

Basic Mathematics and Units

Rende Steerenberg – BE/OP

Rende Steerenberg, BE-OP

Contents

- Vectors & Matrices
- Differential Equations
- Some Units we use

• **Vectors & Matrices**

- Differential Equations
- Some Units we use

Rende Steerenberg, BE-OP

Scalars & Vectors

Scalar, a single quantity or value

Vector, (origin,) length, direction

Rende Steerenberg, BE-OP

Coordinate systems

A **vector** has 2 or more quantities associated with it

$$
r = \sqrt{x^2 + y^2}
$$

θ gives the direction of the vector

$$
\tan(\theta) = \frac{y}{x} \Rightarrow \theta = \arctan\left(\frac{y}{x}\right)
$$

Rende Steerenberg, BE-OP

Vector Cross Product

 \overline{a} and \overline{b} are two vectors in the in a plane separated by angle θ

The cross product $\overline{a} \times \overline{b}$ is defined by:

- **Direction**: $\overline{a} \times \overline{b}$ is perpendicular (normal) on the plane through \overline{a} and b
- The **length** of $\overline{a} \times \overline{b}$ is the surface of the parallelogram formed by \overline{a} and \overline{b}

$$
|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\theta)
$$

Rende Steerenberg, BE-OP

Cross Product & Magnetic Field

The Lorentz force is a pure magnetic field

The reason why our particles move around our "circular" machines under the influence of the magnetic fields

Rende Steerenberg, BE-OP

Lorentz Force in Action $F = e(\vec{v} \times \vec{B})$

The larger the energy of the beam the larger the radius of curvature

Rende Steerenberg, BE-OP

A Rotating Coordinate System

Rende Steerenberg, BE-OP

Magnetic Rigidity $F = e(\vec{v} \times \vec{B})$

- Bρ is called the magnetic rigidity, and if we put in all the correct units we get:
- $Bp = 33.356 \cdot p$ [KG $\cdot m$] = 3.3356 $\cdot p$ [T $\cdot m$] (if p is in [GeV/c])

Moving a Point in a Coordinate System

Rende Steerenberg, BE-OP

Rende Steerenberg, BE-OP

Matrix Multiplications

This implies:

$$
x_{\text{new}} = ax_{\text{old}} + by_{\text{old}}
$$

\n
$$
y_{\text{new}} = cx_{\text{old}} + dy_{\text{old}}
$$

\n
$$
x_{\text{new}} = cx_{\text{old}} + dy_{\text{old}}
$$

\nThis defines the rules for **matrix multiplication**
\n
$$
\begin{pmatrix} i & j \\ k & l \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_{\text{new}} \\ y_{\text{old}} \end{pmatrix}
$$

\nThis matrix multiplication results in:
\n $i = ae + bg, j = af + bh, k = ce + dg, l = cf + dh$

Rende Steerenberg, BE-OP

Moving a Point & Matrices

Lets apply what we just learned and move a point around:

Matrices & Accelerators

- We use matrices to describe the various magnetic elements in our accelerator.
	- The **x** and **y** co-ordinates are the **position** and **angle** of each individual particle.
	- If we know the position and angle of any particle at one point, then to calculate its position and angle at another point we **multiply all the matrices** describing the magnetic elements between the two points to give a single matrix
- Now we are able to calculate the final co-ordinates for any initial pair of particle co-ordinates, provided all the element matrices are known.

The Unit Matrix

There is a special matrix that when multiplied with an initial point will result in the same final point.

$$
\begin{pmatrix} x_{\sf\scriptscriptstyle new} \\ y_{\sf\scriptscriptstyle new} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{\sf\scriptscriptstyle old} \\ y_{\sf\scriptscriptstyle old} \end{pmatrix}
$$

The result is
$$
\begin{cases} X_{\text{new}} = X_{\text{old}} \\ Y_{\text{new}} = Y_{\text{old}} \end{cases}
$$

The **Unit matrix** has **no effect** on x and y

Rende Steerenberg, BE-OP

Going Backwards

What about **going back** from a **final** point to the corresponding **initial** point ?

$$
\begin{pmatrix} x_{\sf\scriptscriptstyle new} \\ y_{\sf\scriptscriptstyle new} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_{\sf\scriptscriptstyle old} \\ y_{\sf\scriptscriptstyle old} \end{pmatrix}
$$

or
$$
\overline{B} = M\overline{A}
$$

For the reverse we need another matrix M-1

$$
\overline{A}=M^{\scriptscriptstyle -1}\overline{B}\hspace{5mm}\text{such that}\hspace{5mm} \overline{B}=MM^{\scriptscriptstyle -1}\overline{B}
$$

The combination of M and M⁻¹ does have no effect

 $MM^{-1} = Unit Matrix$

M-1 is the "**inverse**" or "**reciprocal**" matrix of **M.**

Rende Steerenberg, BE-OP

Calculating the Inverse Matrix

If we have a 2 x 2 matrix:

$$
M = \begin{matrix} 6 & a & b & \mathbf{\hat{U}} \\ 6 & c & d & \mathbf{\hat{U}} \end{matrix}
$$

Then the **inverse matrix** is calculated by:

$$
M^{-1} = \frac{1}{(ad - bc)} \begin{matrix} \acute{e} & d & -b & \acute{u} \\ \acute{e} & -c & a & \acute{u} \end{matrix}
$$

The term **(ad – bc)** is called the **determinate**, which is just a **number** (scalar).

Rende Steerenberg, BE-OP

Example: Drift Space Matrix

• A drift space contains no magnetic field.

Rende Steerenberg, BE-OP

A Practical Example

- Changing the current in two sets of quadrupole magnets (F & D) changes the horizontal and vertical tunes (Q_{h} & Q_{v}).
- This can be expressed by the following matrix relationship:

$$
\begin{pmatrix} \Delta Q_h \\ \Delta Q_v \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \Delta I_F \\ \Delta I_D \end{pmatrix} \text{ or } \overline{\Delta Q} = M \overline{\Delta I}
$$

- Change I_F then I_D and measure the changes in Q_h and Q_v
- Calculate the matrix M
- Calculate the inverse matrix M⁻¹
- or $\Delta Q = M \Delta I$

E changes in Q_h and Q_v

or the changes (ΔI_F and ΔI_D) needed

Q_h and ΔQ_v).
 $A^{-1} \overline{\Delta Q}$

Basics of Accelerator Physics and

P • Use now M⁻¹ to calculate the current changes $(\Delta I_F$ and $\Delta I_D)$ needed for any required change in tune ($\Delta\Theta_{\sf h}$ and $\Delta\Theta_{\sf v}$).

$$
\overline{\Delta I} = M^{-1} \overline{\Delta Q}
$$

Rende Steerenberg, BE-OP

• Vectors & Matrices

• **Differential Equations**

• Some Units we use

Rende Steerenberg, BE-OP

The Pendulum

- Lets use a pendulum as example
- The **length** of the pendulum is **L**
- It has a **mass m** attached to it
- It moves back and forth under the **influence of gravity**

- Lets try to find an **equation** that **describes** the **motion** of the mass **m** makes.
- This will result in a **Differential Equation**

Differential Equation

Rende Steerenberg, BE-OP

Solving a Differential Equation

$$
\frac{d^2(\theta)}{dt^2} + \left(\frac{g}{L}\right)\theta = 0
$$

Differential equation describing the motion of a pendulum at small amplitudes.

 $\theta = A\cos(\omega t)$

Find a solution......Try a good "guess"......

Differentiate our guess (twice)

$$
\frac{d(\theta)}{dt} = -A \omega \sin(\omega t) \quad \text{and} \quad \frac{d^{2}(\theta)}{dt^{2}} = -A \omega^{2} \cos(\omega t)
$$

Put this and our " guess " back in the original Differential equation.

$$
-\omega^2 \cos(\omega t) + \left(\frac{g}{L}\right) \cos(\omega t) = 0
$$

Solving a Differential Equation

Now we have to find the solution for the following equation:

$$
-\omega^2 \cos(\omega t) + \left(\frac{g}{L}\right) \cos(\omega t) = 0
$$

Solving this equation gives: $\omega = \sqrt{\frac{g}{L}}$

The final solution of our differential equation, describing the motion of a pendulum is as we expected :

$$
\theta = A \cos \sqrt{\left(\frac{g}{L}\right)} t
$$
\nOscillation amplitude

Rende Steerenberg, BE-OP

Position & Velocity

The differential equation that describes the transverse motion of the particles as they move around our accelerator.

$$
\frac{d^2(x)}{dt^2} + (K)x = 0
$$

The solution of this second order describes **oscillatory motion**

For any system, where the restoring force is proportional to the displacement, the solution for the displacement will be of the form:

$$
x = x_{0} \cos(\omega t)
$$

$$
\frac{dx}{dt} = -x_0 \omega \sin(\omega t)
$$

Rende Steerenberg, BE-OP

Phase Space Plot

Plot the **velocity** as a function of **displacement**:

- It is an ellipse.
- As wt advances by 2 π it repeats itself.
- This continues for (ω t + k 2π), with k=0, \pm 1, \pm 2,..,..etc

Rende Steerenberg, BE-OP

Oscillations in Accelerators

Under the influence of the **magnetic fields** the **particle oscillate**

Rende Steerenberg, BE-OP

Transverse Phase Space Plot

- \cdot $\varphi = \omega t$ is called the **phase angle**
- X-axis is the horizontal or vertical position (or time).
- Y-axis is the horizontal or vertical phase angle (or energy).

Rende Steerenberg, BE-OP

Transverse Phase Space Plot

We distinguish motion in the Horizontal & Vertical Plane

Rende Steerenberg, BE-OP

Transverse Emittance

- To be rigorous we should define the emittance slightly differently.
- Observe all the particles at a single position on one turn and measure both their position and angle.
- This will give a large number of points in our phase space plot, each point representing a particle with its co-ordinates x, x'.

- The **emittance** is the **area** of the ellipse, which contains all, or a defined percentage, of the particles.
- The **acceptance** is the maximum **area** of the ellipse, which the emittance can attain without losing particles

• Vectors & Matrices

- Differential Equations
- **Some Units we use**

Rende Steerenberg, BE-OP

Relativity

Rende Steerenberg, BE-OP

The Units we use for Energy

• The energy acquired by an electron in a potential of 1 Volts is defined as being 1 eV

The unit eV is too small to be used today, we use:

1 KeV = 10^3 , MeV = 10^6 , GeV = 10^9 , TeV = 10^{12}

Energy: eV versus Joules

- The unit most commonly used for **Energy** is **Joules [J]**
- In accelerator and particle physics we talk about **eV**…!?
- The **energy** acquired by an **electron** in a potential of **1 Volt** is defined as being **1 eV**
- **1 eV** is **1 elementary charge** 'pushed' by **1 Volt**.

1 eV = 1.6 x 10-19 Joules

The Energy in the LHC beam

- The energy in one LHC beam at high energy is about 320 Million Joules
- This corresponds to the energy of a TGV engine going at 150 km/h

but then concentrated in the size of a needle

Rende Steerenberg, BE-OP

Energy versus Momentum

Einstein's formula:

$$
E = mc2
$$
 which for a mass at rest is: $Eo = moc2$

The ratio between the total energy and the rest energy is

$$
\gamma\!=\!\frac{E}{E_{\!{}_0}}
$$

The ratio between the real velocity and the velocity of light is

$$
\beta = \frac{v}{c}
$$

Then the mass of a moving particle is: $m = \gamma m_{\rm o}^2$

We can write:
$$
\beta = \frac{mvc}{mc^2}
$$

\n $\beta = \frac{pc}{E}$ or $p = \frac{E\beta}{c}$
\nMomentum is: $p = mv$

Energy versus Momentum

- Therefore the **units** for
	- **momentum** are: MeV/c, GeV/c, …etc.
	- **Energy** are: MeV, GeV, …etc.

Attention:

when **β=1 energy** and **momentum** are **equal**

when **β<1** the **energy** and **momentum** are **not equal**

A Practical Example (PSB- PS)

- Kinetic energy at injection $E_{kinetic} = 1.4$ GeV
- Proton rest energy E_0 =938.27 MeV
- The total energy is then: $E = E_{kinetic} + E_0 = 2.34$ GeV
	- $\overline{E_{_0}}$ *E* • We know that $\gamma = \frac{E}{E}$, which gives $y = 2.4921$

• We can derive
$$
\beta = \sqrt{1 - \frac{1}{\gamma^2}}
$$
, which gives B = 0.91597

• Using
$$
p = \frac{E\beta}{c}
$$
 we get p = 2.14 GeV/c

In this case: **Energy ≠ Momentum**

Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein

Rende Steerenberg, BE-OP