

Injection, extraction and beam transfer

Vincenzo Forte (TE-ABT-BTP) – vincenzo.forte@cern.ch Basics of Accelerator Science and Technology at CERN CAS@ESI 2018

Based on lectures by Brennan Goddard, Matthew Alexander Fraser, J. S. Schmidt, Rende Steerenberg

Outline

• **Introduction**

- Single-turn methods
	- **Injection**
	- **Fast extraction**
	- Multi-turn methods
		- Multi-turn hadron injection
		- Charge-exchange H- injection
		- Multi-turn extraction
- Resonant slow extraction

Summary

Injection, extraction and transfer

- CERN Accelerator Complex • An accelerator has **CMS** limited dynamic range **LHC** North Area 2008 (27 km) **ALICE LHCb** TT20 Chain of stages is **TT40** TT41 **SPS** needed to reach high $\frac{1}{12}$ $\overrightarrow{n_8}$ 1976 (7 km) **AWAKE** TT10 energy **ATLAS HiRadMat** TT60 2011 **ELENA AD ISOLDE** 2016 (31 m) 1999 (182 m) TT2. • Periodic re-filling of 1992 **BOOSTER** storage rings, like **REX/HIE** East Area 2001/2015 LHC n-ToF PS 1959 (628 m) CTF₃ LINAC₂ • External facilities and LEIR LINAC₃ $005(78 \text{ m})$
- experiments:
	- e.g. ISOLDE, HiRadMat,…

Beam transfer (into, out of, and between machines) is necessary.

Linking Machines

- **1. Extract** a beam out of one machine
	- \rightarrow initial beam parameters X_1, X_1
- **2. Transport** this beam towards the following machine (or experiment)
	- \rightarrow apply transfer matrix
- **3. Inject** this beam into a following machine with a predefined acceptance
	- \rightarrow produce required beam parameter for matching X_2 , X'_2

Optics Matching

Linking Machines – constraints

• Apertures of beam line elements define limitations for maximum β and dispersion values

Envelope(S) = $\sqrt{\epsilon_{geo} \cdot \beta(S)}$ + Dispersion(S) $\cdot \frac{\Delta p}{p}$ + mechanical alignment + orbit error $\cdot \sqrt{\frac{\beta(S)}{\beta_{max}}}$

- Minimum bend radius, maximum quadrupole gradient, magnet aperture, cost, geology or other obstacles, etc.
- Insertions for special equipment (like stripping foils)

Aperture example

Example: Test optics for matching PSB-to-PS transfer line

Outline

- **Introduction**
- **Single-turn methods**
	- **Injection**
	- **Fast extraction**
	- Multi-turn methods
		- Multi-turn hadron injection
		- Charge-exchange H⁻ injection
		- Multi-turn extraction
- Resonant slow extraction

Summary

Single-turn methods

 $CERN$

Kicker magnet

- Pulsed magnet with very fast rise time (100 ns – few μs)
- Typically 3 kA in 1 μs rise time

Example – SPS fast extraction 5 kicker with 0.5 mrad total deflection

More details in T. Kramer's talk later

Magnetic septum

- Pulsed or DC magnet with thin $(2 - 20$ mm) Septum between zero field and high field region
- **Typically**
	- ~10x more deflection given by magnetic septa, compared to kickers
	- $1 5 25$ kA

Example – SPS fast extraction 2.25 mrad total deflection

Normalised phase space

An oscillation in the longitudinal coordinate S can be translated into a rotation in phase.

Normalised phase space

π/2 phase advance to kicker location

Kicker deflection places beam on central orbit: Normalised phase space at centre of idealised septum

Betatron oscillations with respect to the Closed Orbit:

Injection errors

- $\delta_1 = \Delta\theta_s \sqrt{\beta_s\beta_1} \sin(\mu_1 \mu_s) + \Delta\theta_k \sqrt{\beta_k\beta_1} \sin(\mu_1 \mu_k)$ \approx Δθ_k $\sqrt{\beta_k}$ β₁)
- $\delta_2 = \Delta\theta_s \sqrt{\beta_s\beta_2} \sin(\mu_2 \mu_s) + \Delta\theta_k \sqrt{\beta_k\beta_2} \sin(\mu_2 \mu_k)$ \approx −∆ θ_s √($\beta_s\beta_2$)

- **Non-linear effects** (e.g. higher-order field components) introduce amplitude-dependent effects into particle motion.
- Over many turns, a phase-space oscillation is transformed into an emittance increase.
- So any residual transverse oscillation will lead to an emittance blow-up through filamentation
- Remark:
	- Chromaticity coupled with a non-zero momentum spread at injection can also cause filmentation, often termed *chromatic decoherence*.
	- "Transverse damper" systems are used to damp injection oscillations - bunch position measured by a pick-up, which is linked to a kicker

Filamentation

Filamentation

Filamentation

Blow-up from steering error

A numerical example….

Consider an offset Δa = 0.5σ for injected beam: $L = Da \sqrt{e_{\textit{matched}}}$

For nominal LHC beam:

…allowed growth through LHC cycle ~10 %

 $\overline{\mathsf{x}}$

Misinjected beam

Overview

- **Introduction**
- Single-turn methods
	- **Injection**
	- **Fast extraction**

• **Multi-turn methods**

- **Multi-turn hadron injection**
- **Charge-exchange Hinjection**
- **Multi-turn extraction**
- Resonant slow extraction
- **Summary**

Multi-turn methods

Multi-turn injection

- Limitation of beam density at injection (for hadrons) by:
	- space charge effects
	- the injector capacity
- Increase overall injected intensity : fill the horizontal phase space
	- Requires large acceptance of receiving machine compared to beam emittance from injector
	- \cdot \rightarrow no increase of beam density!

Programmable closed orbit bump

- No kicker but fast programmable bumpers
- Bump amplitude decreases and a new batch injected turn-by-turn
- Phase-space "painting"

Example: CERN PSB injection, high intensity beams, fractional tune $Q_h \approx 0.25 \rightarrow$ beam rotates $\pi/2$ per turn in phase space

"Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte 53

[&]quot;Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte 54

Phase space has been "**painted**"

Charge exchange H-injection

- Multi-turn injection is essential to accumulate high intensity
- Disadvantages inherent in using an injection septum:
	- Width of several mm reduces aperture
	- Beam losses from circulating beam hitting septum:
		- typically up to 50% for the CERN PSB injection at 50 MeV
	- Limits number of injected turns to 10 20
- **Charge-exchange injection** provides elegant alternative
	- **•** Convert H⁻ to H⁺ using a thin stripping foil, allowing injection **into the same phase space area**
	- **increase of beam density**

Multi-turn methods

H⁻ charge exchange injection (Example: PSB future injection)⁶²

- The Linac4 will generate H⁻ beams to the PSB injection at 160 MeV.
- Protons are stripped (>98% efficiency) from H⁻ ions through a stripping carbon foil. *The stripping foil*

Measured efficiency 98-99%

Accumulation process on foil

Linac4 connection to the PS Booster at 160 MeV: H- stripped to H⁺with Carbon foil 200 μg.cm-2

H-injection - painting

 0.005

 -0.005

-0.01 -

 0.01

 0.005

 -0.005

-n

 -0.01 ₀₅

Note injection into same phase space area as circulating beam

 0.005

 -0.005

 -0.01

 0.01

 0.006

 -0.005

 $-0.06 - 0.04 - 0.02 - 0 - 0.02 - 0.04 - 0.06$

y distribution - turn 11

 $\overline{0}$

 0.05

Time

Turn 11

Turn 31

Turn 61

Turn 102

"Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte

Charge exchange H-injection

- Paint uniform transverse phase space density by modifying closed orbit bump and steering injected beam
- Injection chicane reduced or switched off after injection, to avoid excessive foil heating and beam blow-up
- Longitudinal phase space can also be painted turn-by-turn:
	- Variation of the injected beam energy turn-by-turn
	- Chopper system in linac to match length of injected batch to bucket

Effect on beam emittance

Simulations of future PSB emittance evolution with Linac4 160 MeV injection

• Increased brightness (smaller slope of the curve) for CERN LIU and HL-LHC project

Multi-turn methods

Non-resonant multi-turn extraction

Beam bumped to septum; part of beam 'shaved' off each turn

Non-resonant multi-turn extraction

Non-resonant multi-turn extraction

• CERN PS to SPS: 5-turn continuous transfer

Fill SPS with 2 times 5-turn extractions (and 2 x 1 μs gap)

Total intensity in SPS $5x10^{13}p+$

- Beamlets can have slightly different emittance
- Still about 15 % of beam lost in PS-SPS CT
	- Issue for maintenance of equipment due to radioprotection

Different method needed to extract very high intensity beams **use resonance**

Multi-turn methods

Resonant low-loss multi-turn extraction

- **Adiabatic capture** of beam in stable "islands"
	- **Use non-linear fields (sextupoles and octupoles) to create islands** of stability in phase space
	- A **slow** (adiabatic) **tune variation to cross a resonance** and to drive particles into the islands (capture) with the help of transverse excitation (using damper)
	- **Variation of field strengths** to separate the islands in phase space
- Several big advantages:
	- **Losses reduced significantly** (no particles at the septum in transverse plane)
	- **Phase space matching improved with respect to existing non-resonant multi-turn extraction** - 'beamlets' have similar emittance and optical parameters

Resonant low-loss multi-turn

extraction

- a) Unperturbed beam
- b) Increasing non-linear fields
- c) Beam captured in stable islands
- d) Islands separated and beam bumped across septum – extracted in 5 turns

"Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte 78

Resonant low-loss multi-turn extraction

Time-dependent 6D simulations to investigate dynamics during splitting

Resonant low-loss multi-turn extraction

Phase rotation and non-linear optics change prior to extraction (to optimise extraction efficiency) turn 42500

Overview

- **Introduction**
- Single-turn methods
	- **Injection**
	- **Fast extraction**
	- Multi-turn methods
		- Multi-turn hadron injection
		- Charge-exchange H- injection
		- Multi-turn extraction
- **Resonant slow extraction**

Resonant slow extraction

Resonant slow extraction

Non-linear fields excite resonances that drive the beam slowly across the septum

- Slow bumpers move the beam near the septum
- Tune adjusted close to nth order betatron resonance
- r_{Inje} space, size depends on $\Delta Q = Q Q_r$ • Multipole magnets excited to define stable area in phase

- Sextupoles are used to excite a resonance for extraction
- This resonance slowly drives particles over septum for extraction (> 1000 turns)
- Results in long spills for experiments (milliseconds to hours)

Example of a spill at SPS to the North Area with large n x 50 Hz components and another noise source at 10 Hz 84

Extraction process

- Increase the sextupole strength to excite resonance
- Large tune spread created with RF gymnastics (large momentum spread) and large chromaticity to reduce stable region in phase space
- Move beam into the resonance by changing the tune

- Particles distributed on emittance contours
-

- Sextupole magnets produce a triangular stable area in phase space
-

- Sextupole magnets produce a triangular stable area in phase space
- ΔQ decreasing phase space distortion for largest amplitudes

- Sextupole magnets produce a triangular stable area in phase space
- ΔQ decreasing phase space distortion for largest amplitudes

- Sextupole magnets produce a triangular stable area in phase space
- ΔQ decreasing phase space distortion for largest amplitudes

- Sextupole magnets produce a triangular stable area in phase space
- ΔQ decreasing phase space distortion for largest amplitudes

- Sextupole magnets produce a triangular stable area in phase space
- ΔQ decreasing phase space distortion for largest amplitudes

• Stable area shrinks as ΔQ becomes smaller

3rd order resonant slow extraction

• Separatrix position in phase space shifts as the stable area shrinks

-
- continuously extracted "Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte 95

-
- continuously extracted "Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte

-
- continuously extracted "Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte

-
- continuously extracted "Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte

• As ΔQ approaches zero, the particles with very small amplitude are extracted

Outline

- **Introduction**
- Single-turn methods
	- **Injection**
	- **Fast extraction**
	- Multi-turn methods
		- Multi-turn hadron injection
		- Charge-exchange H⁻ injection
		- Multi-turn extraction
- Resonant slow extraction

Beam transfer - summary

Transfer lines transport beams between accelerators (from extraction of one to injection of the next) and onto experimental targets and beam dumps

- Requirements:
	- Geometric link between machines/experiment
	- Match optics between machines/experiment
	- Preserve emittance
	- Change particles' charge state (stripping foils)
	- Measure beam parameters (measurement lines)
	- Protect downstream machine/experiment

Injection - summary

Several different techniques using kickers, septa and bumpers

- Single-turn injection for hadrons
	- Boxcar stacking: transfer between machines in accelerator chain
	- Angle / position errors \Rightarrow injection oscillations
	- Uncorrected errors \Rightarrow filamentation \Rightarrow emittance increase
- Multi-turn injection for hadrons
	- Phase space painting to increase intensity
	- H injection allows injection into same phase space area

Extraction - summary

Extraction technique is chosen depending on "receivers" requirements

- Single-turn fast extraction:
	- for transfer between machines in accelerator chain, beam abort or experiments with requests for short pulses
- Non-resonant multi-turn extraction
	- slice beam into equal parts for transfer between machine over a few turns.
- Resonant low-loss multi-turn extraction
	- create stable islands in phase space: extract over a few turns.
- Resonant slow extraction
	- create stable area in phase space \rightarrow slowly drive particles into $resonance \rightarrow long spill over many thousand turns.$

Linking the machines

Help! What do I do when???

Literature

- **Lectures of beam injection, extraction and transfer CAS in Erice (Italy) 2017**
- General accelerator physics course of the CAS
- Lectures of Brennan Goddard at CAS and Rende Steerenberg at OP AXEL lectures
- M. Pullia, "Beamlines and matching to gantries" CAS 2015, Vösendorf, Austria
- K. Wille, "The Physics of Particle Accelerators: An Introduction", 2000
- H. Wiedemann, "Particle Accelerator Physics"
- LHC design report (Vol.III), CERN-2004-003
- A. Hilaire, "Beam transfer to and injection into LHC", EPAC'98 Conference, Stockholm, June 1998
- C. Bovet, "The fast shaving ejection for beam transfer from the CPS to the CERN 300 GeV machine", IEEE 1973
- R. Cappi, M. Giovannozzi, "Multiturn extraction:performance analysis of old and new approaches", Phys. Rev. Spec. Top. Accel. Beams 7 (2004) 024001
- V. Forte, "Performance of the CERN PSB at 160 MeV with H- charge exchange injection", PhD thesis 2016
- E. Benedetto et al, "Space Charge Effects and Mitigation in the CERN PS Booster, in View of the Upgrade", HB2016 Workshop, CERN-ACC-2016-0108
- M. Benedikt, "Optical design of a synchrotron with optimisation of the slow extraction for hadron therapy", PhD thesis 1997
- F. M. Velotti, "Higher Brightness Beams from the SPS for the HL-LHC Era", PhD thesis 2016

Thank you

Appendix

Liouville's Theorem

• "… under the influence of conservative forces the particle density in phase space Stays constant" (H. Wiedemann, Particle Accelerator Physics)

Normalised phase space

• Transform real transverse coordinates (*x*, *x', s)* to normalised coordinates $(\overline{X}, \overline{X'}, \mu)$ where the independent variable becomes the phase advance *μ*:

$$
\left[\begin{array}{c}\n\overline{\mathbf{X}} \\
\overline{\mathbf{X'}}\n\end{array}\right] = \mathbf{N} \cdot \left[\begin{array}{c}\nx \\
x'\n\end{array}\right] = \sqrt{\frac{1}{\beta(s)}} \cdot \left[\begin{array}{cc}\n1 & 0 \\
\alpha(s) & \beta(s)\n\end{array}\right] \cdot \left[\begin{array}{c}\nx \\
x'\n\end{array}\right]
$$

$$
x(s) = \sqrt{e} \sqrt{b(s)} \cos \left[\frac{m(s) + m_0}{m(s)}\right] \qquad m(s) = \int_0^s \frac{dS}{b(s)}
$$

$$
\overline{\mathbf{X}}(\mu) = \sqrt{\frac{1}{\beta(s)}} \cdot x = \sqrt{\varepsilon} \cos \left[\mu + \mu_0 \right]
$$

$$
\overline{\mathbf{X}}'(\mu) = \sqrt{\frac{1}{\beta(s)}} \cdot \alpha(s)x + \sqrt{\beta(s)}x' = -\sqrt{\varepsilon} \sin[\mu + \mu_0] = \frac{d\overline{\mathbf{X}}}{d\mu}
$$

"Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte 116

- $|(\alpha_1 \alpha_2)\cos \Delta\mu (1 + \alpha_1\alpha_2)\sin \Delta\mu|$ $\sqrt{\frac{p_1}{\rho}}$ $(\cos \Delta\mu \alpha_2\sin \Delta\mu)$ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor \mathbf{L} \mathbf{r} $\overline{}$ L $-\alpha_2$)cos $\Delta \mu - (1 + \alpha_1 \alpha_2)$ sin $\Delta \mu$ $\begin{bmatrix} P_1/(\alpha_1) & P_2 \end{bmatrix}$ (cos $\Delta \mu - \alpha_2$ sin Δ \rightarrow 2 = β_2^{max} (cos $\Delta \mu - \alpha_2^{\text{max}}$ sin $\Delta \mu$) $\beta_{\scriptscriptstyle 1}$ $\mathcal{A}_{\beta_1\beta_2}$ [($\alpha_1 - \alpha_2$)cos $\Delta\mu - (1 + \alpha_1\alpha_2)$ sin $\Delta\mu$] $\frac{1}{\beta}$ α $[(\alpha_1 - \alpha_2)\cos \Delta\mu - (1 + \alpha_1\alpha_2)\sin \Delta\mu]$ $\frac{1}{\beta}$ $\frac{1}{\beta}$ $(\cos \Delta\mu - \alpha_2\sin \lambda\mu)$ 2 2 1 $1 \quad \alpha_2$ β α_3 α_4 β α_1 α_2 1 P_2
	- Straight propagation of TWISS parameters (no periodic conditions)
	- At any point in line, $\alpha(s)$ $\beta(s)$ are functions of α_1 and β_1
	- For a ring the transfer matrix can be simplified (periodic conditions) \rightarrow

$$
\overline{Dm}=2\rho Q
$$

$$
M_{1\rightarrow 2} = M_{0\rightarrow L} = \begin{bmatrix} \cos 2\pi Q + \alpha \sin 2\pi Q & \beta \sin 2\pi Q \\ -1/\beta \left(1 + \alpha^2\right) \sin 2\pi Q & \cos 2\pi Q - \alpha \sin 2\pi Q \end{bmatrix}
$$

"Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte 117

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error Δa, in units of $\sigma = \sqrt{\beta \epsilon}$, the mis-injected beam is offset in normalised phase space by an amplitude $L = \Delta a \sqrt{\epsilon}$

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error Δa, in units of $\sigma = \sqrt{\beta \epsilon}$, the mis-injected beam is offset in normalised phase space by an amplitude $L = \Delta a \sqrt{\epsilon}$
- Any given point on the matched ellipse is randomised over all phases after filamentation due to the steering error:

"Injection, Extraction And Beam Transfer", CAS@E\$<mark>Effect of steering error on a given particle</mark>

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error Δa, in units of $\sigma = \sqrt{\beta \epsilon}$, the mis-injected beam is offset in normalised phase space by an amplitude $L = \Delta a \sqrt{\epsilon}$
- Any given point on the matched ellipse is randomised over all phases after filamentation due to the steering error
- For a general particle distribution, where A_i denotes amplitude in normalised phase of particle i:

$$
\varepsilon_{matched} = \langle \mathbf{A}_i^2 \rangle / 2
$$

"Injection, Extraction And Beam Transfer", CAS@E\$<mark>Effect of steering error on a given particle</mark>

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error Δa, in units of $\sigma = \sqrt{\beta \epsilon}$, the mis-injected beam is offset in normalised phase space by an amplitude $L = \Delta a \sqrt{\epsilon}$
- Any given point on the matched ellipse is randomised over all phases after filamentation due to the steering error
- For a general particle distribution, where A_i denotes amplitude in normalised phase of particle i:

$$
\varepsilon_{matched} = \langle \mathbf{A}_i^2 \rangle / 2
$$

• After filamentation:

$$
\mathcal{C}_{diluted} = \mathcal{C}_{matched} + \frac{L^2}{2}
$$

"Injection, Extraction And Beam Transfer", CAS@E\$<mark>Effect of steering error on a given particle</mark>

The new particle coordinates in normalised phase space are:

$$
\overline{X}_{error} = \overline{X}_0 + L\cos q
$$

$$
\overline{X'}_{error} = \overline{X'}_0 + L\sin q
$$

• For a general particle distribution, where A_i denotes amplitude in normalised phase of particle i:

$$
\mathbf{A}_{i}^{2} = \bar{X}_{0,i}^{2} + \bar{X}_{0,i}^{2}
$$

The emittance of the distribution is:

$$
\varepsilon_{matched} = \left\langle \mathbf{A}_{i}^{2} \right\rangle / 2
$$

"Injection, Extraction And Beam Transfer", CAS@ESI 2018, Dr. Vincenzo Forte

So we plug in the new coordinates:

Reduction of losses on the septum – shadowing with crystals

