Influence of gas curtain parameters on detected profile

Serban Udrea
Peter Forck
GSI
Motivation

The thickness of the gas curtain and the transverse distribution of the gas density affect the detected beam profiles.

Here a first estimation of the distortions is given using simplifying assumptions.
Assumptions

- Gas curtain's density ρ depends only on y
- Gas curtain's refractive index is 1
- Gas curtain extends from $y = -d/2$ to $y = d/2$
- 1D detector parallel to the ξ axis
- Ideal optics placed practically at infinity
- Practically infinite depth of field
- $0 \leq \beta < \pi/2$
- $-\pi/2 < \alpha < \pi/2$

$$I(\xi) \propto \int_{-d/2}^{d/2} \rho(y) \cdot \phi(\xi \cdot \frac{\cos(\alpha)}{\cos(\beta)} - \frac{\sin(\alpha + \beta)}{\cos(\beta)} \cdot y) dy$$
Gaussian Beam Homogeneous Gas Curtain

Line of sight and beam axis are perpendicular to each other, moreover $\alpha = \beta = 45^\circ$
Gaussian Beam Homogeneous Gas Curtain

Line of sight and beam axis are perpendicular to each other, moreover $\alpha = \beta = 45^\circ$.
Gaussian Beam Parabolic Gas Curtain

Line of sight and beam axis are perpendicular to each other, moreover $\alpha = \beta = 45^\circ$
Gaussian Beam Parabolic Gas Curtain

Line of sight and beam axis are perpendicular to each other, moreover $\alpha = \beta = 45^\circ$