






The Earth’s field at our latitudes is about 0.5 Gauss, that is, 5·10-5 T.

The value above was computed using the World Magnetic Model (WMM) and the
latitude / longitude / elevation of Archamps. The date also matters, because the
Earth’s magnetic field changes (in direction and amplitude) with time.

You can check that out at www.ngdc.noaa.gov/geomag/WMM.



The LHC main dipoles (MB = Main Bending) are superconducting magnets, built in
the 2000’s.

The coils are wound in Nb-Ti and they are cooled by superfluid helium at 1.9 K.

At the nominal current of 11.8 kA, the dipole field is 8.3 T, in a 56 mm diameter
circular aperture.

Each dipole bends the beam by 360 / 1232 = 0.29 deg.

They are slowly ramped (about 20 min.) and then used in dc mode, as the LHC
operates as a collider.

These magnets are the result of many years of R&D and they are basically at the
limit of what can be achieved with Nb-Ti superconducting technology.

Note as of Feb. 2018: LHC ran in 2017 at 6.5 TeV, corresponding to 7.71 T; out of
the 8 sectors, 2 have already been “trained” – with quenches – up to about 8.1 T.



The SPS main dipoles are resistive magnets, with coils in copper. Demineralized
water flows in the conductor to remove the Joule heating.

At the peak current of 5.8 kA, they provide a dipole field of 2.0 T in a rectangular
aperture. Two types of magnets with a smaller (39 mm, MBA) and larger (52 mm,
MBB) vertical aperture are used.

Each dipole bends the beam by 360 / 744 = 0.48 deg.

They now work in a cycled mode and they can be ramped in a few seconds.

In the 1970s, also a superconducting option was studied (but then abandoned)
for the SPS.

The main SPS power converters can give a peak (active) power of ≈ 100 MW,
which is drawn directly from the 400 kV lines. The average (rms) power depends
on the duty cycle, though it is usually ≈ 30 MW.

The photo was taken in 1974.



The LHC main quadrupoles (MQ) are superconducting magnets.

The coils are wound in Nb-Ti and they are cooled by superfluid helium at 1.9 K,
like the LHC dipoles.

At the nominal current of 11.8 kA, they provide a gradient of 223 T/m.
Considering their aperture of 56 mm diameter, this corresponds to a pole tip field
of 6.2 T ( = 223 × 0.028). The peak field in the conductor is about 10% higher, at
6.8 T.



The SPS main quadrupoles are resistive magnets, with coils in copper.

Demineralized water flows in the conductor to remove the Joule heating, as for
the SPS dipoles.

At the peak current of 2.1 kA, the quadrupole gradient is 22 T/m in a 88 mm
diameter circular aperture. The pole tip field is then 1.0 T ( = 22 × 0.044).



This is an example of a combined function (dipole + quadrupole) bending magnet,
found for example in third generation synchrotron light sources. The technology is
the same as that for the SPS dipoles shown before, just with a different design of
the ferromagnetic yoke.

In ELETTRA, there are 24 such magnets. At the nominal current of 1420 A, the
dipole field is 1.2 T, together with a quadrupole gradient of 2.9 T/m. The vertical
gap is 70 mm; the bending radius of the machine is 5.5 m.

These magnets were built in the 1990s.



This is an example of a common design found in synchrotron light sources, where
the (short) sextupoles have additional windings so that they can be used also as
corrector magnets.

In this case, the correctors are a horizontal / vertical dipole, which can provide up
to 0.5 mrad kick at 2.5 GeV – and a skew quadrupole.



In brief:

- dipoles bend the beam, in fact they are also called bending magnets

- quadrupoles focus the beam

These are usually the main magnets in synchrotrons and transfer lines.

A combined function bending magnet is a superposition of a dipole and a
quadrupole: it bends and focuses the beam at the same time. They are less
popular now with respect to the early days of synchrotrons; still, they are used in
some modern machines, for ex. light sources. There are examples of both resistive
and superconducting combined function bending magnets.



In electromagnets the field is produced by electrical currents going through the
windings. In permanent magnets, on the other hand, the field is produced by hard
magnetic material, such as NdFeB or SmCo.

Iron dominated magnets use a yoke (usually in electrical steel or iron) to guide,
shape and reinforce the field; the position of the coils (or permanent magnets) is
of minor importance for the strength and homogeneity of the field. Coil
dominated magnets use the flux directly generated by the electric current flowing
in the windings to shape the field; the position of the iron yoke (if any) is of minor
importance for the strength and homogeneity of the field.

Normal conducting (or resistive) magnets have resistive coils, in copper or
aluminum, and they are operated around room temperature. Joule heating has to
be taken into consideration; when air cooling (natural convection) is not enough,
typically a forced flow of demineralized water is added.

Superconducting magnets have superconducting coils, with no Joule heating. The
known technical superconductors need to be cooled at cryogenic temperatures to
work.

The mode of operation can be static (dc, ex. main magnets in a collider or
synchrotron light source), cycled / ramped / slow pulsed (ex. main magnets in a
synchrotron for hadron therapy) or fast pulsed (ex. kickers).

In some cases, there might be some hybrids, e.g. an electromagnet with some
permanent magnet.



Hans Christian Ørsted showed that closing an electric circuit induces an effect on
a compass needle. The flux lines are concentric circuits around the wire.

You can find two nice animations on the internet:

- by Museo Galileo, www.youtube.com/watch?v=-w-1-4Xnjuw

- by the National MagLab, www.youtube.com/watch?v=RwilgsQ9xaM



In 1824 William Sturgeon found that having iron inside the coil greatly increased
the resulting magnetic field. Sturgeon also bent the iron core into a U-shape to
bring the poles closer together, thus concentrating the magnetic field lines.

The electromagnet was made of 18 turns of bare copper wire (insulated wire had
not yet been invented), with mercury cups acting as switches.

He displayed its power by lifting nine pounds (4.1 kg) with a seven ounce (200 g)
piece of iron wrapped with wire through which a current from a single battery
was sent.

sources:

Wikipedia

http://physics.kenyon.edu/EarlyApparatus/Electricity/Electromagnet/Electromagnet.html

http://etc.usf.edu/clipart/galleries/380-magnetism (for this and other cliparts)



The experiments of Ørsted and Sturgeon show the basic principles on which our
magnets work, at least in static conditions.

Macroscopically also the most modern superconducting magnets work on the
first two principles (an electrical current induces a field and iron reinforces it) –
just the material of the coil itself has no electrical resistance.







The jargon used in particle accelerator magnets is somewhat different from that
used in classical electromagnetism.

B is usually referred to as the magnetic field and it is measured in Tesla [T], or
Weber/m2 [Wb/m2]. This is the field seen by the beam, through Lorentz force.

H is mostly used when dealing with iron dominated magnets, in particular to
compute the magnetomotive force, produced in a ferromagnetic material by the
electrical current in the coils. H is measured in Ampere/m [A/m] and usually
referred to simply as the H field, or as the magnetic field strength, although the
latter can be misleading in this context.

Old units for B are Gauss [G] and kiloGauss [kG]: 10000 G = 1 T = 10 kG.

An old unit for H is Oersted (Oe): 1 Oe = 1000/(4p) A/m



For us B is defined through its effect on moving charged particles (or electrical
currents), where:

- Fm is the magnetic force

- q the electrical charge

- v the speed

- I the current

- ℓ the (oriented) length

Lorentz force is the main link between electromagnetism and mechanics.

Indeed also the definition of T (Tesla) is built upon this expression: a particle,
carrying a charge of 1 Coulomb, and moving perpendicularly through a magnetic
field of 1 Tesla, at a speed of 1 m/s, experiences a force with magnitude 1
Newton.

The force acting on a beam of charged particles exploits the magnetic field
because of the (huge) leverage factor of the velocity v, which is often close to the
speed of light in our accelerators.



In addition to the symbols already defined, we have:

- J as the (free) current density (A/m2)

- E as the electric field (V/m)

- D as the electric displacement field (C/m2)

- r as the (free) electric charge density (C/m3)

- e as the electric permittivity (F/m)

- t as the time

The term with curl of E – which we will not comment more in this introduction –
is connected to eddy currents: a variation of B with time induces an electric field.
For magnets, this is sometimes annoying (for example, long time constants in
solid yoke magnets) but it’s a fundamental principle exploited in magnetic
measurements (ex. rotating coil).

The picture shows James Clerk Maxwell as a young man – he was around 30 when
he first published these equations.



In magnetostatics, as there are no time dependent fields, the equations for the
electric and the magnetic parts become uncoupled.

We give these equations a number as we will use them much during this
introduction.



The B field is divergence free, or solenoidal.

The total flux entering a bounded region equals the total flux exiting the same
region (by Gauss theorem): there are neither sources nor wells.

The surface integral is to be carried out on a closed boundary.



The curl of the H field is generated by currents.

Applying Stokes’ theorem, the integral of H around a closed loop equals the total
current passing through a surface that has that loop as a boundary. This is also
known as Ampere’s law.

NI – i.e., the sum of concatenated currents – is generally called Ampere-turns.



Biot-Savart law can be derived from Eqs. 2 and 3, adding some symmetry
considerations and the fact that mr = 1.



In a way, we can see H as the cause and B as the effect. H is generated by electric
currents B in turns than interacts with the beam.

The relationship between B and H depends on the material.

For simple linear materials, there is just a proportionality between B and H,
through the permeability m. Sticking to linear materials, more in general m is a
second rank tensor, that is, it has different values along different axes, to describe
anisotropy.

For more complex materials (for ex., iron) the relation between B and H is more
complex, it can be a function of the field level (ex. saturation) or even of the cycle
leading to that H (ex. hysteresis).



This hysteresis plot is taken from http://hyperphysics.phy-astr.gsu.edu.

You can look up in any (good) textbook the microscopic mechanism underlying
the hysteresis loop, and the definition of remanence and coercitivity. Also, often
another quantity is introduced, the magnetization M.



For our simulations, most often we use the so-called “virgin curve” that goes
through the origin, without any hysteretic effect.

As an example, we show here a typical curve for a not-oriented low Si electrical
steel, M1200-100 A.

The saturation knee can vary a little depending on the grade of the material used.
This explains why in practice using iron dominated resistive magnets above 2 T is
not viable.



We plot as an example the cross section of the HIE-ISOLDE dipole, a CERN magnet
which is representative of a typical resistive bending magnet.

We see that in the aperture, at the interface between iron and air, the flux lines
come out (basically) perpendicular to the iron. Why?



The first equation, about the continuity of the parallel component of H, can be
derived from

over the thin rectangle shown in the picture; the contribution in the short sides is
negligible, thus the one along the long sides has to be the same, so that the curl
of H is 0.

The second equation follows from the first one by applying the constitutive
equation in air and iron:

The third equation, about the continuity of the perpendicular component of B, is
a consequence of the field being divergence free:

Since this is in 2D, the z component of the field is 0.

There is a discontinuity of |B| at the boundary.
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Another power concept is that of vector potential A, with units of Tm.

If we know A, then we can obtain B by applying the curl (i.e., with the proper
derivatives).

On the other hand, if we know B, we can define A by integration, up to a constant,
or better a “curl free” term. The choice of this term is referred to as gauge choice.
That  doesn’t really matter, as it’s transparent: when we apply the curl to compute
B, it doesn’t contribute to it. In magnetostatics, a convenient choice is to pick this
term so that the div of A vanishes.

The vector potential A is often used in simulation codes, both in 2D and 3D.

If you’re interested, you can have a look at Feynman’s insight on the topic,
including a description of how the A field looks like, and about it being a mere
mathematical construction or something “real”.

www.feynmanlectures.caltech.edu, Vol. II, chap. 15

There is also a magnetic scalar potential, which is particularly handy in 2D to
figure out the ideal pole profiles for iron dominated magnets.



The first condition, that is B is divergence free, is automatically satisfied, as the div
of a curl (of A in this case) is 0: just write out the components to prove that.

Then we can substitute H with B in the second condition:

This is equal to 0 – thus satisfying the second condition, if we choose A with a
gauge so that its divergence is 0, which is possible.

The “condensed” equation on the right is Laplace equation: it says that the vector
Laplacian of A is equal to 0 in air, that is
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If we stay in 2D – say in the (x,y) plane – then it means that the z component of B
is 0. It turns out that only the z component of A matters: just work out the curl of
B and set to 0 all the partial derivatives in z.

Now Laplace equation becomes a scalar equation. This fully describes our
magnetostatic problem in 2D, in a region of space without electrical currents and
in air (that is, in a material with relative permeability equal to 1).





So, Maxwell describes it all… but, is there a convenient way to characterize the
field in the aperture of our magnets?

We can look at the 2D first.

For this quadrupole, for example, we would need to know at every point the two
components of B. Can we fit these to some functions? What do our colleagues
from beam dynamics like to handle?



Ideally, we would want a set of functions to be used in quite a general way, for
example also for a sextupole with combined correctors.



And also for a high field dipole.

That is, we are looking for a formulation which is rather general.



The solution is the harmonic (or multipole) series expansion. We don’t derive it
here, but it follows from Laplace equation on the vector potential (p. 32). Details
can be found in many of the references at the end.

B (a 2D vector field) is then simply described by a series of scalar coefficients: B1,
A1, B2, A2, etc. These are the so-called (not-normalized) harmonics, or multipoles.
They have units of Tesla. The convenience is that we don’t need to keep all (that
is, an infinity) of terms: a few ones of this convergent series are in general more
than enough. [There are mathematical laws providing bounds for this
convergence]

Bn are the so-called normal terms, whereas An are referred to as skew terms.

Rref is a reference radius.

Rmax is the maximum radius of validity (see next page).

The equation is so important that we give it a number too. On the other hand,
there are different ways of writing it, for ex., with or without a reference radius, or
with a different indexing (from 0 to ∞ instead of from 1 to ∞).



This 2D decomposition holds within a circle of radius Rmax:
- without currents
- without (hard or soft) magnetic materials: in practice for us, in air or vacuum,
and also in the walls of the vacuum chamber, which is not ferromagnetic (in
stainless steel, for ex.)

The sketch on the left shows the poles of a typical resistive dipole: Rmax is in this
case dictated by the iron and it is half the distance between the poles.

On the right the sketch refers to a textbook superconducting (sector coil) dipole:
here Rmax is the inner coil radius.

On the other hand, there is no set rule to pick Rref, which is a reference radius,
used for normalization purposes. In practice, we tend to pick a value that defines
the good field region needed for the beam. A typical value is 2/3 of the physical
aperture.



If we expand Eq. 4 in terms of radial and tangential components of the field, we
end up with a series containing sin and cos terms. In fact, the multipoles can also
be seen as a Fourier decomposition.

In this way, we can see that each term can be computed independently from each
other (that is, each component is orthogonal in a mathematical sense).

Moreover, if we pick up signals relative to the radial or tangential field – for ex.
with a rotating coil – then we can do a standard Fourier analysis (FFT back in the
days) to get the harmonic coefficients.

Finally, this description of the field in terms of Bn, An components is convenient to
handle for our beam physics colleagues, both for optics calculations and for
nonlinear resonances.



The top formula is again Eq. 4.

Typically there is a main (or fundamental component), say BN, which can be used
to normalize the coefficients, yielding bn and an. These terms are now
dimensionless and they are most often defined in units in 10-4. These terms
should all vanish if the fundamental field were pure, so they are an indication of
the field errors, or distortion.

The bottom expression is simply the top one rewritten using the normalized
multipoles. In this way, there is a leading term (BN) which defines the strength of
the field, and a summation of other coefficients which describe the field shape.

Following this definition, bN = 10000.



This expansion is nothing new, that is, it can be derived from Eq. 4 by staying on
the midplane, where y = 0. The normal terms (Bn) contribute only to the vertical
field, and vice versa for the skew terms (An).

The top formula is the one that we use more frequently. It shows that By on the
midplane has a constant term, a linear one, a quadratic one, and so on.

So, if we know the harmonics, we can write down this polynomial expansion.

On the other hand, if we know (for ex., from measurements) this polynomial
expansion, we cannot strictly speaking derive the multipoles. We typically still do
so, doing a polynomial fitting, but in this case the various terms are not
orthogonal, that is, we get different results according to the coefficients that we
retain in the series.



Each term – taken individually – has a specific meaning, both to the magnet
designer and the beam physicist.

The normal family involves a field perpendicular to the y = 0 line, that is, vertical
field in the horizontal (usually) plane. In the skew family, the field is tangential to
the same y = 0, that is, we have horizontal field in the horizontal (usually) plane.

The skew types are obtained from the normal ones with a 360/(4n) deg rotation,
ex. 90 deg for dipole, 45 deg for quadrupole, 30 deg for sextupole.

Skew magnets are in practice just rotated normal magnets.



With this notation, the dipole is the B1 term, which provides a field constant in
space.



Then B2 is the quadrupole, where By changes linearly with x.

In the center, there is no field.

The gradient of a quadrupole is the slope of the By vs. x line. This is measured in
T/m.

It turns out that Bx is also linear vs. y – in the vertical plane – with the same
gradient. Just write down the components from Eq. 4 to see that.

This is why a quadrupole acts simultaneously on two planes for a beam: in
particular, if it provides a focusing field on one plane, then it will be defocusing on
the orthogonal plane.



Then B3 corresponds to a sextupole.

Here the field dependency is quadratic in x.

In the center, there is no field and no field gradient.

A sextupole is usually characterized by the second derivative of By vs. x, B’’.

The sextupole can be thought of as a quadrupole where the gradient (slope)
changes linearly with the radial displacement x.



We like to divide the multipoles in two families: allowed and not-allowed (or
random).

The not-allowed (or random) terms are the ones that should not be there, thanks
to symmetries in the design. They then arise due to asymmetries introduced
during the fabrication.

The allowed multipoles are the ones that are allowed by the symmetries, that is,
that are expected by design even if no asymmetries are introduced during the
fabrication. Part of the magnetic design focuses to optimize the geometry to
cancel out these terms.

Taking resistive dipoles as an example, there are some fully symmetric layouts (top
row, with H design and window frame / O design): here only the odd normal
terms are allowed.

On the other hand, for a half symmetric dipole (ex. a C layout, as in the bottom
row) all the normal terms are allowed.



The cases above show the allowed harmonics for most common quadrupoles and
sextupoles, which are (or can be considered) fully symmetric.



Is it possible to change Rref?

Yes, and this is done routinely. For ex. we measure at the largest possible radius
(to have a better signal) and then we scale the multipoles down to a smaller
reference value (defining for ex. the good field region).

Clearly Rmax remains the same, as this is the region of validity of the expansion,
not just a normalization term.

The equation on the left can be directly derived from Eq. 4.

The expression on the right follows from the definition of normalized harmonics.

The exponent for the normalization is different in the two case: for the absolute
multipoles we scale by (n – 1) while for the relative ones we need to use (n – N),
which depends on the order of the fundamental term N.



As an example, we look at the multipoles measured at a fixed current for a series
of resistive quadrupoles (QF for SESAME). In this case, the aperture diameter is 70
mm and the harmonics are reported at 24 mm radius.

Besides these terms, there are also b1 and a1, which are dipole components
related to centering of the axis. In addition, there is the main component B2 and
the skew term a2, related to the tilt (roll) of the quadrupole.

Here we look at the other terms: sextupole, octupole, decapole, and then we
jump at the first allowed terms (for a quadrupole), that is b6, b10 and b14. The rest
is small and negligible. Since this is a series of several magnets (33), we list the
mean and standard deviation.



Now, we have a powerful decomposition in 2D, but are our magnets 2D or 3D?

Looking along the longitudinal (z) direction, the field B is maximum at the center
(z = 0) of the magnet, it is more or less constant till reaching the ends, where it
rolls off to reach a 0 value outside. The magnetic length lm is defined as that
length which – multiplied by the central field value B0 – returns the same
integrated field.

The same holds substituting the field B with the gradient B’, with the sextupole
strength B’’, and so on.

For long magnets – where the longitudinal dimension is much larger than the gap
– the behavior is dominated by the (long) central part, so taking the values of 2D
simulations and multiplying by a length yields good results. For short magnets, the
behavior is intrinsically 3D.



It turns out that the same harmonic decomposition holds in 3D for integrated
fields. In this case, the integrals have to be performed on the not-normalized
multipoles (Bn, An), and the normalized terms (bn, an) are then obtained by
dividing by the integral of the (integrated) fundamental harmonic.

Technically, this holds if at the beginning / end of the integration region there is
no longitudinal field variation, that is, dBz/dz = 0, which is the case if B is
integrated along a straight line all the way through a magnet, as the field sooner
or later will vanish.

A derivation can be found in several references, for ex. in the contribution of
Animesh Kain in the CAS on Measurement and Alignment of Accelerator &
Detector Magnets, 1997.





This is a suggestion for a “reading decalogue”:

1. http://cas.web.cern.ch/cas/CAS%20Welcome/Previous%20Schools.htm

2. http://cdsweb.cern.ch/record/1158462/files/cern2010-004.pdf

3. http://indico.cern.ch/event/357378/session/2/#all

4. https://edms.cern.ch/document/1162401/3

5. for example, http://etodesco.web.cern.ch/etodesco/uspas/uspas.html

6. ISBN 9789812563811

7. ISBN 9780521566889

8. ISBN 9789810227906

9. ISBN 978-0198548102

10. CERN-2004-006, cds.cern.ch/record/796105


