

Normal magnets

From fabrications to magnetic caracterisations

JUAS - 2018

¹ESI Archamps - CERN

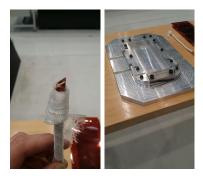
²CAUSSE Lucien, DE GRANDSAIGNES Herve, DEFOORT Gregoire, VIDALOT Jeoffray

Oral presentations of practicals days at CERN, 12/03/2018

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique


Magnets fabrication

Coil construction

- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

Coil construction

How it's made

- Coil covered in kapton, glass fiber, then epoxy
- Shape created by bending around a special plate

Magnets fabrication

Coil construction

Yoke construction

- Current analysis
- Magnetic flux
- Coil design
- Cooling

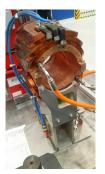
- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

Yoke construction

イロン イヨン イヨン イヨン

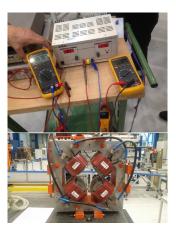
JUAS - 2018 (CL, dGH, DG, VJ)

3


Magnets fabrication

- Coil construction
- Yoke construction

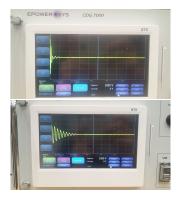
Current analysis


- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

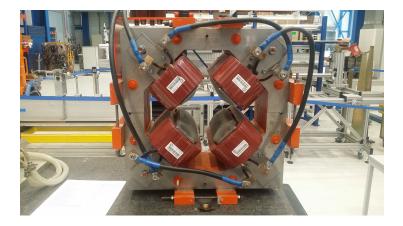
Coil-to-yoke insulation: 1kV, 1,5nA \Rightarrow 500 G Ω

Coil resistance : 478,7 m Ω


★ E ► < E ►</p>

Comparison of 2 coils

Discharge in the coil, observe output current

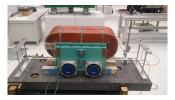

difference between coils let us know which one is damaged

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

э


メロト メポト メヨト メヨト

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

Coil design

• F = ILB = k
$$\Delta$$
 h
• B = $\frac{k\Delta h}{IL_{mag}}$
• B = 0,2292 T

イロト イ理ト イヨト イヨト

• N =
$$\frac{Bh}{2I\mu_0\eta}$$

• N = 1063 tours

э

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

P = U × I
P = 24,37 × 303 = 7,384 kW

•
$$P = \frac{\Delta Q}{t} = c_p \Delta T D_m$$

• $\Delta T = \frac{P}{c_p D_m}$
• $\Delta T = 19,271$ K for 2 coils

イロン イ理と イヨン イヨン

3

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

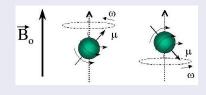

NMR Probes

Figure: NMR Probe with acquisiton

Caracteristics

- $F_{RES} = \gamma B$
- 1 PPM sensibility $(10^{-7}T)$
- Precalibrated by builder
- Temperature sensitive
- Slow measurement !

Figure: NMR principle

(日) (同) (三) (三)

JUAS - 2018 (CL, dGH, DG, VJ)

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

Magnetic Measurements

• NMR Probes

Hall sensors

- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

Hall sensors

17

Figure: Hall probe with acquisiton

Caracteristics

- $V_H = GR_H IBcos\theta$
- $\bullet\,$ sensibility of 10^{-3} to 10^{-4} V $\,$
- Can measure varying fields
- Works at low temperatures
- Temperature calibrated

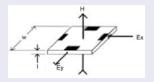


Figure: Hall probe principle

<ロ> (日) (日) (日) (日) (日)

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

Pick-up coils (fluxmeters)

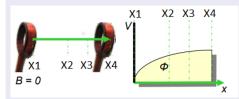


Figure: Pick-up coil with acquisiton

Caracteristics

•
$$V(t) = -\frac{d\Phi}{dt} = -\frac{d}{dt} [\oint_S B.dS]$$

- sensibility of 10^{-3} to 10^{-4} V.s
- Needs an integrator
- Needs movement / varying field
- Uses induction law

Figure: Fluxmeter principle

Comparison

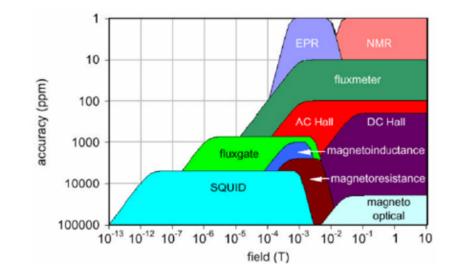


Figure: Comparison of all technique's sensitivities and maximal field 📱 🗠 🤉

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

Figure: Magnet that has been caracterised during the 2nd part of the practical

<ロ> (日) (日) (日) (日) (日)

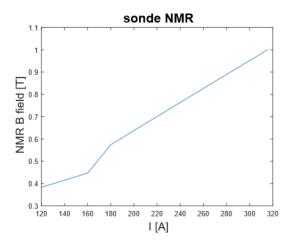


Figure: Curve obtained with the NMR probe absolute [B] measurements

э.

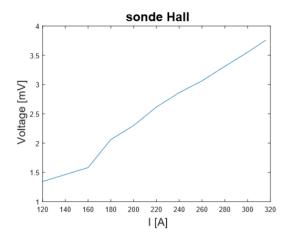


Figure: Curve obtained with the Hall probe [V] measurements

글▶ ★ 글▶

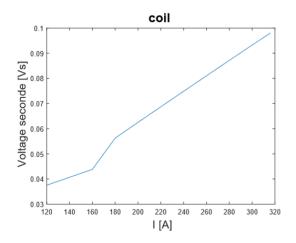


Figure: Curve obtained with the Pick-up coil [V.s] measurements

э.

Results comparaison

Figure: Adjusted curves obtained in magnetic field [B] units with the 3 techniques

.∋...>

Magnets fabrication

- Coil construction
- Yoke construction
- Current analysis
- Magnetic flux
- Coil design
- Cooling

- NMR Probes
- Hall sensors
- Pick-up coils (fluxmeters)
- Field caracterisations
- Rotating coil technique

Rotating coil technique

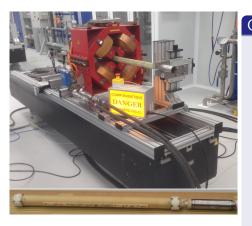
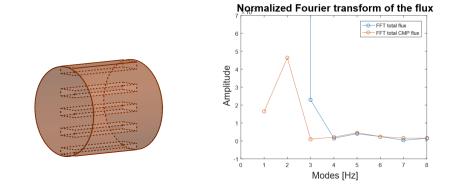



Figure: Rotating coil on a test bench with a quadrupole

Caracteristics

- 1,2 meter long coils on rotating shafts
- 5 coils superposed on all the height
- Extremely sensitive in position and field
- Measures the magnetic center position
- Determines the higher order fields induced by poles positioning

Rotating coil technique

Figure: Structure of the rotating coil

Figure: Modes excited by a missalignement (on magnetic center)

イロト イポト イヨト イヨト

FOR YOUR ATTENTION

JUAS - 2018 (CL, dGH, DG, VJ)

イロト イ団ト イヨト イヨト