Introduction to Magnets

Attilio Milanese

Attilio.Milanese@cern.ch

JUAS 26 Feb. 2018

Thanks to the many colleagues from which I borrowed much material, in particular Davide Tommasini

JUAS - TIMETABLE 2018 - WEEK 8

Schedule	Monday	Tuesday	Wednesday	Thursday	Friday
2018	Feb 26 ^m	Feb 27 th	Feb 28 [™]	March 1⁵	March 2 nd
09:00	Introduction to Magnets I lecture A. Milanese	Superconducting magnets lecture	Mini-workshop Normal conducting Magnets	Bus leaves at 8:00 from JUAS	Bus leaves at 8:00 from JUAS
10:00 10:15	Introduction to Magnets II lecture	P. Ferracin Coffee Break	Coffee Break	(Lunch at CERN, offered by ESI)	(Lunch at CERN, offered by ESI)
10:30	A. Milanese Coffee Break	Superconducting magnets	Mini-workshop Normal conducting Magnets	PRACTICAL	
11:15	10:45 Normal Conducting	lecture P. Ferracin	J. Bauche & T. Zickler	DAYS	PRACTICAL DAYS
	magnets lecture	Superconducting magnets: cryogenics lecture	Mini-workshop Normal conducting Magnets	CERN	AT CERN
12:15	T. Zickler	Ph. Lebrun	J. Bauche & T. Zickier	RF coordinator: F. Caspers M Wendt	RF coordinator: F. Caspers
14:00	WORKING LUNCH	BREAK	BREAK	VACUUM coordinator:	VACUUM coordinator:
45.00	Normal Conducting magnets lecture - T. Zickler	Superconducting magnets lecture P. Ferracin	Mini-workshop Superconducting Magnets P. Ferracin & P. Lebrun	V. Baglin MAGNETS coordinators: J. Bauche	V. Bagin MAGNETS coordinators: J. Bauche
15:00	Normal Conducting magnets lecture - T. Zickler	Normal Conducting magnets lecture - T. Zickler	Mini-workshop Superconducting Magnets P. Ferracin & P. Lebrun	L. Fiscarelli SUPERCONDUCTIVITY coordinator:	SUPERCONDUCTIVITY coordinator: J. Fleiter
16:00	Coffee Break	Coffee Break	Coffee Break	J. Fleiter	
47.45	Superconducting magnets lecture P. Ferracin	Normal Conducting magnets lecture - T. Zickler	Mini-workshop Superconducting Magnets P. Ferracin & P. Lebrun	CLEAR coordinators: R. Corsini W. Farabolini	CLEAR coordinators: R. Corsini W. Farabolini
17:15	Superconducting magnets	Normal Conducting magnets	Building Large Accelerators with Industry Seminar	Bus leaves at 17:30 from CERN	CERN
18:15	P. Ferracin	lecture - T. Zickler	Ph. Lebrun		
			AFTER WORK AT ESI		

1. Introduction

2. Fundamentals 1: Maxwell and friends

3. Fundamentals 2: harmonics

In Archamps, on 26/02/2018, the (estimated) magnetic field is $|B| = 47435 \text{ nT} = 0.047435 \text{ mT} = 4.7435 \cdot 10^{-5} \text{ T} \approx 0.5 \text{ Gauss}$

This is a main dipole of the LHC at CERN: 8.3 T × 14.3 m

These are main dipoles of the SPS at CERN: 2.0 T × 6.3 m

This is a cross section of a main quadrupole of the LHC at CERN: $223 \text{ T/m} \times 3.2 \text{ m}$

These are main quadrupoles of the SPS at CERN: 22 T/m × 3.2 m

This is a combined function bending magnet of the ELETTRA light source

These are sextupoles (with embedded correctors) of the main ring of the SESAME light source

We can classify magnets based on their geometry (that is, what they do to the beam)

We can also classify magnets based on their technology

Ørsted showed in 1820 that electricity and magnetism were somehow related

The first electromagnet was built in 1824 by Sturgeon

Our magnets work on a few basic principles (steady state only)

an electrical current induces a magnetic effect

some materials (e.g. iron) greatly enhance these effects

some other materials produce these effects even without electrical currents

So, how do we properly describe all this?

 $\begin{aligned} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{F} + h.c. \\ &+ \mathcal{F} \mathcal{D} \mathcal{F} \mathcal{F}_{3} \mathcal{P} + h.c. \\ &+ |\mathcal{D}_{\mu} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$

1. Introduction

2. Fundamentals 1: Maxwell and friends

3. Fundamentals 2: harmonics

We need to agree on some nomenclature first

magnetic field

Β

Η

B field magnetic flux density magnetic induction

H field magnetic field strength magnetic field

μ_0 permeability of vacuum

- μ_r relative permeability
- μ permeability, $\mu = \mu_0 \mu_r$

T (Tesla)

A/m (Ampere/m)

 $4\pi \cdot 10^{-7}$ H/m (Henry/m)

dimensionless

What is B? For us, it is defined by its effect on moving charged particles (or electrical currents), through Lorentz force

$$\overrightarrow{F_m} = q\left(\vec{v} \times \vec{B}\right)$$

for charged beams

$$\overrightarrow{F_m} = I \overrightarrow{\ell} \times \overrightarrow{B}$$
for conductors

Maxwell describes it all using vector calculus

div $\vec{D} = \rho$ Gauss law (electricity)

div $\vec{B} = 0$ Gauss law (magnetism)

 $\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

Faraday-Lenz law

rot $\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ Ampère law (with correction)

 $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$ $\vec{B} = \mu_0 \mu_r \vec{H}$

constitutive laws for (simple) materials

Let's have a closer look at the 3 equations that describe magnetostatics

(1) div
$$\vec{B} = 0$$

always holds

(2) rot
$$\vec{H} = \vec{J}$$

holds for magnetostatics

$$(3) \quad \vec{B} = \mu_0 \mu_r \vec{H}$$

holds for linear materials

Eq. 1: the magnetic flux tubes wrap around, with neither sources nor sinks

div
$$\vec{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

$$\oint \vec{B} \cdot \vec{dS} = \iiint \operatorname{div} \vec{B} \, dV = 0$$

divergence / Gauss theorem

Eq. 2: electrical currents generate ("stir up") a magnetic field

$$\operatorname{rot} \vec{H} = \left(\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z}\right) \vec{i_x} + \left(\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x}\right) \vec{i_y} + \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y}\right) \vec{i_z} = \vec{J}$$

$$\oint \vec{H} \cdot \vec{dl} = \iint \operatorname{rot} \vec{H} \, dS = \iint \vec{J} \, dS = NI$$
Kelvin–Stokes theorem

From Eqs. 2 and 3 we can derive Biot-Savart law

$$\oint \vec{H} \cdot \vec{dl} = I$$

$$H(2\pi r) = I$$

$$H = \frac{I}{2\pi r}$$

$$\vec{B} = \mu_0 \vec{H}$$

$$B = \mu_0 H = \frac{\mu_0 I}{2\pi r}$$

Eq. 3 relates the effect (B) to the cause (H)

In a linear material

 \overrightarrow{H}

produces

 \vec{B}

according to

$$\vec{B} = \mu_0 \mu_r \vec{H}$$

In a nonlinear material (with for ex. saturation and hysteresis), the constitutive law becomes more complex

In most of our simulations we use a simple BH model for the material: this is a typical curve for an electrical steel

Now, why do the flux lines come out perpendicular to the iron?

Because they obey to Maxwell!

iron $\mu_r \gg 1$

air
$$\mu_r = 1$$

 $H_{\parallel, \operatorname{air}} = H_{\parallel, \operatorname{iron}}$

$$B_{\parallel, \, \mathrm{air}} = \frac{B_{\parallel, \, \mathrm{iron}}}{\mu_{r, \mathrm{iron}}} \approx 0$$

 $B_{\perp, air} = B_{\perp, iron}$

This is an "advanced introduction", so let's introduce the vector potential (3D)

$\vec{B} = \operatorname{rot} \vec{A}$

always holds

In magnetostatics, we can combine Eqs. 1 to 3 in a more compact form (3D)

div
$$\vec{B} = 0$$

rot $\vec{H} = 0$
 $\vec{\nabla}^2 \vec{A} = \vec{0}$
holds for
magnetostatics
and in air
 $\vec{B} = \mu_0 \vec{H}$

In 2D this becomes a scalar Laplace equation

$$\nabla^2 A_z = 0$$

$$\frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} = 0$$

holds for magnetostatics and in air 1. Introduction

2. Fundamentals 1: Maxwell and friends

3. Fundamentals 2: harmonics

We look at the 2D first: how can we conveniently describe the field in the aperture, for ex. in a quadrupole?

And in another resistive magnet, with a different configuration?

SESAME sextupole + vertical dipole corrector Can the same formalism also describe the field in the aperture of a superconducting dipole?

The solution is a harmonic (or multipole) expansion, describing the field (within a circle of validity) with scalar coefficients

This decomposition has two characteristic radii: R_{ref} and R_{max}

Expanding Eq. 4 in terms of radial and tangential components, we find sin and cos terms

$$B_r = \sum_{n=1}^{\infty} \left(\frac{r}{R_{ref}}\right)^{n-1} \left[B_n \sin(n\theta) + A_n \cos(n\theta)\right]$$
$$B_\theta = \sum_{n=1}^{\infty} \left(\frac{r}{R_{ref}}\right)^{n-1} \left[B_n \cos(n\theta) - A_n \sin(n\theta)\right]$$

In most cases, there is a main fundamental component, to which the other terms are normalized

(4)
$$B_y(z) + iB_x(z) = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{z}{R_{ref}}\right)^{n-1}$$

$$b_n = 10000 \frac{B_n}{B_N} \qquad a_n = 10000 \frac{A_n}{B_N}$$

$$B_{y}(z) + iB_{x}(z) = B_{N} \sum_{n=1}^{\infty} \frac{b_{n} + ia_{n}}{10000} \left(\frac{z}{R_{ref}}\right)^{n-1}$$

field strength ______ field shape

Another useful expansion derived from Eq. 4 is that of B_y on the midplane, *i.e.* at y = 0

$$B_{y}(x) = \sum_{n=1}^{\infty} B_{n} \left(\frac{x}{R_{ref}}\right)^{n-1} = B_{1} + B_{2} \frac{x}{R_{ref}} + B_{3} \left(\frac{x}{R_{ref}}\right)^{2} + \cdots$$
$$B_{x}(x) = \sum_{n=1}^{\infty} A_{n} \left(\frac{x}{R_{ref}}\right)^{n-1} = A_{1} + A_{2} \frac{x}{R_{ref}} + A_{3} \left(\frac{x}{R_{ref}}\right)^{2} + \cdots$$

Each multipole corresponds to a field distribution: adding them up, we can describe everything (compatibly with Maxwell)

B₁: normal dipole

B₂: normal quadrupole

B₃: normal sextupole

A₁: skew dipole

A₂: skew quadrupole

A₃: skew sextupole

B₁ is the normal dipole

B₂ is the normal quadrupole

B₃ is the normal sextupole

The allowed / not-allowed harmonics refer to the terms that shall / shall not cancel out thanks to design symmetries

<u>fully symmetric dipoles</u>: only B₁, b₃, b₅, b₇, b₉, etc.

<u>half symmetric dipoles</u>: B_1 , b_2 , b_3 , b_4 , b_5 , etc.

These are the allowed harmonics for fully symmetric quadrupoles and sextupoles

<u>fully symmetric quadrupoles</u>: B₂, b₆, b₁₀, b₁₄, b₁₈, etc.

We can change R_{ref} and scale up (or down) the harmonics

$$B_{n,2} = B_{n,1} \left(\frac{R_{ref,2}}{R_{ref,1}}\right)^{n-1} \qquad \qquad b_{n,2} = b_{n,1} \left(\frac{R_{ref,2}}{R_{ref,1}}\right)^{n-N}$$

Let's have a look at a real case: the measurements of 33 quadrupoles built for SESAME

mean ± rms	QF @ 250 A
b ₃	-0.2 ± 0.8
a ₃	-0.1 ± 0.9
b_4	0.3 ± 0.4
a ₄	-0.3 ± 0.1
b ₅	0.0 ± 0.1
a ₅	0.0 ± 0.1
b ₆	-0.1 ± 0.1
b ₁₀	-0.3 ± 0.0
b ₁₄	0.3 ± 0.0

SESAME QF

harmonics in 10⁻⁴ at 24 mm radius

Now, are our magnets 2D or 3D? In most cases what matters is the integrated strength = central strength × magnetic length

50

This 2D decomposition holds also for the integrated 3D field, as long as at the start / end B is constant along z

Thank you

If you want to know more...

- 1. Lectures about magnets in CERN Accelerator Schools
- 2. Special CAS edition on magnets, Bruges, Jun. 2009
- 3. N. Marks, Magnets for Accelerators, J.A.I., Jan. 2015
- 4. D. Tommasini, Practical Definitions & Formulae for Normal Conducting Magnets
- 5. Superconducting magnets for particle accelerators in USPAS
- 6. J. Tanabe, Iron Dominated Electromagnets
- 7. P. Campbell, Permanent Magnet Materials and their Application
- 8. K.-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets
- 9. M. N. Wilson, Superconducting Magnets
- 10. A. Devred, Practical Low-Temperature Superconductors for Electromagnets