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In Archamps, on 26/02/2018, the (estimated) magnetic field is

|B| = 47435 nT = 0.047435 mT = 4.7435·10-5 T ≈ 0.5 Gauss
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This is a main dipole of the LHC at CERN: 8.3 T × 14.3 m



6

These are main dipoles of the SPS at CERN: 2.0 T × 6.3 m
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This is a cross section of a main quadrupole of the LHC at CERN: 

223 T/m × 3.2 m
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These are main quadrupoles of the SPS at CERN: 22 T/m × 3.2 m



9

This is a combined function bending magnet of the ELETTRA 

light source
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These are sextupoles (with embedded correctors) of the main 

ring of the SESAME light source
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We can classify magnets based on their geometry (that is, what 

they do to the beam)

sextupole

quadrupole

octupole

combined function 
bending

dipole solenoid

undulator / wigglerkicker / septum

corrector

skew magnet
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We can also classify magnets based on their technology

iron dominated

electromagnet permanent magnet

coil dominated

superconducting
normal conducting 

(resistive)

static
cycled / ramped  

slow pulsed
fast pulsed
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Ørsted showed in 1820 that electricity and magnetism were 

somehow related
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The first electromagnet was built in 1824 by Sturgeon
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Our magnets work on a few basic principles (steady state only)

an electrical current 
induces a magnetic 
effect some materials (e.g. 

iron) greatly 
enhance these 
effects

some other 
materials produce 
these effects even 
without electrical 
currents
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So, how do we properly describe all this?
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We need to agree on some nomenclature first

B magnetic field T (Tesla)
B field
magnetic flux density
magnetic induction

H H field A/m (Ampere/m)
magnetic field strength
magnetic field

m0 permeability of vacuum 4p·10-7 H/m (Henry/m)

mr relative permeability dimensionless

m permeability, m = m0mr H/m
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What is B? For us, it is defined by its effect on moving charged 

particles (or electrical currents), through Lorentz force

𝐹𝑚 = 𝑞 Ԧ𝑣 × 𝐵

for charged beams

for conductors

𝐹𝑚 = 𝐼ℓ × 𝐵
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Maxwell describes it all using vector calculus

div 𝐵 = 0

rot 𝐻 = Ԧ𝐽 +
𝜕𝐷

𝜕𝑡

𝐵 = 𝜇0𝜇𝑟𝐻

div 𝐷 = 𝜌

rot 𝐸 = −
𝜕𝐵

𝜕𝑡

Gauss law (electricity)

Gauss law (magnetism)

Faraday-Lenz law

Ampère law (with correction)

constitutive laws 
for (simple) materials

𝐷 = 𝜀0𝜀𝑟𝐸
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Let’s have a closer look at the 3 equations that describe 

magnetostatics

div 𝐵 = 0

rot 𝐻 = Ԧ𝐽

𝐵 = 𝜇0𝜇𝑟𝐻

always holds

holds for linear materials

holds for magnetostatics

(1)

(3)

(2)
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Eq. 1: the magnetic flux tubes wrap around, with neither 

sources nor sinks

div 𝐵 =
𝜕𝐵𝑥
𝜕𝑥

+
𝜕𝐵𝑦
𝜕𝑦

+
𝜕𝐵𝑧
𝜕𝑧

= 0 ඾𝐵 ∙ 𝑑𝑆 =මdiv 𝐵 𝑑𝑉 = 0

divergence / Gauss theorem 
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Eq. 2: electrical currents generate (“stir up”) a magnetic field

rot 𝐻 =
𝜕𝐵𝑧
𝜕𝑦

−
𝜕𝐵𝑦
𝜕𝑧

𝑖𝑥 +
𝜕𝐵𝑥
𝜕𝑧

−
𝜕𝐵𝑧
𝜕𝑥

𝑖𝑦 +
𝜕𝐵𝑦
𝜕𝑥

−
𝜕𝐵𝑥
𝜕𝑦

𝑖𝑧 = Ԧ𝐽

ර𝐻 ∙ 𝑑𝑙 = ඵrot 𝐻 𝑑𝑆 =ඵ Ԧ𝐽 𝑑𝑆 = 𝑁𝐼

Kelvin–Stokes theorem 
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From Eqs. 2 and 3 we can derive Biot-Savart law

ර𝐻 ∙ 𝑑𝑙 = 𝐼

𝐵 = 𝜇0𝐻

H 2𝜋𝑟 = 𝐼

𝐻 =
𝐼

2𝜋𝑟

𝐵 = 𝜇0𝐻 =
𝜇0𝐼

2𝜋𝑟

r

I
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Eq. 3 relates the effect (B) to the cause (H)

𝐵 = 𝜇0𝜇𝑟𝐻

In a linear material

𝐻

produces

𝐵

according to 



26

In a nonlinear material (with for ex. saturation and hysteresis), 

the constitutive law becomes more complex

H

B

𝐵 = 𝜇0 Ԧ𝑓 𝐻
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In most of our simulations we use a simple BH model for the 

material: this is a typical curve for an electrical steel
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Now, why do the flux lines come out perpendicular to the iron?

0 0.8 T 1.6 T
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Because they obey to Maxwell!

air 𝜇𝑟 = 1

iron 𝜇𝑟 ≫ 1

𝐻∥, air = 𝐻∥, iron

𝐵∥, air =
𝐵∥, iron
𝜇𝑟,iron

≈ 0

𝐵⊥, air = 𝐵⊥, iron
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This is an “advanced introduction”, so let’s introduce the vector 

potential (3D)

𝐵 = rot Ԧ𝐴

always holds
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In magnetostatics, we can combine Eqs. 1 to 3 in a more 

compact form (3D)

div 𝐵 = 0

rot 𝐻 = 0

𝐵 = 𝜇0𝐻

𝛻2 Ԧ𝐴 = 0

holds for 
magnetostatics
and in air
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In 2D this becomes a scalar Laplace equation

𝛻2𝐴𝑧 = 0

𝜕2𝐴𝒛
𝜕𝑥2

+
𝜕2𝐴𝑧
𝜕𝑦2

= 0

holds for 
magnetostatics
and in air
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We look at the 2D first: how can we conveniently describe the 

field in the aperture, for ex. in a quadrupole?

0 0.8 T 1.6 TSESAME quadrupole 
Bpole = 0.6 T
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And in another resistive magnet, with a different configuration?

0 0.5 T 1.0 TSESAME sextupole
+ vertical dipole corrector



36

Can the same formalism also describe the field in the aperture 

of a superconducting dipole?

0 8 T 16 T

FRESCA2 dipole
13 T



37

The solution is a harmonic (or multipole) expansion, describing 

the field (within a circle of validity) with scalar coefficients

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜃

𝐵𝑦 𝑧 + 𝑖𝐵𝑥 𝑧 = ෍

𝑛=1

∞

𝐵𝑛 + 𝑖𝐴𝑛
𝑧

𝑅𝑟𝑒𝑓

𝑛−1

(4)

𝑥

𝑦

Rref

Rmax
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This decomposition has two characteristic radii: Rref and Rmax

Rref

Rmax

Rref

Rmax
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Expanding Eq. 4 in terms of radial and tangential components, 

we find sin and cos terms

𝑥

𝑦

𝑟

𝜃

𝐵𝑟

𝐵𝜃

𝐵𝑟 = ෍

𝑛=1

∞
𝑟

𝑅𝑟𝑒𝑓

𝑛−1

𝐵𝑛 sin 𝑛𝜃 + 𝐴𝑛 cos 𝑛𝜃

𝐵𝜃 = ෍

𝑛=1

∞
𝑟

𝑅𝑟𝑒𝑓

𝑛−1

𝐵𝑛 cos 𝑛𝜃 − 𝐴𝑛 sin 𝑛𝜃
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𝐵𝑦 𝑧 + 𝑖𝐵𝑥 𝑧 = ෍

𝑛=1

∞

𝐵𝑛 + 𝑖𝐴𝑛
𝑧

𝑅𝑟𝑒𝑓

𝑛−1

(4)

In most cases, there is a main fundamental component, to 

which the other terms are normalized

𝐵𝑦 𝑧 + 𝑖𝐵𝑥 𝑧 = 𝐵𝑵 ෍

𝑛=1

∞
𝑏𝑛 + 𝑖𝑎𝑛
10000

𝑧

𝑅𝑟𝑒𝑓

𝑛−1

𝑏𝑛 = 10000
𝐵𝑛
𝐵𝑁

𝑎𝑛 = 10000
𝐴𝑛
𝐵𝑁

field shapefield strength
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Another useful expansion derived from Eq. 4 is that of By on the 

midplane, i.e. at y = 0

𝐵𝑦 𝑥 = ෍

𝑛=1

∞

𝐵𝑛
𝑥

𝑅𝑟𝑒𝑓

𝑛−1

= 𝐵1 + 𝐵2
𝑥

𝑅𝑟𝑒𝑓
+ 𝐵3

𝑥

𝑅𝑟𝑒𝑓

2

+⋯

𝑥

𝑦

Rref

Rmax

𝐵𝑥 𝑥 = ෍

𝑛=1

∞

𝐴𝑛
𝑥

𝑅𝑟𝑒𝑓

𝑛−1

= 𝐴1 + 𝐴2
𝑥

𝑅𝑟𝑒𝑓
+ 𝐴3

𝑥

𝑅𝑟𝑒𝑓

2

+⋯
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Each multipole corresponds to a field distribution: adding them 

up, we can describe everything (compatibly with Maxwell)

B1: normal dipole B2: normal quadrupole B3: normal sextupole

A1: skew dipole A2: skew quadrupole A3: skew sextupole
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B1 is the normal dipole

𝐵𝑦

𝑥
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B2 is the normal quadrupole

𝐵𝑦

𝑥

𝐺 =
𝐵2
𝑅
=
𝜕𝐵𝑦

𝜕𝑥
= 𝐵′

𝐵𝑝𝑜𝑙𝑒 = 𝐵′𝑅𝑝𝑜𝑙𝑒

𝐵𝑦 = 𝐵′x
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B3 is the normal sextupole

𝐵𝑦

𝑥

𝐵𝑝𝑜𝑙𝑒 =
1

2
𝐵′′𝑅𝑝𝑜𝑙𝑒

𝐵′′ =
𝜕2𝐵𝑦

𝜕𝑥2
=
2𝐵3
𝑅2

𝐵𝑦 =
1

2
𝐵′′𝑥
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The allowed / not-allowed harmonics refer to the terms that 

shall / shall not cancel out thanks to design symmetries

fully symmetric dipoles: only B1, b3, b5, b7, b9, etc.

half symmetric dipoles: B1, b2, b3, b4, b5, etc.
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These are the allowed harmonics for fully symmetric 

quadrupoles and sextupoles

fully symmetric sextupoles: B3, b9, b15, b21, etc.

fully symmetric quadrupoles: B2, b6, b10, b14, b18, etc.
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We can change Rref and scale up (or down) the harmonics

Rref,1

Rmax

Rref,2

𝐵𝑛,2 = 𝐵𝑛,1
𝑅𝑟𝑒𝑓,2

𝑅𝑟𝑒𝑓,1

𝑛−1

𝑏𝑛,2 = 𝑏𝑛,1
𝑅𝑟𝑒𝑓,2

𝑅𝑟𝑒𝑓,1

𝑛−𝑁

Rmax



49

Let’s have a look at a real case: the measurements of 33 

quadrupoles built for SESAME

harmonics in 10-4 at 24 mm radius

mean ± rms QF @ 250 A

b3 -0.2 ± 0.8

a3 -0.1 ± 0.9

b4 0.3 ± 0.4

a4 -0.3 ± 0.1

b5 0.0 ± 0.1

a5 0.0 ± 0.1

b6 -0.1 ± 0.1

b10 -0.3 ± 0.0

b14 0.3 ± 0.0

SESAME QF
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Now, are our magnets 2D or 3D? In most cases what matters is 

the integrated strength = central strength × magnetic length

𝑙𝑚𝐵0 = න

−∞

∞

𝐵 𝑧 𝑑𝑧
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This 2D decomposition holds also for the integrated 3D field, as 

long as at the start / end B is constant along z

𝑧

𝑧

ok ok not ok

ok
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Thank you
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If you want to know more…

1. Lectures about magnets in CERN Accelerator Schools
2. Special CAS edition on magnets, Bruges, Jun. 2009
3. N. Marks, Magnets for Accelerators, J.A.I., Jan. 2015
4. D. Tommasini, Practical Definitions & Formulae for Normal Conducting Magnets
5. Superconducting magnets for particle accelerators in USPAS
6. J. Tanabe, Iron Dominated Electromagnets
7. P. Campbell, Permanent Magnet Materials and their Application
8. K.-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets
9. M. N. Wilson, Superconducting Magnets
10. A. Devred, Practical Low-Temperature Superconductors for Electromagnets


