

Operated by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Reverse emittance exchange at MICE

David Neuffer, FNAL

Wedge absorbers and emittance exchange

Matrix formalism:

$$\mathbf{M}_{\delta} = \begin{bmatrix} 1 & 0 \\ -\delta' & 1 \end{bmatrix} \quad \mathbf{M}_{\eta} = \begin{bmatrix} 1 & \eta_0 \\ 0 & 1 \end{bmatrix}$$

$$- \text{ wedge is } \delta' = \text{dp/ds 2 } \tan[\theta/2]/p$$

$$- \delta_1 = \delta_0 \left[(1 - \eta_0 \delta')^2 + \frac{{\delta'}^2 \sigma_0^2}{\delta_0^2} \right]^{1/2}$$

$$- \epsilon_{\mathsf{L},1} / \epsilon_{\mathsf{L},0} = \delta_1 / \delta_0; \ \epsilon_{\mathsf{t},1} / \epsilon_{\mathsf{t},0} = \delta_0 / \delta_1$$

$$- \eta \delta_0$$

Can decrease ε_L and increase ε_t (or reverse)

Reverse emittance exchange (at η=0):

$$\frac{\varepsilon_{t,1}}{\varepsilon_{t,0}} = \sqrt{\frac{\delta_0^2}{\delta_0^2 + \delta'^2 \sigma_0^2}}$$

- large effect, with small δ_0 ; used $\delta p = 2MeV/c$ for MICE

Optics for MICE system

- 2017-02-07
 - -B(Z)

200MeV/c

MICE with M2 (2017-02-7 settings)

- 200MeV/c; ϵ_t =3mm; δp_0 =2 MeV/c
- with M2 on (-195 A)
 - $-3T\rightarrow 2T$ in DS
- good behavior
 - less emittance dilution in DS
 - 1.05 → 2.0mm
 - 3.0→3.3mm

Dispersion in DS is well behaved

200 MeV/c-3mm is a good beam setting to include in the experiment

ilab

Other cases

- M2D reduced to -110
 - reverse emittance exchange about as good as 2017-02-7
- M2D off (2016-05-1)
 - not as good
 - nonlinear emittance growth in DS much larger
 - effect still visible at DS entrance

Summary

- Wedge emittance exchange is an important part of beam cooling
- Experiment at MICE could demonstrate the principle
 - in both "direct " and "reverse" exchange
- Large effect in reverse exchange could be measured