When energetic beam particles penetrates matter, secondary particles are emitted: this can be e⁻, γ, protons, neutrons, excited nuclei, fragmented nuclei...
⇒ Spontaneous radiation and permanent activation is produced.
⇒ Large variety of Beam Loss Monitors (**BLM**) depending on the application.

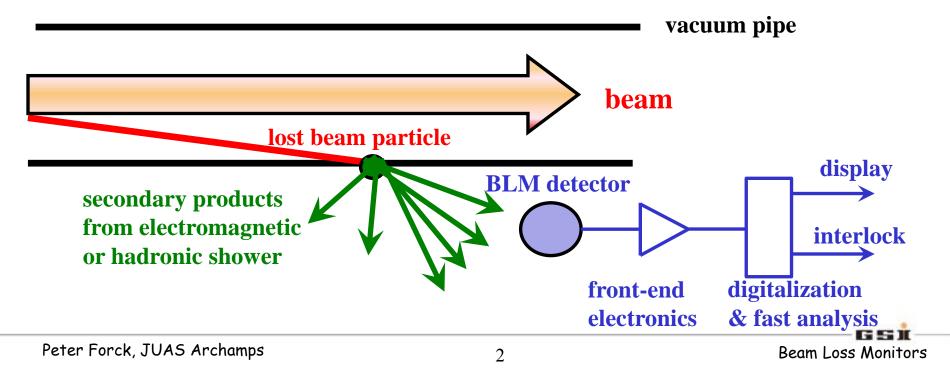
Protection: Sensitive devices e.g. super-conducting magnets to prevent quenching (energy absorption by electronic stopping)

 \rightarrow interlock signal for fast beam abortion.

Beam diagnostics: Alignment of the beam to prevent for activation

 \rightarrow optimal transmission to the target.

Accelerator physics: using these sensitive particle detectors.


> Several devices are used, depending on particle rate and required time resolution

Some applications for usage

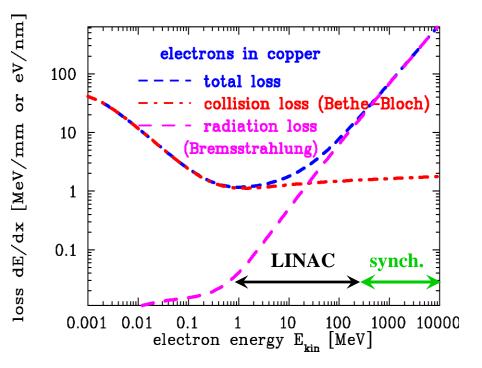
Basic idea for Beam Loss Monitors B LM:

A loss beam particle must collide with the vacuum chamber or other insertions

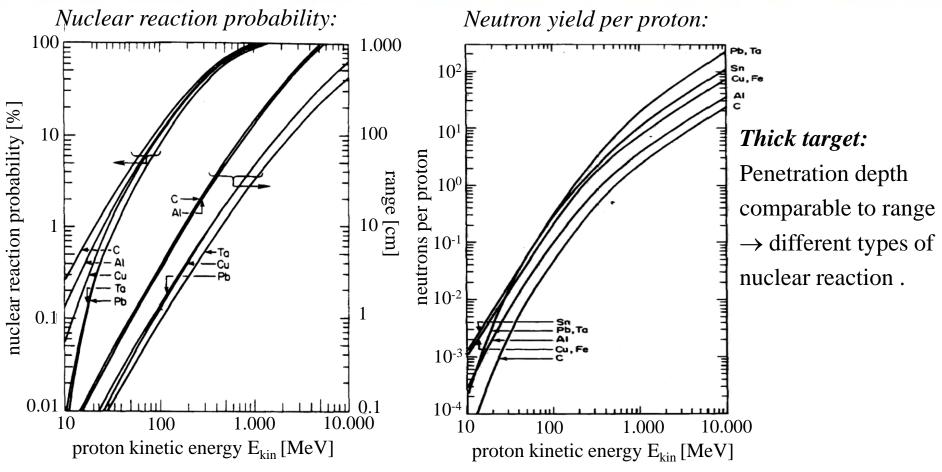
- \Rightarrow Interaction leads to some shower particle:
 - e⁻, γ , protons, neutrons, excited nuclei, fragmented nuclei
- \rightarrow detection of these secondaries by an appropriate detector outside of beam pipe
- \rightarrow relative cheap detector installed at many locations

Secondary Particle Production for Electron Beams

Processes for interaction of electrons


For *E*_{*kin*} > **100 MeV:** Bremsstrahlungs-photon dominated

 $\Rightarrow \gamma \rightarrow e^+ + e^- \text{ or } \mu^{\pm}, \pi^{\pm} \dots$

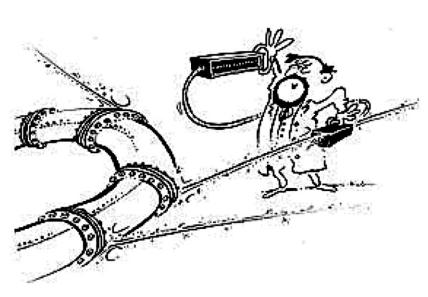

- \rightarrow electro-magnetic showers
- \Rightarrow excitation of
 - nuclear giant resonances $E_{res} \approx 6 \text{ MeV}$ via (γ , n), (γ , p) or (γ , np)
 - \rightarrow fast neutrons emitted
 - → neutrons: Long ranges in matter due to lack of ele.-mag. interaction.

For *Ekin* < **10 MeV:**

 \Rightarrow only electronic stopping (x-rays, slow e⁻).

Secondary Particle Production for Proton Beams

 \Rightarrow High rate of neutron with broad energy & angular distribution

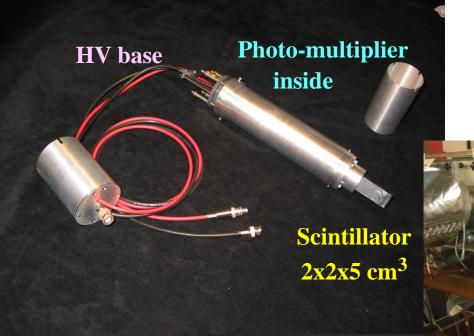

 \Rightarrow Role of thumb for protons: Sufficient count rate for beam loss monitoring only for $E_{kin} \ge 100$ MeV


Outline:

- > Physical process from beam-wall interaction
- > Different types of Beam Loss Monitors

different methods for various beam parameters

- Machine protection using BLMs
- > Summary



Scintillators as Beam Loss Monitors

Plastics or liquids are used:

 detection of charged particles by electronic stopping

detection of neutrons by elastic collisions n on p in plastics and fast p electronic stopping.

Scintillator + **photo-multiplier**:

counting (large PMT amplification) or analog voltage ADC (low PMT amp.). Radiation hardness: plastics 1 Mrad = 10^4 Gy liquid 10 Mrad = 10^5 Gy

3-Mau-01

127 ⊭ ⇔0%/→0% ──in 10412-

(]:Həmp](])-50 mV

Example: Analog pulses of plastic scintillator: \Rightarrow broad energy spectrum due to many particle species and energies.

> distribution N(U) → ← 50 mV 20 ns/div and 100 mV/div Beam Loss Monitors

40 ns

100 mV

Analog pulses U(t)

Pulse high

Low Current Measurement: Particle Detectors

Electronic solid state amplifier have finite noise contribution

Theoretical limit:
$$U_{eff} = \sqrt{4k_B \cdot R \cdot \Delta f \cdot T}$$

Signal-to-Noise ratio limits the minimal detectable current

Idea: Amplification of single particles with photo-multiplier, sec. e⁻ multiplier or MCPs and particle counting typically up to $\approx 10^6$ 1/s Scheme of a photo-multiplier: voltage divider with resistors *R*

electror

photon

Photon hits photo cathode

Secondary electrons are

acc. to next dynode $\Delta U \approx 100 \text{ V}$

Typ. 10 dynodes $\Rightarrow 10^6$ fold amplification

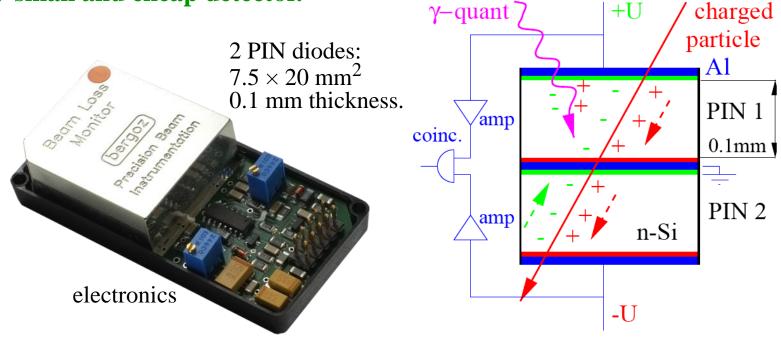
Advantage: no thermal noise due to electro static acceleration Typical 1 V signal output

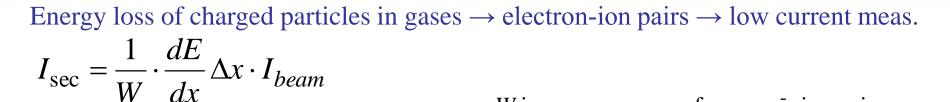
dynodes

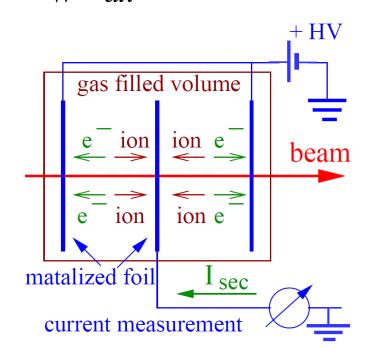
readout

U≈1 V

@50Ω

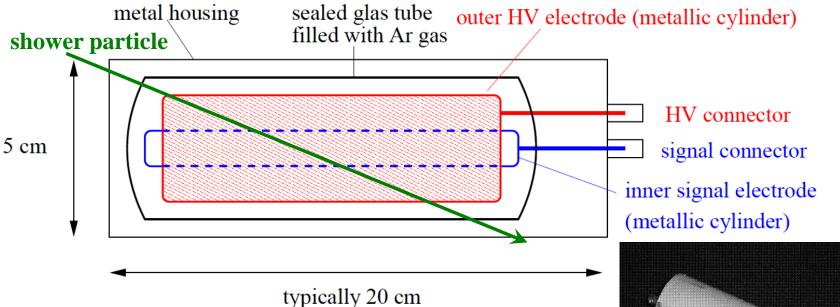

PIN-Diode (Solid State Detector) as BLM


Solid-state detector: Detection of charged particles.


Working principle

- > About 10^4 e^- -hole pairs are created by a Minimum Ionizing Particle (MIP).
- ➤ A coincidence of the two PIN reduces the background due to low energy photons.
- ➤ A counting module is used with threshold value comparator for alarming.

\rightarrow small and cheap detector.


W is average energy for one e^- -ion pair:

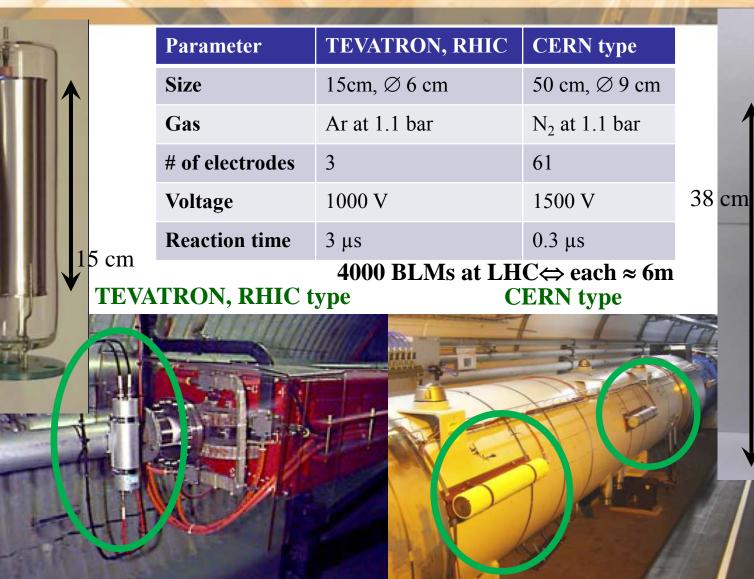
Gas	Ionization Potential [eV]	W-Value [eV]
He	24.5	41.3
Ar	15.7	26.4
H_2	15.6	36.5
N_2	15.5	34.8
O ₂	12.5	30.8
CH ₄	14.5	27.3
Air		33.8

Ionization Chamber as BLM

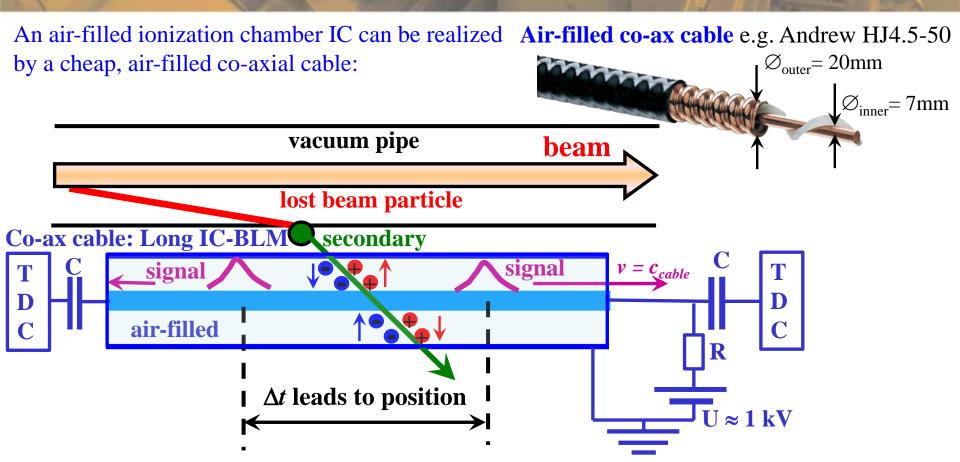
Jous

Main detection of charged particles

Sealed tube Filled with Ar or N₂ gas:


- ≻ Creation of Ar⁺-e[−] pairs, average energy W=32 eV/pair
- measurement of this current
- > Slow time response due to 100 μ s drift time of Ar⁺.

Per definition: direct measurement of dose.

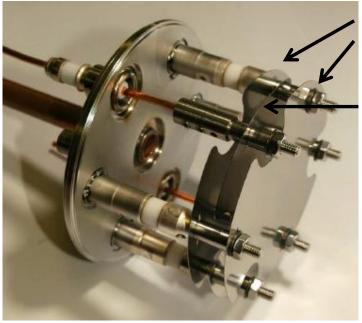

Beam Loss Monitors

Ionization Chamber as BLM: TEVATRON and CERN Type

iuas

The long, cable-based Ionization Chamber

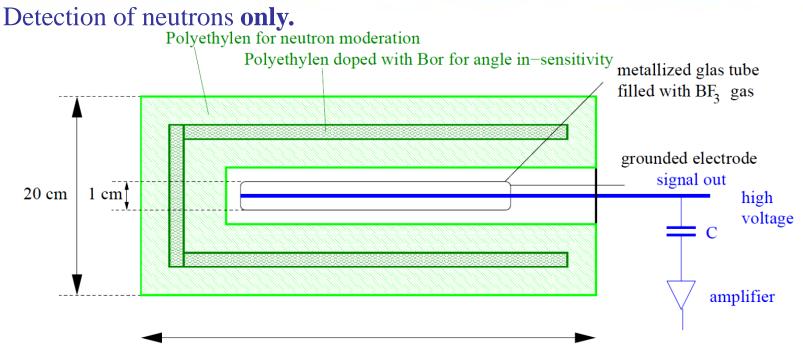
Realization: long cable along beam line \Rightarrow spatial resolution via time-of-flight measurement: determination of signal arrival at both ends leads to Δt typical signal resolution of time-of-flight $\Delta t \approx 10$ ns \Rightarrow position resolution $\Delta x = c_{cable} \cdot \Delta t = 1.5$ m **Advantage of long IC**: cheap, good spatial resolution


Secondary Electron Monitor as BLM

Ionizing radiation liberates secondary electrons from a surface. Working principle:

- Three plates mounted in a vacuum vessel (passively NEG pumped)
- → Outer electrodes: biased by $U \approx +1$ kV
- Inner electrode: connected for current measurement (here current-frequency converter)

 \rightarrow small and cheap detector, very insensitive.

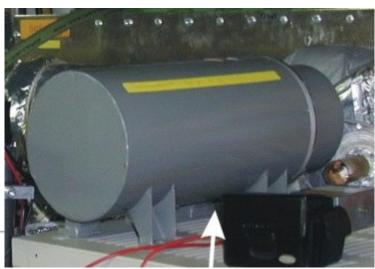


HV electrodes

Electrode for measured current

Detector with intrinsic amplification: Secondary electron multiplier i.e. a 'photo-multiplier without photo-cathode'

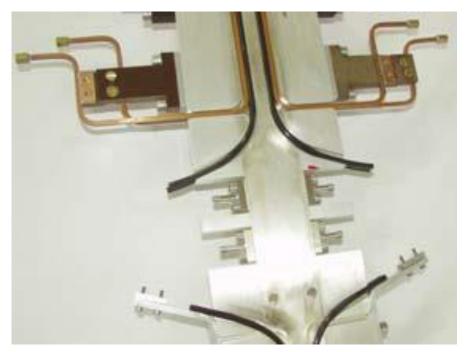
BF₃ Proportional Tubes as BLM


typically 50 cm

Physical processes of signal generation:

- 1. Slow down of fast neutrons by elastic collisions with p
- 2. Nuclear reaction inside BF₃ gas in tube:

¹⁰**B** + **n** \rightarrow ⁷L**i** + α with Q = 2.3 MeV.


3. Electronic stopping of ⁷Li and α leads to signal.

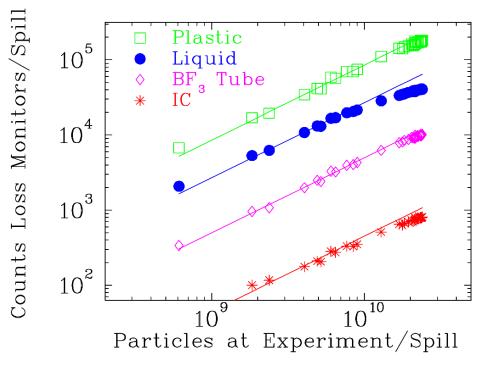
Example for Optical Fibers BLM

Advantage of optical fibers: Good spatial resolution with one detector

- \rightarrow Installation parallel to beam pipe
- \rightarrow low distance to loss
- \Rightarrow high solid angle for small volume

Alternative detection principle: Cherenkov light by fast transversing particle

Example: Beam pipe of undulator at FLASH


Peter Forck, JUAS Archamps

Beam Loss Monitors

Comparison of different Types of BLMs

Different detectors are sensitive to various physical processes.

Example: Beam loss for 800 MeV/u O ⁸⁺ with different BLMs at GSI-synchr.:

 $\Rightarrow \text{Linear behavior for all detectors}$ but quite different count rate: $r_{\text{IC}} < r_{\text{BF3}} < r_{\text{liquid}} < r_{\text{plastic}}$

Outline:

- > Physical process from beam-wall interaction
- Different types of Beam Loss Monitors different methods for various beam parameters
- Machine protection using BLMs

interlock generation for beam abort

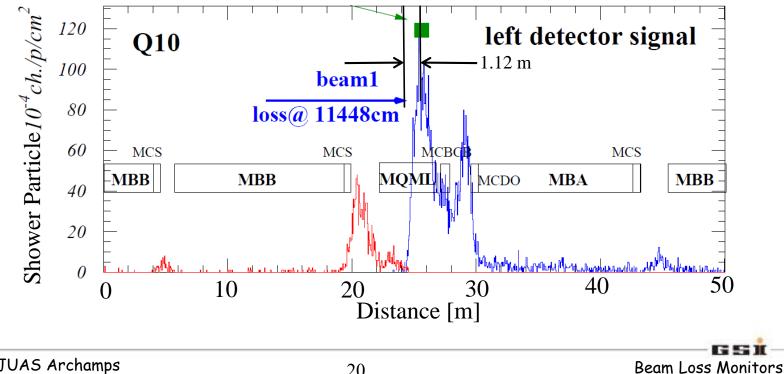
> Summary

Losses lead to permanent activation \Rightarrow maintenance is hampered and to material heating (vacuum pipe, super-cond. magnet etc.) \Rightarrow destruction. **Types of losses:**

- Irregular or fast losses by malfunction of devices (magnets, cavities etc.)
 - \rightarrow BLM as online control of the accelerator functionality and **interlock generation**.
- Regular or slow losses e.g. by lifetime limits or due to collimator
 - \rightarrow BLM used for alignment.

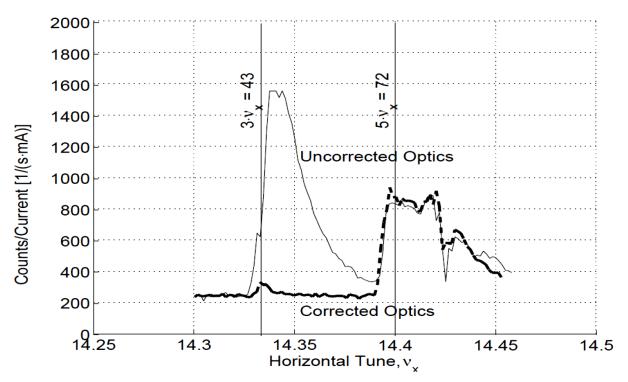
Demands for BLM:

- ➢ High sensitivity to detect behavior of beam halo e.g. at collimator
- Large dynamic range:
 - \rightarrow low signal during normal operation, but large signal in case of malfunction
 - \rightarrow detectable without changing the full-scale-range
 - e.g. scintillators from 10^2 1/s up to 10^7 1/s in counting mode.

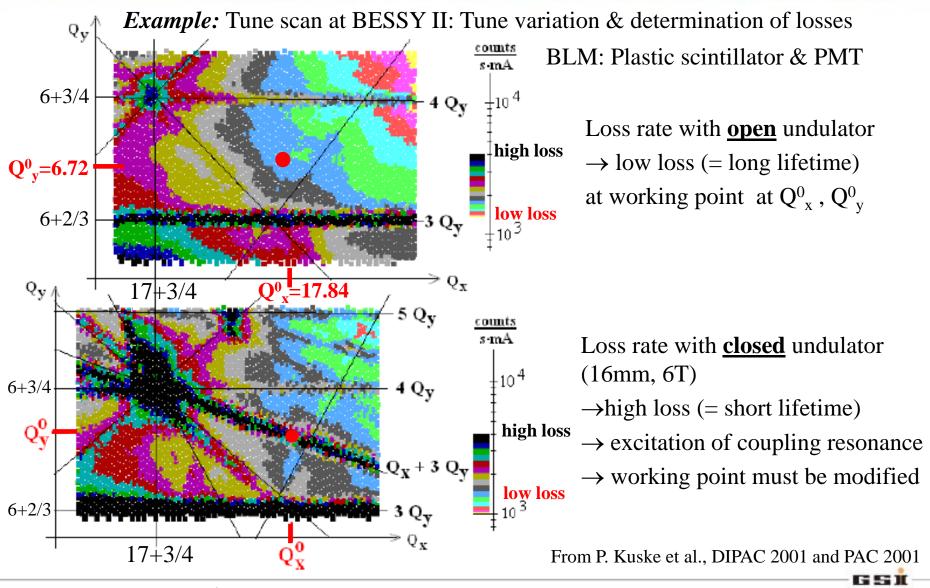

Monitoring of loss rate in control room *and* as interlock signal for beam abortion.

Application: BLMs for Quench-Protection

Super-conducting magnets can be heated above critical temperature T_c by the lost beam


- \Rightarrow breakdown of super-conductivity = 'quenching'.
- \Rightarrow Interlock within 1 ms for beam abortion generated by BLM.
- Position of detector at quadruples due to maximal beam size.
- High energy particles leads to a shower in forward direction \rightarrow Monte-Carlo simulation.

Example: LHC proton beam at 7 TeV: shower maximum @ 11560cm


Application: BLMs for optimal Tune Alignment

Example: Loss rate at a scraper inside the synchrotron as a function of the tune (i.e. small changes of quadrupole setting):

Beam blow-up by weak resonances can be avoided by proper tune value \rightarrow very sensitive device for optimization.

Application: BLMs for optimal Tune Alignment

Peter Forck, JUAS Archamps

Beam Loss Monitors

Measurement of the lost fraction of the beam:

- \blacktriangleright detection of secondary products
- \blacktriangleright sensitive particle detectors are used outside the vacuum
- \succ cheap installations used at many locations

Used as interlock in all high current machines for protection. Additionally used for sensitive 'loss studies'.

Depending on the application different types are used: Frequently used:

- Scintillators: very sensitive, fast response, largest dynamics, not radiation hard
- PIN diode: insensitive, fast response, not radiation hard, cheap
- ➢ IC: medium sensitive, slow response, radiation hard, cheap, absolute measurement of dose Used for special application:
- (Electron Multiplier: medium sensitive, fast response, radiation hard)
- > BF₃ tube: only neutrons, slow response, radiation hard, expensive
- > Optical fibers: insensitive, very slow, radiation hard, very high spatial resolution.