Future High Energy Linear Colliders

Louis Rinolfi

CERN

Hadrons versus leptons colliders

- hadron collider => frontier of physics
 - discovery machine
 - quarks collisions
 - not all nucleon energy available in collision
 - huge background

e+ e-

- lepton collider => precision physics
 - study machine
 - elementary particles collisions
 - well defined CM energy
 - polarization possible

29th January 2018

Basic Linear Collider

BDS = Beam Delivery System RTML = Return To Main Linac

3

Luminosity

Number of events = $L \cdot \sigma_{event}$

 σ_{event} is the probability of producing a particular event L is a measure of the total number of interactions

The unit of the cross-section (σ_{event}) is the barn (1 barn = 10⁻²⁸ m²) => 1fb = 10⁻⁴³ m²

> If the cross-section to produce a given event is 1fb then we would need 1fb⁻¹ of data to get 1 event!!

$$L = N_{events} / \sigma_{event}$$

4

Major parameters for linear colliders

 F_{fill} = Filling factor of the Linac; L_{linac} = Length of the linac; G_{RF} = accelerating gradient n_b = number of bunches; N = number of particles per bunch; σ_x , σ_y = beam size parameters

5

Brief history of high energy linear colliders e⁺ e⁻

- 1985: **CLIC** = CERN Linear Collider => Compact Linear Collider
- **SLC = Stanford Linear Collider**

Start operation with the beam

1995: Six linear colliders studies at high energy, in parallel:

- => TESLA (1.3 GHz, superconducting, SC)
- => SBLC (3 GHz, normal conducting, NC)
- => NLC (11.4 GHz, normal conducting, NC)
- => JLC (11.4 GHz, normal conducting, NC)
- => VLEPP (14 GHz, normal conducting, NC)
- => CLIC (30 GHz, normal conducting, NC)
- 2004: International Technology Recommendation Panel selects the Superconducting RF technology versus room temperature technology => ILC (International Linear Collider) based on TESLA technology
- 2018: **Two studies, on high energy linear colliders:** ILC at 1.3 GHz (SC) for the multi(100's)-GeV and CLIC study at 12 GHz (NC) for the multi-TeV

SLC (Stanford Linear Collider) – California - USA

The only Linear Collider who was running with a beam (up to now) e^{-} (45 GeV) and e^{+} (45 GeV)

Operation: 1989-1998

29th January 2018

JUAS Seminar

2 experiments: MARK II, SLD Energy: 92 GeV Peak Luminosity: 2x10³⁰cm⁻²s⁻¹

ICFA/LCB/LCC Organization in 2017

CLIC (Compact Linear Collider) e⁺ e⁻

JUAS Seminar

CLIC basic scheme

Phil Burrows / CERN workshop 2018

Optimize machine design w.r.t. cost and power for a staged approach to reach multi-TeV scales:

~ 380 GeV (optimised for Higgs + top physics)
~ 1500 GeV
~ 3000 GeV

Adapting appropriately to LHC + other physics findings

Possibility for first physics no later than 2035

Project Plan to include accelerator, detector, physics

CLIC parameters

Parameter	380 GeV	1.5 TeV	3 TeV
Total luminosity L (10 ³⁴ cm ⁻² sec ⁻¹)	1.5	3.7	5.9
L above 99% of vs (10 ³⁴ cm ⁻² sec ⁻¹)	0.9	1.4	2.0
Accelerating gradient (MV/m)	72	72/100	72/100
Site length (km)	11.4	29.0	50.1
Number of bunches per train	352	312	312
Number of particles per bunch (10 ⁹)	5.2	3.7	3.7
Normalized emittance (end of linac) ϵ_x/ϵ_y (nm.rad)	920/20	660/20	660/20
Beam size at IP σ_x / σ_y (nm)	150/2.9	~60/1.5	~40/1
Beam size at IP σ_z (µm)	70	44	44
Estimated power consumption (MW)	252	364	589

For the 3 stages:

Repetition frequency f = 50 Hz

RF pulse length $\tau = 244$ ns

Bunch separation Main beam $\Delta t = 0.5$ ns

Legend

CERN existing LHC
 Potential underground siting :
 CLIC 380 Gev 11.4 km
 CLIC 1.5 TeV 20 km
 CLIC 3 TeV 50 km

Jura Mountains

. . 🕑

Geneva

Lake Geneva

e S2011 GN-France age /0/2011 GeoEye

CLIC Collaborations

32 Countries – over 70 Institutes

Some challenging parameters

Accelerating gradient (G = 100 MV/m)

Very low break down rate in the accelerating cavities (BDR $< 10^{-7}$)

Beam emittance production and preservation ($\gamma \epsilon_n = 5$ nm.rad at Damping ring exit)

Ground motion and stability requirements

Positron flux (1.1 10^{14} e⁺/s => 20 times more than the SLC machine produced)

Beam size at IP $(\sigma_v = 1 \text{ nm})$

Power consumption ($\sim 600 \text{ MW}$)

Cost (several billions of €, \$, CHF,....)

.

CLIC Timeline

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

CLIC Workshop 2018 : https://indico.cern.ch/event/656356/

JUAS Seminar

ILC (International Linear Collider) e⁺ e⁻

ILC accelerator overview

High gradient acceleration with super-conducting RF cavities G = 31.5 MV/m

High luminosity

 $L = 1.8 \ 10^{34} \ cm^{-2} s^{-1}$

Polarized beams

ILC parameters

Parameter	Symbol	ILC	Unit	
Center of mass energy	E _{cm}	500	GeV	
Total luminosity	L	2	10 ³⁴ cm ⁻² s ⁻¹	
Luminosity (in 1% of energy)	L _{99%}	1	$10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	
Main Linac RF Frequency	f_{RF}	1.3	GHz	
Linac repetition rate	\mathbf{f}_{rep}	5	Hz	
No. of particles / bunch	N _b	20	10 ⁹	
No. of bunches / pulse	k _b	1312		
Beam pulse length	Δt	730	ms	
Main beam current	Ι	5.8	mA	
Accelerating gradient	G	31.5	MV/m	
Beam power / beam	P _b	10.8	MW	
IP beam size before pinch	$\sigma^*_{\ x}/\sigma^*_{\ y}$	640 / 5.7	nm	
Transverse emittances	$\gamma\epsilon_x$ / $\gamma\epsilon_y$	8000 / 40	nm rad	
Proposed site length	l _{tot}	31	km	
Wall-plug power to beam efficiency	η_{wp-rf}	9.4	%	
Total site AC power	P _{tot}	230	MW	

ILC staging options

To cover with high precision Higgs and top quark physics

ILC in Japan

29th January 2018

dataset a section of

Worldwide SRF Collaboration

Some challenging parameters

Accelerating gradient in SC cavities (G = 31 MV/m)

Beam emittance production and preservation ($\gamma \epsilon_n = 10$ nm.rad at Damping ring exit)

Ground motion and stability requirements

Positron flux ($3.9 \ 10^{14} \ e^{+/s} => 70$ times more than the SLC machine produced)

Beam size at IP $(\sigma_v = 6 \text{ nm})$

Power consumption (~ 230 MW)

Cost (several billions of €, \$, CHF,....)

.

Decision on ILC in 2018 ?

Fabiola Gianotti / 16/01/2018 CERN

Crucial input will come also from facilities, projects and experiments across the world. For instance: Japan's decision to build (or not) an ILC, expected by end 2018, will have an impact on which future high-E accelerators CERN should consider ICFA statement in November 2017: "ICFA ... very strongly encourages Japan to realize the ILC in a timely fashion as a Higgs boson factory with a centre-of-mass energy of 250 GeV as an international project, led by Japanese initiative*... ICFA emphasizes the extendibility of the ILC to higher energies ..." * It means that the host country is expected to make the majority financial contribution

https://agenda.linearcollider.org/event/7645/overview

Luminosity performance e⁺e⁻ colliders

Note 1: Peak luminosity at SLC (92 GeV) was ~10³⁰ cm⁻²s⁻¹ Note2: Peak luminosity at LEP2 (209 GeV) was ~10³² cm⁻²s⁻¹

Other possible future linear colliders

- LWFA = Laser Wake Field Accelerator
- PWFA = Plasma Wake Field Accelerator
- SWFA = Structure Wake Field Accelerator
- DLA = Dielectric Laser Accelerator

JUAS Seminar on The future of particle accelerators (European context) 11th January 2018 by M. Vretenar /CERN

JUAS Seminar on Laser Plasma Accelerator 31st January 2018 by R. A Bmann / DESY

EAAC workshop – Elba - Italy

3rd European Advanced Accelerator Concepts Workshop

Wakefields for higher accelerating fields

- LWFA = Wakefields are driven in plasma by intense laser beams
- PWFA = Wakefields are driven in plasma by particle beams
- SWFA = Wakefields are driven in dielectric structures by particle beams
- DLA = Wakefields are driven in dielectric structures by very short laser pulses

800 nm

RF accelerating structure

Dielectric accelerating structure

~ 2 GV/m

Plasma accelerating structure

- 1 um-

~ 100 GV/m

29th January 2018

LWFA for Linear Collider

29th January 2018

PWFA for Linear Collider

~ 4.5 km

Concept for PWFA-LC layout for 1TeV. Based on earlier work from 2009 by Raubenheimer et al. *E. Adli et al., "A beam driven Plasma Wake-Field Linear Collider", CSS2013 and arXiv:1308.1145*

29th January 2018

JUAS Seminar

Which future collider ?

Linear muon collider ?

F. Zimmermann, "Final Focus Challenges for Muon Colliders at Highest Energies," CERN-SL-99-077-AP.- AIP Conf. Proc.: 530 (1999), pp. In : Colliders and Collider Physics at the Highest Energies : Muon Colliders at 10 TeV to 100 TeV, Montauk, NY, USA, 27 Sep - 1 Oct 1999, pp.347-367

9 Single-Pass Muon Collider

The design of a muon ring collider at multi-TeV energies faces severe, perhaps insurmountable problems:

- The neutrino radiation is likely to limit a ring collider to energies below a few TeV. The radiation hazard arises because the neutrino cross sections increase almost linearly with energy, while the angular divergence of the emitted neutrinos decreases as $1/\gamma$. As a net result the neutrino radiation dose increases as the 3rd power of energy [25], and at multi-TeV energies easily exceeds the US Federal limit [26].
- The beam has to survive hundreds of passes through a final-focus system more challenging than that of the SLC, retaining the same constant emittance. This appears non-trivial, as already the extracted beam at the SLC showed large emittance degradation even in the absence of collisions.

Similarly, several difficulties lie in the way of an electron-positron linear collider at multi-TeV energies. The most dramatic is the effect of beamstrahlung,

A single-pass muon collider (SPMC) solves all the above problems: Because of the larger muon mass, the beamstrahlung at 10 TeV or 100 TeV is still contained. There is no need to preserve the emittances after the collision, and the beam can be dispersed onto a dump (downwards, or upwards), thereby reducing the density of neutrino radiation by orders of magnitude. Note that, as an option, the beams could still be accelerated in a ring [31], from which they might then be extracted, focused to a small spot size, and collided only once. Table 4: Example parameters for single-pass muon colliders at 10, 100 and 1000 TeV.

parameter	symbol	SPMC-0	SPMC-I	SPMC-II	SPMC-III
cm energy [TeV]	E_{cm}	3	10	100	1000
luminosity $[10^{35} \text{ cm}^{-2} \text{ s}^{-1}]$	L	1.2	2.1	7.2	5.4
beam energy [TeV]	E_b	1.5	5	50	500
muons/bunch $[10^{12}]$	N_b	5	3	0.8	0.2
bunches/train	n_b	1	1	1	1
repetition rate [Hz]	f_{rep}	160	27	7.9	3.2
normalized tr. emittances $[\mu m]$	$\gamma \epsilon_{x,y}$	15	2	0.5	0.25
6-dim. normalized emittance	$\gamma^3 \epsilon_{6d}$	16	1.5	0.23	0.30
$[10^{-12} \text{ m}^3]$					
rms energy spread	$\delta_{\rm rms}$	1%	1%	1%	1%
rms bunch length [mm]	σ_z	0.5	0.8	0.2	0.1
relativistic Lorentz factor $[10^4]$	γ	1.41	4.7	47	473
IP beta functions [mm]	$\beta^*_{x,y}$	0.5	0.8	0.2	0.1
IP spot sizes [nm]	$\sigma_{x,y}$	730	184	14.5	2.3
beamstrahlung energy loss	δ_B	7×10^{-7}	8×10^{-6}	4×10^{-3}	0.14
Upsilon parameter	Υ	2×10^{-6}	$1.0 imes 10^{-5}$	$1.4 imes 10^{-3}$	0.04
beamstrahlung photons/lepton	N_{γ}	0.71	1.67	5.61	8.43
luminosity enhancement factor	H_D	2.00	3.67	3.77	2.83

Future physics ?

LHC continues to investigate what physics is behind the Higgs boson and what energy scale should be considered.

Many fundamental questions remain open

Fabiola Gianotti / 16/01/2018 CERN

PUZZLING: the SM is not a complete theory of particle physics, as several outstanding questions remain that cannot be explained within the SM

What is the composition of dark matter (~25% of the Universe) ? What is the cause of the Universe's accelerated expansion (today: dark energy?; primordial: inflation?) What is the origin of neutrino masses and oscillations ? Why 3 fermion families ? Why do neutral leptons, charged leptons and quarks behave differently? What is the origin of the matter-antimatter asymmetry in the Universe ? Why is the Higgs boson so light (so-called "naturalness" or "hierarchy" problem) ? Why is Gravity so weak ? Etc. etc.

→ but where is the new physics in terms of E-scale and couplings to SM particles ???

The future of high energy physic seems very exciting !!!

JUAS Seminar

Looking the future

Conclusion

JUAS students are the future machine builders

.... for future high energy particle accelerators !

Acknowledgements

Thanks to Erik Adli, Ralph Assmann, Fabiola Gianotti, Phil Burrows, Paul Emma, Andrea Latina, W.P. Leemans, Lucie Linssen, Shin Michizono, Tsunehiko Omori, John Osborne, Roger Ruber, Nick Walker, Akira Yamamoto, Frank Zimmermann