

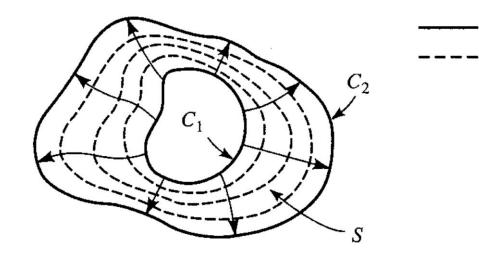
Hint 1 Start from a TM mode (vector potential A) $H_z = 0$

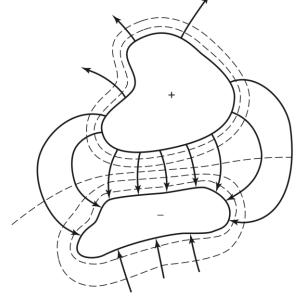
$$\nabla = \nabla_t + \hat{z} \frac{\partial}{\partial z} \qquad \qquad \nabla \cdot \vec{A} = \cdots$$

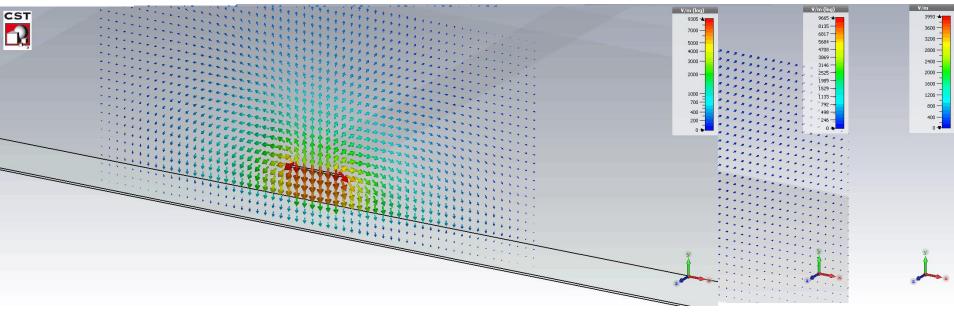

Hint 2
$$\vec{E}_A = \cdots$$

Transverse Electric Magnetic mode in waveguides

Solution For a given
$$A_z \quad \vec{H} = \frac{1}{\mu} \nabla_t \times (\hat{z}A_z) e^{-j\omega\sqrt{\mu\epsilon}z} \quad \vec{E} = -\frac{1}{\sqrt{\mu\epsilon}} \nabla_t A_z e^{-j\omega\sqrt{\mu\epsilon}z}$$

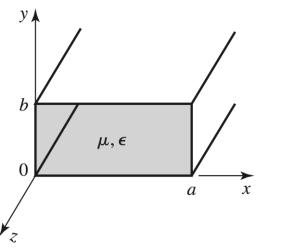

3. TEM waves are possible only if there are at least two conductors.




The plane wave is a TEM wave of two infinitely large plates separated to infinity

5. Electrostatic problem with boundary conditions $\vec{e_t}$ \longrightarrow $\vec{h}_t = \frac{1}{Z_{TEM}} \hat{z} \times \vec{e_t}$ \longrightarrow $\vec{E} = \vec{e_t} \ e^{-j\omega\sqrt{\mu\epsilon z}}$ $\vec{H} = \vec{h}_t \ e^{-j\omega\sqrt{\mu\epsilon z}}$

Common TEM waveguides

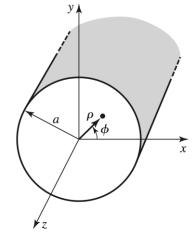

 $\frac{E}{H}$

Animations by G. Castorina

General solution for fields in cylindrical waveguide

Write the Helmotz equations for potentials

 $\nabla_t^2 A_z + k_t^2 A_z = 0$ TM waves **TE waves** $\nabla_t^2 F_z + k_t^2 F_z = 0$



Cartesian coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

 $A_z(x,y) = X(x)Y(y)$

$$k_t^2 = k^2 - \beta^2 = \omega^2 \mu \epsilon - \beta^2$$

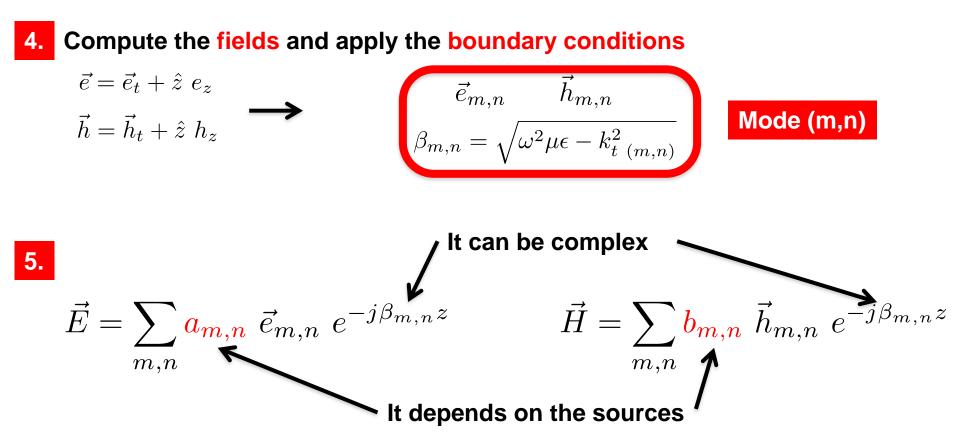
$$\epsilon = \epsilon_r \epsilon_0 \left(1 - j \tan \delta\right)$$

Cylindrical coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}$$

$$A_z(\rho,\phi) = R(\rho)\Phi(\phi)$$

Separation of variables


Andrea.Mostacci@uniroma1.it

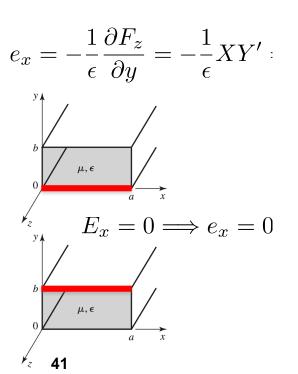
2.

General solution for fields in cylindrical waveguide

3. Eigenvalue problem: Eigenvalues + Eigen-function

- $\mathbf{TM} \quad \nabla_t^2 A_z + k_t^2 A_z = 0 \qquad \qquad k_t \qquad \qquad A_z, \ F_z$
- $\mathbf{TE} \quad \nabla_t^2 F_z + k_t^2 F_z = 0$

Rectangular waveguides



Rectangular waveguides: TE mode

Example

 $F_z = X(x)Y(y)$ Write the Helmotz equation X(x) =

Andrea.Mostacci@uniroma1.it

Ζ.

Rectangular waveguides: TE mode

$$F_{z} = X(x)Y(y) \qquad \nabla_{t}^{2}F_{z} + k_{t}^{2}F_{z} = YX'' + XY'' + k_{t}^{2}XY = 0$$

$$\frac{X''}{X} + \frac{Y''}{Y} + k_{t}^{2} = 0 \qquad -k_{x}^{2} - k_{y}^{2} + k_{t}^{2} = 0 \qquad \text{constraint} \\ \text{condition}$$

$$\frac{X''}{X} = -k_{x}^{2} \qquad X(x) = C_{1}\cos(k_{x}x) + D_{1}\sin(k_{x}x)$$

$$\frac{Y''}{Y} = -k_{y}^{2} \qquad Y(y) = C_{2}\cos(k_{y}y) + D_{2}\sin(k_{y}y)$$

$$e_{x} = -\frac{1}{\epsilon}\frac{\partial F_{z}}{\partial y} = -\frac{1}{\epsilon}XY' = -\frac{k_{y}}{\epsilon}\left[C_{1}\cos(k_{x}x) + D_{1}\sin(k_{x}x)\right]\left[-C_{2}\sin(k_{y}y) + D_{2}\cos(k_{y}y)\right]$$

$$e_{x} = -\frac{1}{\epsilon}\frac{\partial F_{z}}{\partial y} = -\frac{1}{\epsilon}XY' = -\frac{k_{y}}{\epsilon}\left[C_{1}\cos(k_{x}x) + D_{1}\sin(k_{x}x)\right]\left[-C_{2}\sin(k_{y}y) + D_{2}\cos(k_{y}y)\right]$$

$$e_x(0 \le x \le a, y = b) = \dots [-C_2 \sin(k_y b)] = 0 \iff \frac{k_y b = n\pi}{n = 0, 1, 2, \dots}$$

Andrea.Mostacci@uniroma1.it

42

 μ, ϵ

а

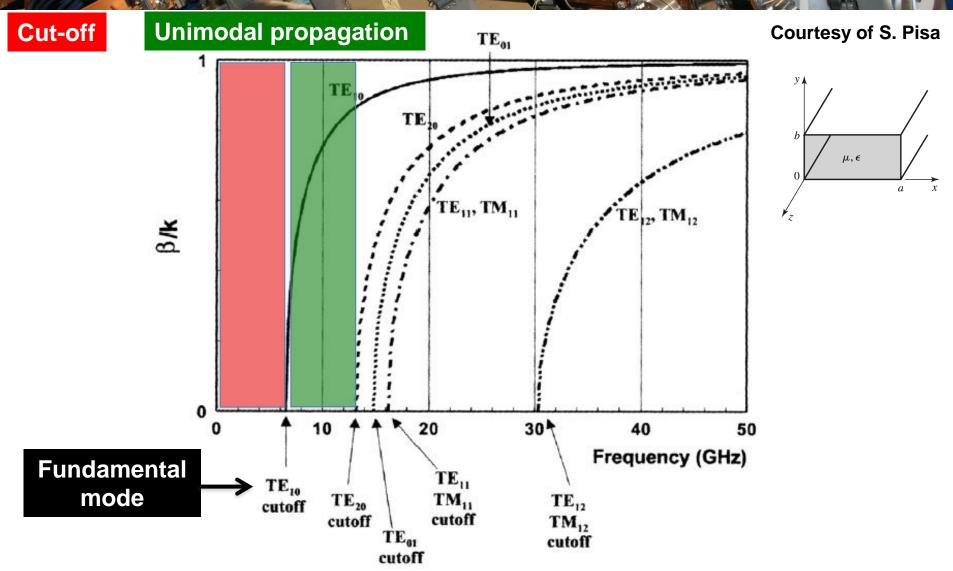
x

Eigenvalues and cut-off frequencies (TE mode, rect. WG)

$$k_t^2 = k_x^2 + k_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 = \omega^2 \mu \epsilon - \beta^2 \quad \begin{array}{constraint\\condition\end{array}$$
$$\vec{H} = \sum_{m,n} b_{m,n} \ \vec{h}_{m,n} \ e^{-j\beta_{m,n}z} \\ \beta_{m,n} = \sqrt{\omega^2 \mu \epsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2} \quad \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ z \end{array}$$

Cut-off frequencies f_c such that $\beta_{m,n} = 0$

$$(f_c)_{\boldsymbol{m},\boldsymbol{n}} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{\boldsymbol{m}\pi}{a}\right)^2 + \left(\frac{\boldsymbol{n}\pi}{b}\right)^2} \qquad \begin{array}{l} m, \ n = 0, 1, 2, \dots\\ m = n \neq 0 \end{array}$$


 $f < (f_c)_{m,n}$

mode m, n is attenuated exponentially (evanescent mode)

VA

 $f > (f_c)_{m,n}$ mode m, n is propagating with no attenuation

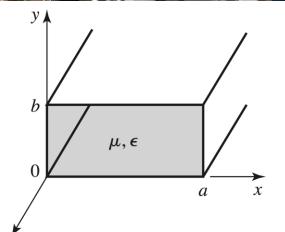
Waveguide dispersion curve

Same curve for TE and TM mode, but n=0 or m=0 is possible only for TE modes.

In any metallic waveguide the fundamental mode is TE.

Andrea.Mostacci@uniroma1.it

44

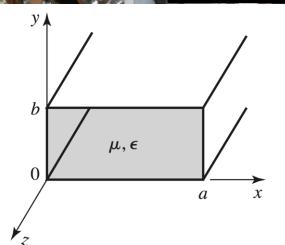

Single mode operation of a rectangular waveguide

Exercise

- Find the smallest ratio a/b allowing the largest bandwidth of single mode operation
- 2. State the largest bandwidth of single mode operation
- 3. Defining the single mode bandwidth as

 $1.25 \ (f_c)_1 < f < 0.95 \ (f_c)_2$

Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)


Single mode operation of a rectangular waveguide

Exercise

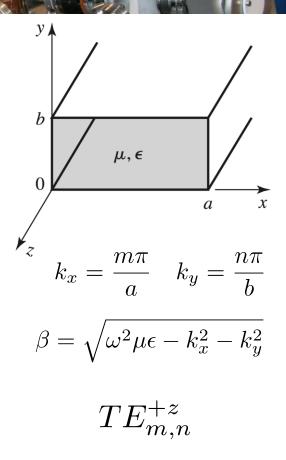
- Find the smallest ratio a/b allowing the largest bandwidth of single mode operation
- 2. State the largest bandwidth of single mode operation
- 3. Defining the single mode bandwidth as

 $1.25 \ (f_c)_1 < f < 0.95 \ (f_c)_2$

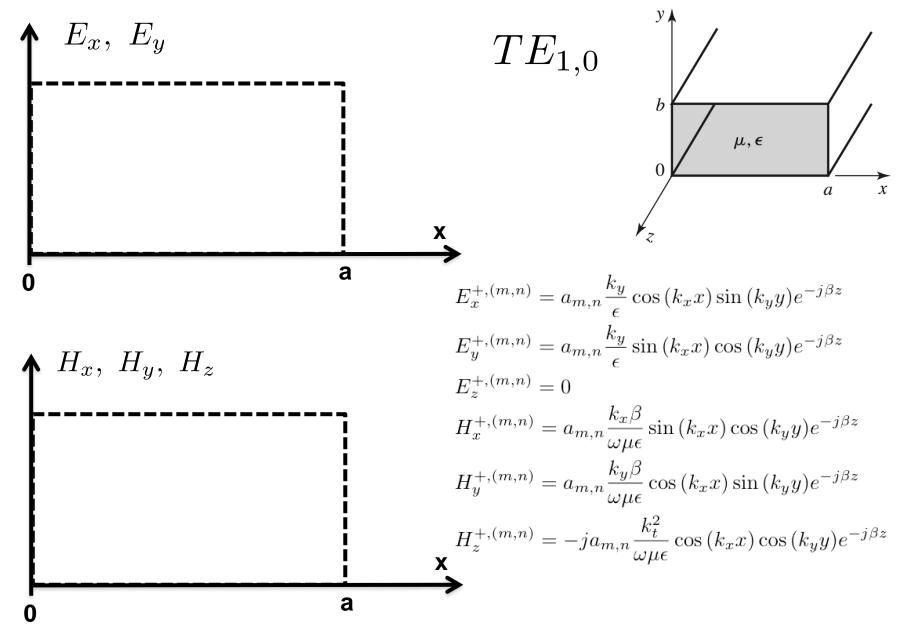
Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

Eigenfunctions and mode pattern (TE mode, rect. WG)

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$


$$E_y^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

 $E_z^{+,(m,n)} = 0$


$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega \mu \epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

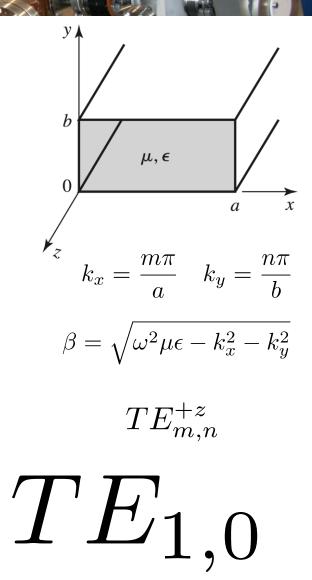
$$H_z^{+,(m,n)} = -ja_{m,n}\frac{k_t^2}{\omega\mu\epsilon}\cos\left(k_x x\right)\cos\left(k_y y\right)e^{-j\beta z}$$

You can draw ...

Intititititit

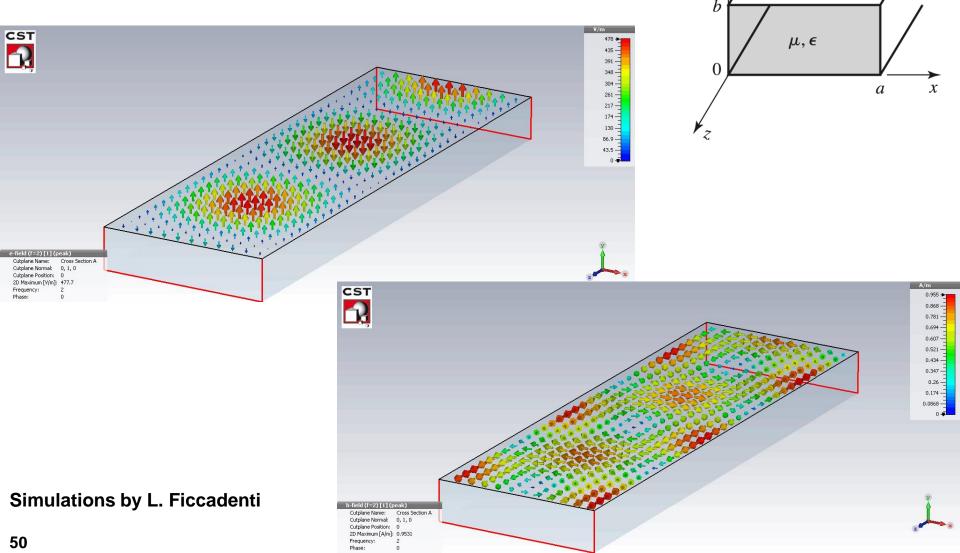
Eigenfunctions and mode pattern (TE mode, rect. WG)

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$


$$E_y^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

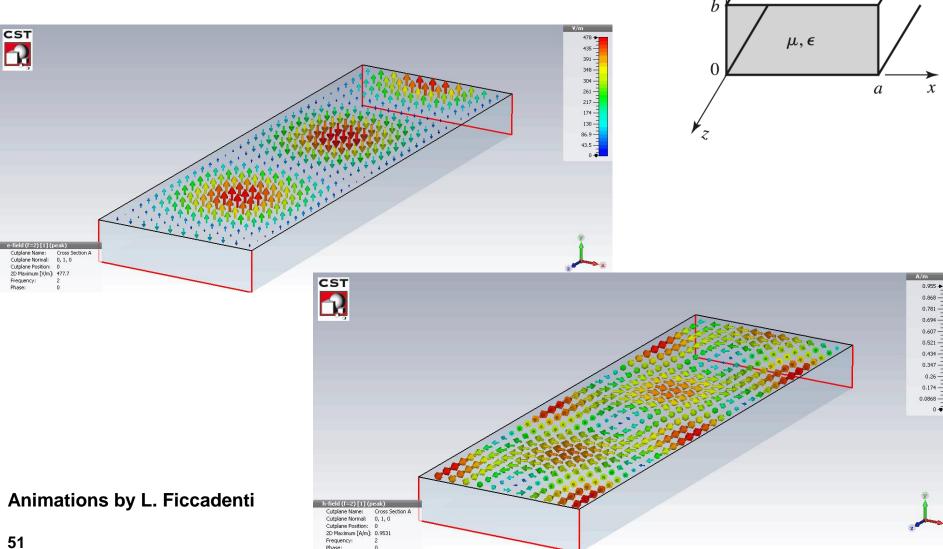
 $E_z^{+,(m,n)} = 0$

$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$


$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega \mu \epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

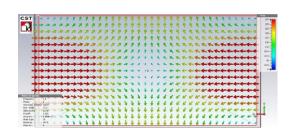
$$H_z^{+,(m,n)} = -ja_{m,n}\frac{k_t^2}{\omega\mu\epsilon}\cos\left(k_x x\right)\cos\left(k_y y\right)e^{-j\beta z}$$

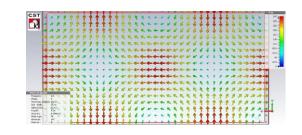
Field pattern (TE10 mode, rect. WG)

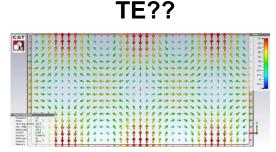

 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.

y

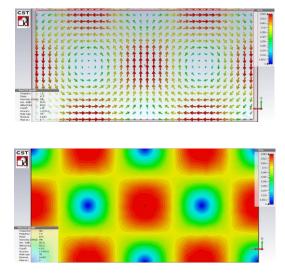
Field pattern (TE10 mode, rect. WG)

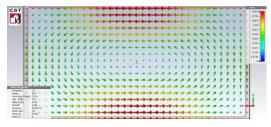

 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.

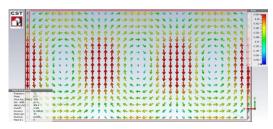


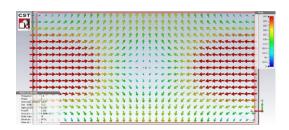

y

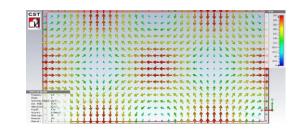
Field pattern at the cross section

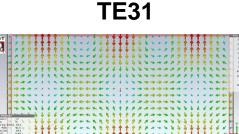

 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the crosssection. TE?? TE??



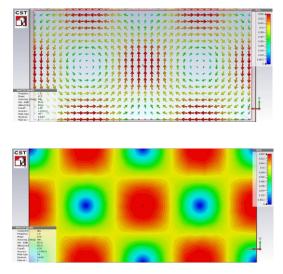

TM??

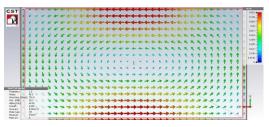


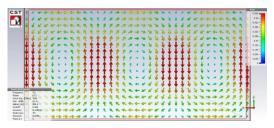

Simulations by L. Ficcadenti

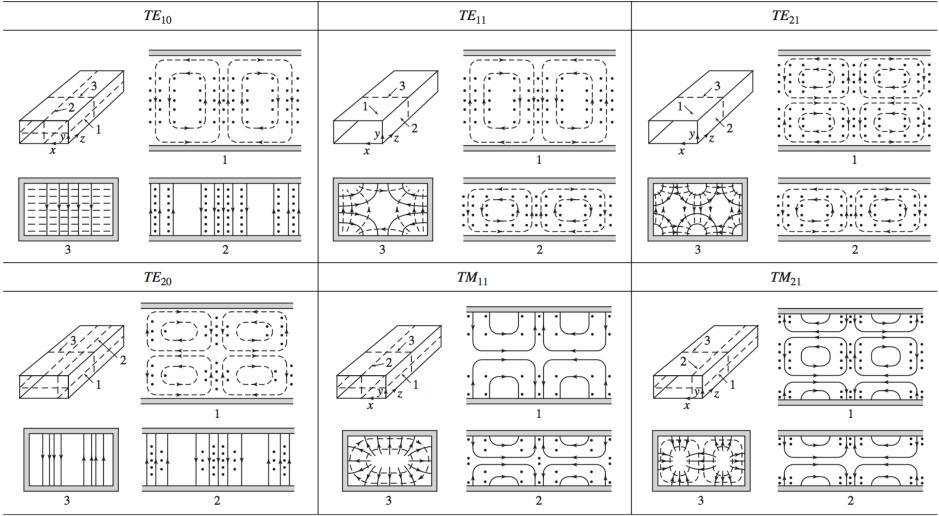

Field pattern at the cross section

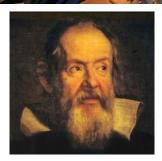
 $TE_{m,n}^{+z}$


m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the crosssection. TE11 TE21




TM21

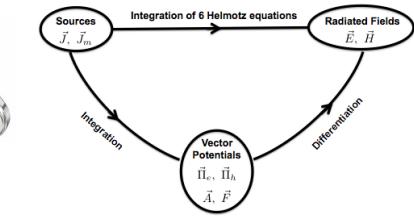




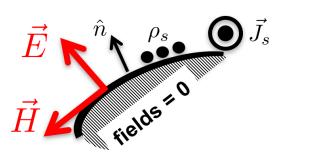
Simulations by L. Ficcadenti

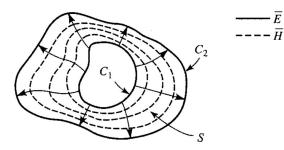
 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.

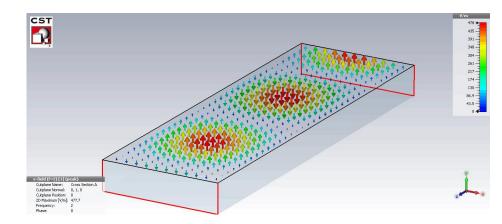
Conclusions



... The universe is written in the mathematical language and the letters are triangles, circles and other geometrical figures ...







 $abla \times$

