A glance at CP Violation, Status of Flavour Anomalies and all that-I

Joaquim Matias

Universitat Autònoma de Barcelona

IMFP 2018

Joaquim Matias

A glance at CP Violation, Status of Flavour Anomalies and all that-I

- Introduction and Motivation.
- Assessing the CKM paradigm in the SM.
- Two tensions: $|V_{ub}|$ and $|V_{cb}|$.
- Bounding New Physics via FCNC ($\Delta F = 2$).
- Probing New Physics via Rare B decays: Present situation and description of Flavour Anomalies.
- The path to the $b \rightarrow s\ell\ell$ anomalies... why there? why now?

Introduction and Motivation

Even if the SM is extremely successful theory most likely is an effective theory, it does not explain...

- why 3 generations of fermions? why their masses are so hierarchical.
- origin of the Baryon asymmetry in the universe? matter anti-matter asymmetry too small in SM.
- lack of a candidate of the dark matter observed in the Universe
- ...

a more fundamental theory with new degrees of freedom (new particles)

This new theory defines what is usually called **New Physics**

Central question of QFT-based particle physics

 $\mathcal{L} = ?$

i.e. which degrees of freedom, symmetries, scales ?

Joaquim Matias

Universitat Autònoma de Barcelona

A glance at CP Violation, Status of Flavour Anomalies and all that-I

Introduction and Motivation

Even if the SM is extremely successful theory most likely is an effective theory, it does not explain...

- why 3 generations of fermions? why their masses are so hierarchical.
- origin of the Baryon asymmetry in the universe? matter anti-matter asymmetry too small in SM.
- lack of a candidate of the dark matter observed in the Universe
- ...

a more fundamental theory with new degrees of freedom (new particles)

This new theory defines what is usually called **New Physics**

Central question of QFT-based particle physics

 $\mathcal{L} = ?$

i.e. which degrees of freedom, symmetries, scales ?

Two ways of searching for New Physics:

- **DIRECT** production of New Particles: so far nothing new....besides SM Higgs. It needs **Energy**.
- INDIRECT or VIRTUAL production of New Particles affecting (i.e. loops) couplings & decays
 ⇒ It needs Precision. Energy scales not directly accessible at accelerators.
 - \Rightarrow If New Particles bring couplings with new phases, CP violating observables can detect them.

⇒ We test this second path with Flavour Physics: Rare decays and CP Violation

The $K_L^0 \rightarrow \mu^+ \mu^-$ decay is forbidden at tree level

The unexpected non-observation was explained by Glashow, Iliopoulos and Maiani ("GIM mechanism"):

Idea of GIM mechanism: to understand the suppression besides the u quark loop a second loop with a new quark (c) with opposite sign that cancels in the limit $m_c - m_u = 0$.

Example of an observation of New Physics mediated by a new virtual particle: charm particle.

Joaquim Matias

Our main tools (but not ONLY)

List of B mesons

	B mesons										
Particle	Symbol	Anti- particle	Quark content	Charge	Isospin (I)	Spin and parity (J ^P)	Rest mass (MeV/c ²)	s	С	В'	Mean lifetime (s)
Strange B meson	B_s^0	\overline{B}_{s}^{0}	sb	0	0	0-	5,366.3 ±0.6	-1	0	+1	$1.470 \begin{array}{c} +0.027 \\ -0.026 \end{array} \times 10^{-12}$
B meson	B ⁰	\overline{B}^0	db	0	1/2	0-	5,279.53 ±0.33	0	0	+1	$(1.530 \pm 0.009) \times 10^{-12}$
Charmed B meson	B _c ⁺	B _c	cb	+1	0	0-	6,276 ±4	0	+1	+1	$(0.46 \pm 0.07) \times 10^{-12}$
B meson	B ⁺	в	ub	+1	1/2	0-	5,279.15 ±0.31	0	0	+1	$(1.638 \pm 0.011) \times 10^{-12}$

SM

NP

SM expected to be dominant (tree dominated) [semi/leptonic dec.] Metrology of SM but there are unexpected exceptions...

NP

SM and NP competing (loop dominated) [rare processes] Constraints on NP FCNC Forbidden in SM at tree level

Subclass of observables (LFUV) with little hadronic unc. IN SM. \rightarrow Smoking guns of NP

A relevant example of FCNC process

This quark stays the same "spectator quark"

This quark changes flavor without changing the charge "FCNC"

qi and qj change charge when they change flavor

Joaquim Matias

Universitat Autònoma de Barcelona

A glance at CP Violation, Status of Flavour Anomalies and all that-I

A relevant example of FCNC process

The $B^0 \rightarrow K^* \mu \mu$

This quark stays the same "spectator quark"

This quark changes flavor without changing the charge "FCNC"

 q_i and q_j change charge when they change flavor

Joaquim Matias

A glance at CP Violation, Status of Flavour Anomalies and all that-I

Assessing the CKM paradigm in the SM

In SM weak charged transitions mix quarks of different generations

Encoded in unitary CKM matrix $V_{CKM} = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$. From off-diagonal $V_{CKM}^{\dagger}V_{CKM} = 1$ (ρ̄,η̄) • 3 generations \implies 1 phase, only $\frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*}$ • S generations - Violation in SM • Wolfenstein parametrisation, defined to hold to all orders in $\frac{V_{ud} V_{ub}^*}{V_{cd} V_{ch}^*}$ defined to hold to all orders in λ and rephasing invariant ß (0.0)(1.0) $\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{us}|^{2} + |V_{us}|^{2}} \qquad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{us}|^{2} + |V_{us}|^{2}} \qquad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{ub}^{*}}$

 \Rightarrow 4 parameters describing the CKM matrix,

to determine from data under the SM hyp.

Extracting the CKM parameters

• *CP*-invariance of QCD to build hadronic-indep. *CP*-violating asym.

or to determine hadronic inputs from data

Statistical framework to combine data and assess uncertainties

	Exp. uncert	t.	Theoretical uncertainties		
			$B(b) \to D(c)\ell\nu$	$ V_{cb} $ vs form factor (OPE)	
Tree	$B \rightarrow DK$	γ	$B(b) o \pi(u) \ell u$	$ V_{ub} $ vs form factor (OPE)	
			$M o \ell \nu$	$ V_{UD} $ vs f_M (decay cst)	
Loop	$B \to J/\Psi K_s$	β	ϵ_K (K mixing)	$(ar{ ho},ar{\eta})$ vs B_K (bag parameter)	
	$B \to \pi \pi, \rho \rho$	α	$\Delta m_d, \Delta m_s \ (B_d, B_s \text{ mixings})$	$ert V_{tb} V_{tq} ert$ vs $f_B^2 B_B$ (bag param)	

Inputs

CKM matrix within a frequentist framework ($\simeq \chi^2$ minim.)

data = weak \otimes QCD \implies Need for hadronic inputs (mostly lattice)

$$\begin{array}{c|c} |V_{ud}| & \text{superallowed }\beta \text{ decays} & \mathsf{PR} \\ |V_{us}| & K \rightarrow \pi \ell \nu \ (\mathsf{Flavianet}) & f_+(\\ & K \rightarrow \ell \nu, \tau \rightarrow K \nu_\tau & f_K \\ |V_{us}/V_{ud}| & K \rightarrow \ell \nu / \pi \rightarrow \ell \nu, \tau \rightarrow K \nu_\tau / \tau \rightarrow \pi \nu_\tau & f_{K,\gamma} \\ \hline \epsilon_K & \mathsf{PDG} & B_K \\ |V_{ub}| & \text{inclusive and exclusive} & (se \\ |V_{cb}| & \text{inclusive and exclusive} & (se \\ \Delta m_d & B_d \cdot \bar{B}_d \text{ mixing} & B_B \\ \Delta m_s & B_s \cdot \bar{B}_s \text{ mixing} & B_B \\ \beta & J/\psi K^{(*)} & \\ \alpha & \pi \pi, \rho \pi, \rho \rho & \text{ison} \\ \gamma & B \rightarrow D^{(*)} K^{(*)} & \\ B \rightarrow \tau \nu & (1.08 \pm 0.21) \cdot 10^{-4} & f_{B_s} \end{array}$$

PRC91, 025501 (2015) $f_{+}(0) = 0.9681 \pm 0.0014 \pm 0.0022$ $f_{K} = 155.2 \pm 0.2 \pm 0.6 \text{ MeV}$ $f_{K}/f_{\pi} = 1.1959 \pm 0.0010 \pm 0.0029$ $\hat{B}_{K} = 0.7567 \pm 0.0021 \pm 0.0123$ (see later) (see later) $B_{B_{s}}/B_{B_{d}} = 1.007 \pm 0.014 \pm 0.014$ $B_{B_{s}} = 1.320 \pm 0.016 \pm 0.030$

isospin GLW/ADS/GGSZ $f_{B_s}/f_{B_d} = 1.205 \pm 0.003 \pm 0.006$ $f_{B_s} = 225.1 \pm 1.5 \pm 2.0 \text{ MeV}$

How to search for New Physics

Frequentist approach (CKMfitter). See also UTfit approach. Look for inconsistent determinations of UT-angles, UT- sides. Small Yellow region: preferred region by all observables (C.L. < 95.45%)

Consistency of the CKM mechanism: Many different determinations

Validity of Kobayashi-Maskawa picture of CP violation: No significant deviation observed

But two tensions: V_{ub} and V_{cb}

 V_{ub} and V_{cb} affects the identification of NP.

Problem: Inclusive and Exclusive determinations in tension (different theory & experiment).

Exclusive decays	$ V_{cb} imes 10^3$
$ar{B} ightarrow D^* l ar{ u}$	
FLAG 2016 [23] FNAL/MILC 2014 (Lattice $\omega = 1$) [20] HFAG 2012 (Sum Rules) [27, 28, 21]	$\begin{array}{c} 39.27 \pm 0.49_{exp} \pm 0.56_{latt} \\ 39.04 \pm 0.49_{exp} \pm 0.53_{latt} \pm 0.19_{QED} \\ 41.6 \pm 0.6_{exp} \pm 1.9_{th} \end{array}$
$ar{B} ightarrow D l ar{ u}$	
Global fit 2016 [35] Belle 2015 (CLN) [34, 29] Belle 2015 (BGL) [34, 29, 33] FNAL/MILC 2015 (Lattice $\omega \neq 1$) [29] HPQCD 2015 (Lattice $\omega \neq 1$) [33]	$\begin{array}{c} 40.49 \pm 0.97 \\ 39.86 \pm 1.33 \\ 40.83 \pm 1.13 \\ 39.6 \pm 1.7_{exp+QCD} \pm 0.2_{QED} \\ 40.2 \pm 1.7_{latt+stat} \pm 1.3_{syst} \end{array}$
Inclusive decays	
Gambino et al. 2016 [100] HFAG 2014 [24]	$\begin{array}{c} 42.11 \pm 0.74 \\ 42.46 \pm 0.88 \end{array}$
Indirect fits	
UTfit 2016 [101] CKMfitter 2015 (3σ) [102]	$41.7 \pm 1.0 \\ 41.80^{+0.97}_{-1.64}$

TABLE 1. Status of exclusive and inclusive $|V_{cb}|$ determinations

Refs from 1610.04387 (Giulia Ricciardi)

 $|V_{cb}|$

- Most precise determinations:
 - 1st) Lattice determination in exclusive $B \rightarrow D^*$ channel,
 - 2nd) inclusive measurements,
 - 3rd) semileptonic $B \rightarrow D$.
- Tension among latest inclusive and latest B → D* is 3σ. NO tension if Sum Rules used.
- Indirect Fit using CKM, CPV and flavour data (except direct decays) closer to inclusive determination.

Exclusive decays	$ V_{ub} imes 10^3$
$ar{B} ightarrow \pi l ar{ u}_l$	
FLAG 2016 [23]	3.62 ± 0.14
Fermilab/MILC 2015 [138]	3.72 ± 0.16
RBC/UKQCD 2015 [139]	3.61 ± 0.32
HFAG 2014 (lattice) [24]	3.28 ± 0.29
HFAG 2014 (LCSR) [145, 24]	3.53 ± 0.29
Imsong et al. 2014 (LCSR, Bayes an.) [150]	$3.32_{-0.22}^{+0.26}$
Belle 2013 (lattice + LCSR) [133]	3.52 ± 0.29
$ar{B} ightarrow \omega l ar{\mathbf{v}}_l$	
Bharucha et al. 2015 (LCSR) [153]	$3.31 \pm 0.19_{exp} \pm 0.30_{th}$
$ar{B} ightarrow ho l ar{m{v}}_l$	
Bharucha et al. 2015 (LCSR) [153]	$3.29\pm 0.09_{exp}\pm 0.20_{th}$
$\Lambda_b o p \mu u_\mu$	
LHCb (PDG) [154]	3.27 ± 0.23
Indirect fits	
UTfit (2016) [101]	3.74 ± 0.21
CKMfitter (2015, 3 <i>o</i>) [102]	$3.71_{-0.20}^{+0.17}$

TABLE 2. Status of exclusive $|V_{ub}|$ determinations and indirect fits

 $|V_{ub}|$

- Less precise module of CKM matrix elements.
- Inclusive determination more challenging theoretically than *V*_{cb}
- Lattice best exclusive determination $B \rightarrow \pi \ (B \rightarrow \rho, \omega)$ systematically lower.
- Tension exclusive-inclusive at $2-3\sigma$.
- Indirect Fit using CKM, CPV and flavour data (except direct decays) closer to exclusive determination.
- |V_{ub}| from B(B⁺ → ℓ⁺ν_ℓ) consistent with both inclusive and exclusive (not yet competitive).

Inclusive decays ($|V_{ub}| \times 10^3$)

	ADFR [190, 191, 192]	BNLP [193, 194, 195]	DGE [196]	GGOU [197]
HFAG 2014 [24]	$4.05\pm0.13^{+0.18}_{-0.11}$	$4.45\pm 0.16^{+0.21}_{-0.22}$	$4.52 \pm 0.16^{+0.15}_{-0.16}$	$4.51 \pm 0.16^{+0.12}_{-0.15}$

Universitat Autònoma de Barcelona

Is there a New Physics solution for those tensions exclusive/inclusive?

Apparently there seems NOT to exist a NP solution [A. Crivellin et al.].

- Inclusive always larger than exclusive determinations (in both $|V_{cb}|$ and $|V_{ub}|$)
- EFT approach to test it in a model independent way.

Two possibilities NP can affect CKM from tree-level B decays:

 \Rightarrow via additional four-fermion operators (generated at tree level)

$$\mathcal{O}_R^S = \bar{\ell} P_L \nu \bar{q} P_R b \quad \mathcal{O}_L^S = \bar{\ell} P_L \nu \bar{q} P_L b \quad \mathcal{O}_L^T = \bar{\ell} \sigma_{\mu\nu} P_L \nu \bar{q} \sigma^{\mu\nu} P_L b$$

q = u, c. Lack of interference with SM at zero-recoil:

- Exclusive: $|C_L^T|^2$ (all), $|C_R^S + C_L^S|^2$ $(B \to D(\pi))$, $|C_R^S C_L^S|^2$ $(B \to D^*(\rho))$.
- Inclusive: $|C_L^T|^2$ (all), $|C_R^S|^2 + |C_L^S|^2$.

 \rightarrow No way to explain Inclusive > Exclusive.

 \Rightarrow via operators modifying W-quark couplings (loop-effect)

 \Rightarrow affect the charged current after W boson is integrated out

$$H_{eff} = \frac{4G_F V_{qb}}{\sqrt{2}} \bar{\ell} \gamma^{\mu} P_L \nu \left((1 + c_L^{qb}) \bar{q} \gamma_{\mu} P_L b + g_L^{qb} \bar{q} i \overleftrightarrow{D}_{\mu} P_L b + d_L^{qb} i \partial^{\nu} \left(\bar{q} i \sigma_{\mu\nu} P_L b \right) + L \to R \right)$$

$$V_{cb} \rightarrow V_{cb}(c^{cb}_{L,R}, d^{cb}_{L,R}, g^{cb}_{L,R}) \text{ and } V_{ub} \rightarrow V_{ub}(c^{ub}_{L,R}, d^{ub}_{L,R}, g^{ub}_{L,R})$$

 d_L^{qb} : Agreement between INCL. and EXCL., BUT tension with $B \to \tau \nu$. Also too large $Z - b\bar{b}$ coupling.

UT-angles: Angle α , β , γ

 $\Rightarrow \beta$:

• Mode $B^0 \rightarrow J/\psi K_S^0$ access to φ_d (phase between decay and mixing+decay):

SM: decay dominated by single CKM phase (neglect penguins)+ B_0 -mixing: top-top box diagram.

 $\sin 2\beta^{\text{meas}} = 0.691 \pm 0.017 < \sin 2\beta^{\text{indirect}} = 0.740^{+0.020}_{-0.025}$

→ fit to $B \rightarrow J/\psi P$ +SU(3) and SCET ⇒ penguin small. → 2nd solution of β disfavoured from $B^0 \rightarrow J/\psi K^{*0}$. → $\sin 2\beta^{q\bar{q}s} = 0.655 \pm 0.032$ from loop-induced $b \rightarrow q\bar{q}s$ transitions.

$\Rightarrow \alpha$

- $b \rightarrow u$ transitions $(B \rightarrow \rho \rho, \pi \pi, \pi \rho)$ polluted by penguins.
- Challenging for th & exp. Unitary used. Isospin analysis for $B \to \pi\pi$ using all channels.

 $\alpha^{\text{measured}} = (88.8^{+2.3}_{-2.3})^0 \text{ versus } \alpha^{\text{fit}} = (92.1^{+1.5}_{-1.1})^0$

 $\Rightarrow \gamma$

• Less precisely known angle. Tree $B \rightarrow DK$ decays; interference between $b \rightarrow c$ (CA) and $b \rightarrow u$ (CS) topologies. Important test of CKM paradigm. Different methods (GLW,GGSZ,ADS).

 $\gamma^{\text{measured}} = (72.1^{+5.4}_{-5.8})^0 (B - \text{factories} + \text{LHCb}) \quad \text{versus} \quad \gamma^{\text{fit}} = (65.31^{+1.0}_{-2.5})^0 (B - \text{factories} + \text{LHCb})$

Bounding New Physics via FCNC ($\triangle F = 2$)

$\triangle F = 2$: neutral-meson oscillation observables

$$i\frac{d}{dt} \left(\begin{array}{c} |B_q(t)\rangle \\ |\bar{B}_q(t)\rangle \end{array} \right) = \left(M^q - \frac{i}{2}\Gamma^q \right) \left(\begin{array}{c} |B_q(t)\rangle \\ |\bar{B}_q(t)\rangle \end{array} \right)$$

• Non-hermitian Hamiltonian (only 2 states) but M and Γ hermitian

• Mixing due to non-diagonal terms
$$M_{12}^q - i\Gamma_{12}^q/2$$

 \Longrightarrow Diagonalisation: physical $|B_{H,L}^q\rangle = p|B_q\rangle \mp q|\bar{B}_q\rangle$

of masses $M^q_{H,L}$, widths $\Gamma^q_{H,L}$

In terms of M_{12}^q , $|\Gamma_{12}^q|$ and $\phi_q = arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$ and determined from:

• Mass difference
$$\Delta m_q = M_H^q - M_L^q$$

• Width difference
$$\Delta \Gamma_q = \Gamma_L^q - \Gamma_H^q$$

• $a_{SL}^q = \frac{\Gamma(\bar{B}_q(t) \to \ell^+ \nu X) - \Gamma(B_q(t) \to \ell^- \nu X)}{\Gamma(\bar{B}_q(t) \to \ell^+ \nu X) + \Gamma(B_q(t) \to \ell^- \nu X)}$ measures CP violation in mixing

Accessible for B_d and B_s at Babar, Belle, CDF, DØ, LHCb... Model-independent parametrisation under the assumption that NP only changes modulus and phase of M_{12}^d and M_{12}^s A. Lenz, U. Nierste, CKMfitter

$$M_{12}^q = (M_{12}^q)_{SM} \times \Delta_q \qquad \Delta_q = |\Delta_q| e^{i\phi_q^\Delta} = (1 + h_q e^{2i\sigma_q})$$

Use Δm_d , Δm_s , β , ϕ_s , a_{SL}^d , a_{SL}^s , $\Delta \Gamma_s$ to constrain Δ_d and Δ_s

NP in B_s^0 oscillations?

Experimental errors are still larger than theory ones for ϕ_s but no much room left for NP here.

Joaquim Matias

$\Delta F = 2$: B_d mixing

NP phases shift $2\beta \rightarrow 2\beta + \phi_d^{\Delta}$ in mixing-induced CP asymm. in $B^0 \rightarrow J/\psi K_s^0$ and a_{sl}^d

[Constraints @ 68% CL]

- Dominant constraint from β and Δm_d
- Good agreement with other constraints $(\alpha, a_{SL}^{d,s})$
- Compatible with SM

D SM hyp.
$$(\Delta_d = 1 + i \cdot 0)$$
: 0.9 σ

A glance at CP Violation, Status of Flavour Anomalies and all that-I

$\Delta F = 2$: B_s mixing

NP phases shift $2\beta_s \rightarrow 2\beta_s - \phi_s^{\Delta}$ in mixing-induced CP asymm. in $B_s^0 \rightarrow J/\psi\phi$ and a_{sl}^s

[Constraints @ 68% CL]

- Dominant constraints from Δm_s and ϕ_s
- ϕ_s favours SM situation
- A_{SL} , combining a_{SL}^d and a_{SL}^s , measured by $D\emptyset$ not included

$$\Delta_s = 1.05^{+0.14}_{-0.13} + i \cdot (-0.03^{+0.04}_{-0.04})$$

2D SM hyp ($\Delta_s = 1 + i \cdot 0$): 0.3 σ

What are the bounds/prospects for New Physics at Stage I: 7 fb⁻¹ LHCb data + 5 ab⁻¹ Belle II and Stage II: 50 fb⁻¹ LHCb data + 50 ab⁻¹ Belle II

Joaquim Matias

 $\Delta F = 2$: bounds on $h_{d,s} = |\Delta_{d,s} - 1|$

What are the bounds/prospects for New Physics at Stage I: 7 fb⁻¹ LHCb data + 5 ab⁻¹ Belle II and Stage II: 50 fb⁻¹ LHCb data + 50 ab⁻¹ Belle II

Joaquim Matias

Universitat Autònoma de Barcelona

A glance at CP Violation, Status of Flavour Anomalies and all that-I

Probing New Physics via Rare B decays:

Present situation

concerning New Physics in $b \to s\ell\ell$

and in $b \to c \tau \nu$

Messages to take home of this talk:

For the first time we see Coherence on a large set of deviations/anomalies

Nature seems to point **towards** first signals of **violation** of **lepton flavour universality**SM predicts LFU: interactions between gauge bosons and leptons

being the same for different lepton families.

... soon we will have more observables to confirm it.

We still need a bit more **DATA** to solve some internal tensions and a few specific **NEW** inputs

The path

to the anomalies

Why now? why there?

Joaquim Matias

Universitat Autònoma de Barcelona

A glance at CP Violation, Status of Flavour Anomalies and all that-I

The starting point: Angular distribution of $B \to K^*(\to K\pi)\mu\mu$

4-body angular distribution $\bar{\mathbf{B}}_{\mathbf{d}} \rightarrow \bar{\mathbf{K}}^{*0} (\rightarrow \mathbf{K}^{-} \pi^{+}) \mathbf{l}^{+} \mathbf{l}^{-}$ with three angles, invariant mass of lepton-pair q^{2} .

 θ_{ℓ} : Angle of emission between \bar{K}^{*0} and μ^{-} in di-lepton rest frame. $\theta_{\mathbf{K}}$: Angle of emission between \bar{K}^{*0} and K^{-} in di-meson rest frame. ϕ : Angle between the two planes.

q²: dilepton invariant mass square.

$$\frac{d^{4}\Gamma(B_{d})}{dq^{2} d \cos \theta_{\ell} d \cos \theta_{K} d\phi} = \frac{9}{32\pi} \sum_{i} J_{i}(q^{2}) f_{i}(\theta_{\ell}, \theta_{K}, \phi)$$

$$J_{i}(q^{2}) \text{ function of transversity (helicity) amplitudes of K^{*}: A_{\perp,\parallel,0}^{L,R} \text{ but also } A_{t}, A_{S}$$

$$A_{\perp,\parallel,0}^{L,R} = C_{i} \text{ (short)} \times \text{ Hadronic quantities (long)}$$

Four regions in q^2 for the angular distribution $B \to K^*(\to K\pi)\mu^+\mu^-$

- very large K^* -recoil $(4m_\ell^2 < q^2 < 1 \text{ GeV}^2)$: γ almost real.
- large K^* -recoil/low-q²: $E_{K^*} \gg \Lambda_{QCD}$ or $4m_{\ell}^2 \le q^2 < 9$ GeV²: LCSR-FF
- charmonium region ($q^2 = m_{J/\Psi}^2$, ...) betwen $9 < q^2 < 14~{\rm GeV^2}$.
- low K^* -recoil/large-q²: $E_{K^*} \sim \Lambda_{QCD}$ or $14 < q^2 \leq (m_B m_{K^*})^2$: LQCD-FF

Four regions in q^2 :

The amplitude of $B \to K^* \mu^+ \mu^-$

The framework: $b \rightarrow s\ell\ell$ effective Hamiltonian, Wilson Coefficients

NP changes short-distance $C_i = C_i^{SM} + C_i^{NP}$ for SM or involve additional operators O_i

- Chirally flipped $(W \rightarrow W_R)$
- Tensor operators ($\gamma \rightarrow T$)

 $\mathcal{O}_{7'} \propto (\bar{s}\sigma^{\mu\nu}P_L b)F_{\mu\nu}, \ \mathcal{O}_{9'} \propto (\bar{s}\gamma_{\mu}P_R b)(\ell\gamma^{\mu}\ell) \dots$ • (Pseudo)scalar ($W \to H^+$) $\mathcal{O}_S \propto (\bar{s}P_B b)(\bar{\ell}\ell), \mathcal{O}_P \propto (\bar{s}P_B b)(\bar{\ell}\gamma_5 \ell)$ $\mathcal{O}_T \propto \bar{s}\sigma_{\mu\nu}(1-\gamma_5)b\;\bar{\ell}\sigma_{\mu\nu}\ell$

The framework: Hadronic structure of $B \to K^* \ell \ell$

$$A(B \to K^* \ell \ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell]$$

Form factors (local) Charm loop (non-local)
$$\begin{pmatrix} \ell^+ \\ \ell^- \\ 0_{9,10,9',10'} \\ B \end{pmatrix} = \begin{pmatrix} \ell^+ \\ \ell^- \\ 0 \end{pmatrix} = \begin{pmatrix} \ell^+ \\ 0 \end{pmatrix} = \begin{pmatrix} \ell^+ \\ \ell^- \\ 0 \end{pmatrix} = \begin{pmatrix} \ell^+ \\$$

Local contributions: 7 form factors $\Rightarrow V, A_{0,1,2,}, T_{1,2,3}$

$$\begin{aligned} A_{\mu} &= -\frac{2m_{b}q^{\nu}}{q^{2}} \mathcal{C}_{7} \langle V_{\lambda} | \bar{s} \sigma_{\mu\nu} P_{R} b | B \rangle + \mathcal{C}_{9} \langle V_{\lambda} | \bar{s} \gamma_{\mu} P_{L} b | B \rangle \\ B_{\mu} &= \mathcal{C}_{10} \langle V_{\lambda} | \bar{s} \gamma_{\mu} P_{L} b | B \rangle \qquad \lambda : K^{*} \text{ helicity} \end{aligned}$$

2 Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

Form Factors to parametrize $B \rightarrow K^*$

 \Rightarrow Different sets of form factors available: KMPW (LCSR, low q^2) or BSZ (fit LCSR + lattice).

- low K^* recoil: lattice, with correlations
- large *K** recoil: B-meson Light-Cone Sum Rule,
 - large error bars and no correlations
 - reduce uncertainties and restore correlations among form factors

using EFT correlations arising in $m_b \rightarrow \infty$, e.g., at large K^* recoil

$$\xi_{\perp} = \frac{m_B}{m_B + m_{K^*}} V = \frac{m_B + m_{K^*}}{2E_{K^*}} A_1 = T_1 = \frac{m_B}{2E_{K^*}} T_2 \qquad +O(\alpha_s, \Lambda/m_b) \text{ corr}$$

• Alternatively: fit to K*-meson LCSR + lattice, small errors bars, correlations

[Bharucha, Straub, Zwicky]

Joaquim Matias

Universitat Autònoma de Barcelona

[Horgan, Liu, Meinel, Wingate]

[Khodjamirian, Mannel, Pivovarov, Wang]

A glance at CP Violation, Status of Flavour Anomalies and all that-I

Traditional experimental approach to

$$B \to K^* \mu^+ \mu^-$$

Joaquim Matias

Till 2013 Traditional approach to $B \to K^* \mu^+ \mu^-$

For a longtime only $\frac{dB}{da^2}$, F_L , A_{FB} were the target of traditional analysis.

$$\frac{d^2\Gamma}{dq^2d\cos\theta_\ell} = -\left(\frac{3}{4}\mathbf{F}_{\mathbf{L}}\sin^2\theta_\ell + \frac{3}{8}(1-\mathbf{F}_{\mathbf{L}})(1+\cos^2\theta_\ell) + \mathbf{A}_{\mathrm{FB}}\cos\theta_\ell\right)\frac{\mathbf{d}\Gamma}{\mathbf{d}\mathbf{q}^2}$$

....in these observables hadronic uncertainties mask any possible sign of New Physics.

Joaquim Matias

Universitat Autònoma de Barcelona

A glance at CP Violation, Status of Flavour Anomalies and all that-I

Two key observations:

• **THEORY**: At leading order in $1/m_b$, α_s and large-recoil ($E_{K^*} \rightarrow \infty$) FF fulfill:

$$\frac{m_B}{m_B + m_V} \mathbf{V}(\mathbf{q^2}) = \frac{m_B + m_V}{2E} \mathbf{A_1}(\mathbf{q^2}) = \mathbf{T_1}(\mathbf{q^2}) = \frac{m_B}{2E} \mathbf{T_2}(\mathbf{q^2}) = \boldsymbol{\xi_{\perp}}(\mathbf{q^2})$$
$$\frac{m_B + m_V}{2E} \mathbf{A_1}(\mathbf{q^2}) - \frac{m_B - m_V}{m_B} \mathbf{A_2}(\mathbf{q^2}) = \frac{m_B}{2E} \mathbf{T_2}(\mathbf{q^2}) - \mathbf{T_3}(\mathbf{q^2}) = \boldsymbol{\xi_{\parallel}}(\mathbf{q^2})$$

consequently the transversity amplitudes:

$$A_{\perp}^{L,R} = \sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\text{eff}} + \mathcal{C}_9^{\text{eff}'}) \mp (\mathcal{C}_{10} + \mathcal{C}'_{10}) + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} + \mathcal{C}_7^{\text{eff}'}) \right] \xi_{\perp}(E_{K^*})$$

$$A_{\parallel}^{L,R} = -\sqrt{2}Nm_B(1-\hat{s}) \bigg[(\mathcal{C}_9^{\text{eff}} - \mathcal{C}_9^{\text{eff}'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} - \mathcal{C}_7^{\text{eff}'}) \bigg] \xi_{\perp}(E_{K^*})$$

$$A_0^{L,R} = -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \bigg[(\mathcal{C}_9^{\text{eff}} - \mathcal{C}_9^{\text{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b(\mathcal{C}_7^{\text{eff}} - \mathcal{C}_7^{\text{eff}}) \bigg] \xi_{\parallel}(E_{K^*})$$

• **EXPERIMENT**: One can get access to new observables using the "folding technique". Identify $\phi \leftrightarrow -\phi$ and $\theta_{\ell} \leftrightarrow \pi - \theta_{\ell}$ leads to

$$d\Gamma = d\Gamma(\hat{\phi}) + d\Gamma(-\hat{\phi}) + d\Gamma(\hat{\phi}, \pi - \hat{\theta}_{\ell}) + d\Gamma(-\hat{\phi}, \pi - \hat{\theta}_{\ell})$$

A new approach: new observables

Optimized observables: P_i

One can construct a new type of observables out of $A_{\perp,\parallel,0}$ based on two criteria: [F. Kruger, JM'05]

1 Exact Cancelation at LO of the SFF $(\xi_{\perp,\parallel})$:

$$A_T^{(2)} = P_1 = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2} = \mathcal{O}(\alpha_s \xi_{\perp}) + \dots$$

compared to

$$F_L = \mathcal{O}(\xi_\perp^2 / \xi_\parallel^2)$$

- The suppression of $H_{+1} = (A_{\perp} + A_{\parallel})/\sqrt{2} \simeq 0$ due to LHS of SM implies $|A_{\perp}| \simeq |A_{\parallel}|$.
- A contribution to C₇ induces a large-deviation (sign-sensitive: positive-down, negative-up).
- 2 Respect the symmetries of the distribution.

Symmetries of the angular distribution $B \to K^*(\to K\pi)\mu^+\mu^-$

[Egede, Hurth, JM, Ramon, Reece'10]

An important step forward was the identification of the **symmetries** of the distribution: *Transformation of amplitudes leaving distribution invariant.*

All the distribution can be rewritten in terms of $n_{\parallel} = (A_{\parallel}^L, A_{\parallel}^{R*}), n_{\perp} = (A_{\perp}^L, -A_{\perp}^{R*})$ and $n_0 = (A_0^L, A_0^{R*}).$

All physical information of the massless distribution encoded in 3 moduli + 3 complex scalar products - 1 constraint (relation among n_i): $3 + 3 \times 2 - 1 = 8$

$$\begin{aligned} |n_{\parallel}|^2 &= \frac{2}{3}J_{1s} - J_3 \,, \qquad |n_{\perp}|^2 &= \frac{2}{3}J_{1s} + J_3 \,, \qquad |n_0|^2 = J_{1c} \\ n_{\perp}^{\dagger}n_{\parallel} &= \frac{J_{6s}}{2} - iJ_9 \,, \qquad n_0^{\dagger}n_{\parallel} &= \sqrt{2}J_4 - i\frac{J_7}{\sqrt{2}} \,, \qquad n_0^{\dagger}n_{\perp} = \frac{J_5}{\sqrt{2}} - i\sqrt{2}J_8 \end{aligned}$$

How do we find the number of symmetries of the distribution?

Any $\vec{A'} = \vec{A} + \delta \vec{s}$ with $\vec{A} = (Re[A_{\perp}^L], ...)$ a 12-component vector is a symmetry that leaves the J_i coefficients unchanged if

$$\forall i \in J_i : \vec{\nabla}_i \perp \delta \vec{s}$$

Number of symmetries can be found by the directions ortogonal to the hyperplane of gradients.

Joaquim Matias

Symmetries of the angular distribution $B \to K^*(\to K\pi)\mu^+\mu^-$

Symmetries of
Massless Case:
$$n'_{i} = Un_{i} = \begin{bmatrix} e^{i\phi_{L}} & 0\\ 0 & e^{-i\phi_{R}} \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cosh i\tilde{\theta} & -\sinh i\tilde{\theta}\\ -\sinh i\tilde{\theta} & \cosh i\tilde{\theta} \end{bmatrix} n_{i} .$$

Symmetries determine the minimal # observables for each scenario:

$$n_{obs} = 2n_A - n_S \qquad n_{obs} = n_{Ji} - n_{dep}$$

Case	Coefficients J_i	Amplitudes	Symmetries	Observables	Dependencies
$m_{\ell} = 0, A_S = 0$	11	6	4	8	3
$m_\ell = 0$	11	7	5	9	2
$m_{\ell} > 0$, $A_S = 0$	11	7	4	10	1
$m_\ell > 0$	12	8	4	12	0

All symmetries (massive and scalars) were found explicitly later on.

[JM, Mescia, Ramon, Virto'12]

Symmetries \Rightarrow # of observables \Rightarrow determine a basis: $\Rightarrow \{\frac{dBr}{da^2}, F_L, P_1, P_2, P_3, P'_4, P'_5, P'_6\}$

Example of non-trivial dependency:

$$P_2 = \frac{1}{2} \left[P_4' P_5' + \sqrt{\left(-1 + P_1 + P_4'^2\right) \left(-1 - P_1 + P_5'^2\right)} \right]$$

Brief flash on the anomalies: Back to 2013

Why so much excitement in Flavour Physics in that year?

First measurement by LHCb of the basis of optimized observables P_i with 1 fb⁻¹:

All the focus was on the optimized observable P'_5 that deviated in the bin [4,8.68] GeV² near 4σ .

BUT the relevant point.....indeed is the COHERENT PATTERN among the relevant observables [S. Descotes-Genon, J.M., J. Virto'13].

 \Rightarrow Symmetries among $A_{\perp,\parallel,0}$ [Egede, JM, Reece, Ramon'12] and [Serra, JM]

 \Rightarrow imply relations among the observables above.

How do we understand this anomaly? (Coherence I)

In [DMV'13] it was shown that a New Physics contribution to the coefficient C_9 : $C_9^{\rm NP} \sim -1.5$

reduced the tension on P'_5 , but also in P_2 .

Other $b \rightarrow s\mu^+\mu^-$ observables tensions show up: (Coherence II)

Systematic deficit of muons at large-recoil but also at low-recoil:

 $dB/dq^2 [10^{-8} \times c^4/GeV^2]$

 $dB/dq^2 [10^{-8} \times c^4/GeV^2]$

Let's take a look to the case of $B_s \rightarrow \phi \mu^+ \mu^-$

Systematic low-recoil small tensions:

$10^7 \times \mathrm{BR}(B_s \to \phi \mu^+ \mu^-)$	SM	EXP	Pull
[0.1,2]	1.56 ± 0.35	1.11 ± 0.16	+1.1
[2,5]	1.55 ± 0.33	0.77 ± 0.14	+2.2
[5,8]	1.89 ± 0.40	0.96 ± 0.15	+2.2

Form factors at low-q² for $B_s \rightarrow \phi$ (computed ONLY in BSZ) are larger than $B \rightarrow K^*$, so we would expect at low-q² an INVERTED hierarchy.

... more data required.

or problem of BSZ FF? No cross check from KMPW.

In the meanwhile (2014) new deviations appear...LFUV anomalies

$$R_K = \frac{\text{Br}\left(B^+ \to K^+ \mu^+ \mu^-\right)}{\text{Br}\left(B^+ \to K^+ e^+ e^-\right)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

 \Rightarrow It deviates **2.6** σ from SM.

 \Rightarrow equals to 1 in SM (universality of lepton coupling).

 \Rightarrow NP coupling \neq to μ and e.

Conceptually R_K very relevant:

1 Tensions in R_K cannot be explained in the SM by neither factorizable power corrections* nor long-distance charm*.

New category of LFUV observables: $Q_{4,5} = P_{4,5}^{\prime \mu} - P_{4,5}^{\prime e}$ (BELLE)

[S. Wehle et al. PRL118 (2017)]

Figure 3: Q_4 and Q_5 observables with SM and favored NP "Scenario 1" from Ref. [6].

Table 2: Results for the lepton-flavor-universality-violating observables Q_4 and Q_5 . The first uncertainty is statistical and the second systematic.

q^2 in GeV ² / c^2	Q_4	Q5
[1.00, 6.00]	$0.498 \pm 0.527 \pm 0.166$	$0.656 \pm 0.485 \pm 0.103$
[0.10, 4.00]	$-0.723 \pm 0.676 \pm 0.163$	$-0.097 \pm 0.601 \pm 0.164$
[4.00, 8.00]	$0.448 \pm 0.392 \pm 0.076$	$0.498 \pm 0.410 \pm 0.095$
[14.18, 19.00]	$0.041 \pm 0.565 \pm 0.082$	$0.778 \pm 0.502 \pm 0.065$

A glance at CP Violation, Status of Flavour Anomalies and all that-I

and a new LFUV surprise ... R_{K^*}

• Both R_K and R_{K^*} are very clean in the SM and for $q^2 \ge 1$ GeV².

• Lepton mass effects even in the SM are important in the first bin.

 \rightarrow Our error size in 1st and 2nd bin in agreement with Isidori et al. (including QED \rightarrow 0.03).

- In presence of New Physics or for $q^2 < 1$ GeV² hadronic uncertainties return.
 - Typical wrong statement "*R_{K*}* is ALWAYS a very clean observable", indeed it is substantially less clean and more FF dependent than any optimized observable.