JAI Student Design Project

HE-LHC Design Tasks

Team	Work on IR4	Work on General Machine
Optics	 Work with RF group to adjust optics depending on how much space is needed for the cavities Adjust separation dipoles depending on findings of RF and Magnet team Work with magnet team to explore the advantages weaker quadrupoles with a large aperture have on the beam stay clear 	 Optimising the arc cell A larger fill factor would relax magnet design goals or could increase the energy Can be achieved by making the arc cells longer Comes at the cost of larger beta functions and dispersion – reducing the beam aperture Improving the dispersion suppressor Geometry dictated by LEP geometry Also contains sextupoles for chromaticity correction Currently not fully compatible with arc cell
RF	 Design the HE-LHC RF cavities Aim to make them as short as possible to help optics design team and fit more instrumentation Aim to minimise the distance between the beams to ease separation 	 Design the crab cavities for main experiments The total voltage needed for full crossing will depend on the crossing angle Space require for crab cavities crucial to know for experimental interaction region design
Magnets	 Design a quadrupole with weaker field and larger aperture This is done in IR4 and IR6 in LHC to increase the beam stay clear Can potentially help the optics team Look into the feasibility of a 10 T dual aperture separation dipole The dual aperture causes very high return fields in the separation between the beams This magnet is used in several areas of the machine 	 Optimising the arc dipole Initially the FCC dipole was used but it is too big for the tunnel (need space for transport) The size was reduced but now there are very large (several 100G) surface fields Could also look into the option of using high temperature superconductors Potentially links with arc optimisation work