Top quark physics summary

Rebeca Gonzalez Suarez University of Nebraska, Lincoln A long time ago in a collider far, far away....

Episode IX THE LAST QUARK

Having achived evidence for a heavy quark at a mass of 174±10+13-12 GeV/c2, the CDF and DO collaborations have the top quark at the top of their

fingertips.

The discovery of the top quark was announced during a seminar at Fermilab on March 2

1995

- The CDF and DØ collaborations at the Tevatron had submitted their papers reporting the discovery on February 24:
 - ▶ <u>arXiv:9503002</u>, <u>arXiv:9503003</u>

It had taken 20 years to find the top quark, following the quark model development in the 1970s

Year	Collider(s)	Coll. particles	Limit on m_t	
1984	PETRA (DESY)	e^+e^-	> 23.3 GeV	
1990	TRISTAN (KEK)	e^+e^-	> 30.2 GeV	
1990	SLC (SLAC), LEP (CERN)	e^+e^-	> 45.8 GeV	
1988	$\mathrm{Sp}\overline{\mathrm{p}}\mathrm{S}$ (CERN)	$par{p}$	> 45 GeV	
1990	$\mathrm{Sp}\overline{\mathrm{p}}\mathrm{S}$ (CERN)	$par{p}$	> 69 GeV	
1991	Tevatron (Fermilab)	$par{p}$	> 91 GeV	
1994	Tevatron (Fermilab)	$par{p}$	> 131 GeV	

- The top quark completed the list of fundamental constituents of matter in the SM
- The Tevatron allowed for the study of the top quark to a very large extent
 - ▶ <u>D0 Results</u>, <u>CDF results</u>
 - and eventually shut down in 2011 (though they continued producing results after)
- The LHC started running in 2009, and by 2010 it had achieved pp collisions at 7TeV

2012

The 4th of July 2012 in a similar seminar at CERN, the LHC experiments announced the discovery of the Higgs boson: <u>arXiv:1207.7235</u>, <u>arXiv:1207.7214</u>

- Two discoveries with many things in common (such as many authors for example)
- ▶ Two particles that are deeply connected, but that is a story for another time
 - and you have heard it already

So, does this mean that...

... the top quark era ended with the Tevatron and the Higgs boson is **the** LHC particle?

In way yes, but

Not your average quark

- The top quark is Special
- It is very heavy → heaviest elementary particle found so far
 - almost as heavy as a gold atom
 - ▶ 79 protons, 118 neutrons, and 79 electrons
- and because of that
 - it is short lived
 - Decays before it has the time to hadronize
 - ▷ Does not form bound states → no toponium
 - Some properties pass directly to the decay products
 - Couples strongly to Higgs
 - Impact on the Higgs sector

Every (top) precision measurement is a search

- The measurement of top properties is a test of the SM
 - The **top mass** is a **<u>fundamental property</u>**
 - Essential for probing the SM consistency via precision electroweak fits

arXiv:1803.01853

And there are many searches with top

- The top quark is a main ingredient of many new physics scenarios
 - Exotic partners, rare decays, heavy new particles decaying to top, new particles produced together with top...

Rebeca Gonzalez Suarez (UNL) IMFP 2018

Top signatures are rich

The top quark is is is (*experimentally)

- ▶ top decays as t→Wb, almost 100% of the times
 - W then decays either to lv or qq

Whenever a top quark is produced, we'll have

- Jets coming from b-decays that we need to "tag"
 - b-tagging: very important for top
 - Room for creativity: several algorithms

▶ And either:

- Isolated leptons
- Neutrinos \rightarrow invisible, inferred from missing transverse energy (MET)
- AND/OR
 - jets coming from lighter quarks

Using the full potential of the LHC experiments

Top is EVERYWHERE

- But no matter if you like it or not: It is **unavoidable** at the LHC
 - Produced at a very high rate, mainly via strong interaction in ttbar pairs

and at a lower rate via EWK interaction: single top quark production

Three main modes: t-channel, tW associated production, and s-channel

- Then there are many other modes of production:
 - (t)t+X (X= W, Z, γ, H, bb, tt, ...)
- ▶ Top is background of virtually everything at the LHC → we need to know it well!

A certified top quark factory

σ[pb]	ttbar	t-channel	tW	s-channel	ggH
Tevatron	7.0	2.08	0.22	1.046	-
LHC @ 7TeV	177.3	63.89	15.74	4.29	15.31
LHC @ 8TeV	252.8	84.69	22.2	5.24	19.47
LHC @ 13 TeV	831.7	216.99	71.2	10.32	44.14

- Top quarks are produced today at the LHC more than 100 times as often as they were produced at the Tevatron
- For every Higgs boson produced in collisions → 22 top quark pairs

LHC Run-1

During the Run-1 (2010-2012) the LHC delivered ~5fb⁻¹ of pp collisions at 7TeV and ~20fb⁻¹ of pp collisions at 8TeV

- More the 5M ttbar pairs
- About 2M single top t-channel events
- ▶ 0.5M of tW events
- more than 100K s-channel events
- ▶ To compare with ~0.5M of Higgs events

Enough to establish a **very healthy top Run-1 Legacy** With a good number of ATLAS+CMS combinations (and even a world combination!)

The Run-1 Legacy (so far)

Production rate of top quark pairs

Inclusive:

- ▶ All channels, very high precision (≈3.5%)
- all compatible with theory predictions at high orders (NNLO)
- Differential: as a function of specific variables
 - all channels, at different levels, in different regimes of the phase space

- Single top quark production
 - Main mode, t-channel, measured at high precision (inclusive, differential)
 - First observation of the tW process
 - Study of s-channel and rare single top modes
 - top properties measured in t-channel signatures

18

Properties

- Very close to the high precision regime
- Everything is consistent with the SM predictions so far
- First combined LHC publication in the top group!

Asymmetries (charge) W-helicity fractions Spin correlations Top polarization BR (t→Wb) |V_{tb}| CKM matrix element Top quark width CP violation tests

<u>arXiv:1709.05327</u> Charge asymmetry combination

- Top mass: Flagship property!
 - A variety of dedicated measurements (classic and alternative)
 - Extremely precise ±0.48 GeV (0.34%)

- Top pairs produced together with other particles
 - Higgs, W/Z, γ, tt...
 - Achieved observation of ttV
- A number of new physics searches with top quarks
 - ▶ From FCNC in top, to SUSY scenarios, T' ...
 - No signs of new physics yet
 - But the possibilities are still unlimited

21

LHC pp data

▶ We are days before the start of the last period of pp collisions of Run-2, and we have:

90fb⁻¹ at 13TeV

100fb⁻¹ was the goal for Run-2, with 2018 still ahead, it will certainly be surpassed

CMS Integrated Luminosity, pp

The legacy that is to come will be even better

- Well into Run-2
 - ▶ We have a collection of results (**I will discuss the latest among those**)
- But keep in mind:
 - most of the data collected at 13TeV is not yet explored (we are about to jump into it!)

24

Inclusive tt cross sections

The bread and butter of top physics at the LHC

- Early measurements at any new energy regime
- Deviations from the predictions would be a clear flag for new physics
 - but so far they are all consistent with the SM

With a small fraction of the data: Δσ/σ ≈ 4% and decreasing (Run-1 legacy precision ≈3.5%)

Inclusive tt cross sections: the oddballs

- Even in the most straightforward measurements, there is always space for creativity
- ▶ The two most precise cross section measurements at 13TeV so far are:

 σ_{tt} = 818 ± 8 (stat) ± 27 (syst) ± **19 (lumi)** pb (ATLAS dilepton)

σtt= 888 ± 2 (stat) +26-28 (syst) ± **20 (lumi)** pb (CMS I+jets)

while the systematic associated to the luminosity does not limit our measurements now, it will likely do so in the future

Cross section ratios <u>arXiv:1612.03636</u> tt/Z cross section ratios systematics cancel in the ratio power to constrain PDFs

Inclusive tt cross sections: the oddballs

- In November 2015, the LHC delivered pp collisions at 5.02 TeV
 - Reference run for Heavy Ions collisions at that energy
- Measuring the inclusive tt cross section provides a reference for future measurements tt in nuclear collisions at that nucleon-nucleon collision energy
 - \triangleright without the need to extrapolate from measurements at different \sqrt{s}

Inclusive tt cross sections: the oddballs

- Later, we did measure tt production in actual Heavy lons collisions
 - proton-nucleus collisions, pPb data
 - center of mass energy of 8.16TeV
- First observation of the tt process using proton-nucleus collisions with > 5σ significance

Surprise collision type: pPb1709.07411∆σ/σ≈18%Paves the way for future measurements in
Heavy lons

Differential tt cross sections

Differential tt cross sections

- Modelling uncertainties becoming very important
 - For top quark physics and for every analysis that has top quark background
- Differential measurements
 - Interface theory, simulation, and the experiments
 - Allow for comparisons with state-of-the-art predictions
 - MC generators; high order predictions; different matching schemes, scales and tunes
 - While at the same time, provide
 - the ultimate stress-test of the SM
 - Extraction of parameters (m_t, a_S)
 - Constrains on BSM models, EFT
- Results in every final state, at all levels, covering boosted and resolved regimes

Differential tt cross sections

- In general: good agreement with NNLO predictions and NLO generators
 - Discriminating between models and tuning parameters already possible

Top quark p_T: an unexpected feature

▶ The top quark p_T is softer in data than in simulation

Effect observed during Run-1, still present in Run-2

arXiv:1708.00727 boosted and resolved, I+jets

Visible everywhere

- Appears clearly in ATLAS and CMS data
- It is improved (not fully fixed!) by higher order (NNLO) calculations
 - ▶ The effect is also smaller in simulation at higher orders (NLO)

Multi differential distributions

<u>×10⁻³</u>

- A new differential era
- Bin events not in one variable but in two (or more) variables:
 - Better constrains to the MC by disentangling effects
 - Better constrains to PDFs

arXiv:1803.08856

l+jets

 $\frac{\sigma_{norm}}{\sigma_{norm}} \frac{u \sigma}{dM(t\bar{t}) dly(t\bar{t})} [GeV^{\dagger}]$ 2.5 CMS e/µ+jets 300 < M(tt) < 450 GeV parton level Data Sys ⊕ stat Stat d^co POWHEG P8 1.5 --- POWHEG H++ MG5 P8 [FxFx] 0.5 Theory Data 1.05 0.95 0.9 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 1 ly(tť) 35.8 fb⁻¹ (13 TeV) ×10⁻³ $\frac{1}{\sigma_{norm}} \frac{d \cdot \sigma}{dM(t\bar{t}) dly(t\bar{t})} [GeV^{\dagger}]$ e/µ+jets CMS 625 < M(tł) < 850 GeV 0.6 parton level Data Sys

stat 0.5 Stat d²0 POWHEG P8 0.4 POWHEG H++ ----- MG5 P8 [FxFx] 0.3 0.2 0.1 Theory Data 1.4 1.2 0.8 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 1 ly(tī) 35

35.8 fb⁻¹ (13 TeV)

Rebeca Gonzalez Suarez (UNL) IMFP 2018

Studies with charged particles (in or outside jets)

 Recent measurements investigating:

jet constituents/ structure variables

- multiplicity and kinematic
 variables of
 charged-particle
 tracks from the
 underlying
 event
- tuning of the simulation
- sensitive to colour effects, as

<u>CMS PAS-TOP-17-015</u> underlying event

jet substructure observables

colour flow

Before you go: differential top quark mass!

- Not many properties results yet, we need to understand the data very well first
 - a first measurement of top width (compatible with the SM)
- Direct measurement of the top quark mass with 13 TeV data
 - classic method (most precise value in Run-1)
 - Updated treatment of model uncertainties
- The result includes differential measurements

 $\frac{CMS-TOP-17-007}{m_t = 172.25 \pm 0.08 \text{ (stat+JSF)} \pm 0.62 \text{ (syst) GeV}}$ $(\Delta m_t = 0.36\%)$

Rebeca Gonzalez Suarez (UNL) IMFP 2018

Single top production

Single top quark production

The study of single top quarks is also well advanced in Run-2

t-channel cross section at 13TeV ~ tt cross section at 8TeV

Early measurements of t-channel (inclusive, differential)

tW, no more a new process

- tW is entering precision regime and the differential world
 - Remarkable for a process observed for the first time at the LHC in Run-1 (with 8TeV data)

Rare top production

Single top tZ is a very rare single top process

arXiv:1712.02825

SM tZq significance 3.7σ (3.1 σ)

- sensitive to the Z coupling and to new physics (FCNC)
- Evidence of the process, close to observation at 13 TeV

N 120 Events / 0.2 GeV Ö CMS CMS CMS Data Events / 100 22 / 52 tZa 1biet 2bjets **Objet** 30 NPL Events / tWZ ttH+ttW 20 tτ 60 ΖZ WZ+c 40 WZ+b 10 200 WZ+light 20 Pulls Pulls Pul 0.5 -0.5 0.5 -0.5 0 0 50 150 200 250 100 **BDT** output **BDT** output m^w_T [GeV]

arXiv:1710.03659

SM tZq significance 4.2σ (5.4 σ)

tZq FCNC in the same signature: CMS PAS-TOP-17-017, ATLAS-CONF-2017-070 FCNC results in other channels, like: $(t \rightarrow Hq) \frac{arXiv:1712.02399}{arXiv:1707.01404}$

Rare production processes becoming mainstream

▶ tt+V (W/Z), low cross section SM processes, $\sigma_{tt} \sim 10^3 \sigma_{ttZ}$

- sensitive to anomalous couplings & BSM effects, ttH background
- Both ttW and ttZ above 5σ each, systematic and statistic uncertainty on the same ballpark
 - EFT interpretation

Exciting times ahead

- ▶ 4t production is a **VERY** rare production \rightarrow 5 orders of magnitude less often than tt in the SM
 - Future measurement useful test of analytical higher order calculations
- ▶ Before that → many BSM models predict an increase of the 4t cross section
 - Particles decaying to top quarks or modified couplings, massive coloured bosons, composite Higgs/top, extra dimensions, SUSY [...]

previously at 13TeV arXiv:1702.06164 and ATLAS-CONF-2016-020

Forward top production

The dawn of a new era

- After a first observation of top quark production in the forward region in 2015
 - LHCb has started to seriously measure top quark cross sections
 - Very valuable complementary measurements to ATLAS and CMS

47

What will the future hold?

"ceiling", during the LHC's

lifetime we still can aim to

go as low as ~200MeV

Yukawa coupling

Snowmass: arXiv:1311.2028

Prospects for full LHC programme: Kt → 14-15% (300/fb) / 7-10% (3000/fb)

In the next months ATLAS and CMS will substantially enlarge the reach of the searches, beyond the LHC it can go even further

49

Summary

- The study of the top quark sector remains an exciting topic at the LHC
- Precision measurements could be the key to unveil the answers to fundamental questions that the SM cannot answer yet
 - The top quark offers a catalogue of those
- After a rich legacy from Run-1, we are about to attack a much larger body of data
 - Run-2 promises to be even better for top quark physics
- Stay tuned to the results from ATLAS, CMS, and now LHCb!
 - You can follow them all at the LHC top working group

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG