


This introduction is a first description of magnets commonly found in
synchrotrons and transfer lines, aimed in particular to explain the magnetic
elements as used in lattice codes.

Taking for example that FODO sequence in MAD-X:

* what is the field in the dipole? (is it achievable?)

* what is the difference between an SBEND and an RBEND?

* is the quadrupole length the actual physical length? from where to where?

* could we use a higher k1 (normal quadrupole coefficient) and a shorter length?
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[1] can be interesting also for your project this year, as it goes over the conceptual
magnetic design of a high field superconducting dipole.

A heartfelt thank you to many colleagues – in particular those from which I
borrowed much of the material for this short course.



sources:

Wikipedia

http://physics.kenyon.edu/EarlyApparatus/Electricity/Electromagnet/Electromagnet.html

In 1820 Hans Christian Oersted discovered that a current-carrying wire set up a
magnetic field.

In the same year, André-Marie Ampère discovered that a helix of wire acted like a
permanent magnet, and Dominique François Jean Arago found that an iron or
steel bar could be magnetized by putting it inside the helix of current-carrying
wire.

In 1824 William Sturgeon found that leaving the iron inside the coil greatly
increased the resulting magnetic field. Sturgeon also bent the iron core into a U-
shape to bring the poles closer together, thus concentrating the magnetic field
lines. The electromagnet was made of 18 turns of bare copper wire (insulated
wire had not yet been invented), with mercury cups acting as switches. He
displayed its power by lifting nine pounds (4.1 kg) with a seven ounce (200 g)
piece of iron wrapped with wire through which a current from a single battery
was sent.



This cyclotron magnet was built with 4000 tons of iron and 300 tons of copper.
The maximum field was 2.34 T, for a dissipated power of 2.5 MW. By the way, that
should be the largest single-magnet (synchro)cyclotron ever built.

It was  able to accelerate protons up to 730 MeV. The CERN synchrocyclotron
made it up to (only) 600 MeV.

We will not look into this kind of accelerator magnets, sticking to the ones found
in (strong focusing) synchrotrons and related transfer lines.





In brief:

* dipoles bend the beam, in fact they are also called bending magnets

* quadrupoles focus the beam

These are usually the main magnets in synchrotrons and transfer lines; thus, we
will focus on them.

A combined function bending magnet is a superposition of a dipole and a
quadrupole: it bends and focuses the beam at the same time. They are less
popular now with respect to the early days of synchrotrons; still, they are used in
some modern machines, for ex. light sources.



The LHC main dipoles (MB = Main Bending) are superconducting magnets, built in
the 2000’s.

The coils are wound in Nb-Ti and they are cooled by superfluid helium at 1.9 K.

At the nominal current of 11.8 kA, the dipole field is 8.3 T, in a  56 mm diameter
circular aperture.

Each dipole bends the beam by 360 / 1232 = 0.29 deg.

They are slowly ramped (about 20 min.) and then used in dc mode, as the LHC
operates as a collider.

These magnets are the result of many years of R&D and they are very close to
what can be achieved with Nb-Ti superconducting technology.

Note as of Jan. 2018: the LHC ran in 2017 at 6.5 TeV, corresponding to 7.71 T; 2
out of the 8 sectors have already been “trained” – with quenches – up to about
8.1 T.



The SPS main dipoles are resistive magnets, with coils in copper. Demineralized
water flows in the conductor to remove the Joule heating.

At the peak current of 5.8 kA, they provide a dipole field of 2.0 T in a rectangular
aperture. Two types of magnets with a smaller (36 mm, MBA) and larger (52 mm,
MBB) vertical aperture are used.

Each dipole bends the beam by 360 / 744 = 0.48 deg.

They now work in a cycled mode and they can be ramped in a few seconds.

In the 1970s, also a superconducting option was studied for the SPS, then
abandoned.

The main SPS converters are designed for a peak (active) power of 144 MW, which
is drawn directly from the 400 kV line. The average (rms) power depends on the
duty cycle, though it is usually a factor of 2 less.

The photo was taken in 1974.



The LHC main quadrupoles (MQ) are superconducting magnets.

The coils are wound in Nb-Ti and they are cooled by superfluid helium at 1.9 K,
like the LHC dipoles.

At the nominal current of 11.8 kA, they provide a gradient of 223 T/m.
Considering their aperture of 56 mm diameter, this corresponds to a pole tip field
of 6.2 T ( = 223 × 0.028). The peak field in the conductor is about 10% higher, at
6.8 T.



The SPS main quadrupoles are resistive magnets, with coils in copper.

Demineralized water flows in the conductor to remove the Joule heating, as for
the SPS dipoles.

At the peak current of 2.1 kA, the quadrupole gradient is 22 T/m in a 88 mm
diameter circular aperture. The pole tip field is then 1.0 T ( = 22 × 0.044).



This is an example of a combined function (dipole + quadrupole) bending magnet,
found for example in third generation synchrotron light sources. The technology is
the same as that for the SPS dipoles shown before, just with a different design of
the ferromagnetic yoke.

In ELETTRA, there are 24 such magnets. At the nominal current of 1420 A, the
dipole field is 1.2 T, together with a quadrupole gradient of 2.9 T/m. The vertical
gap is 70 mm; the bending radius of the machine is 5.5 m.

These magnets were built in the 1990s.



This is an example of a common design found in synchrotron light sources, where
the (short) sextupoles have additional windings so that they can be used also as
corrector magnets.

In this case, the correctors are a horizontal / vertical dipole – providing up to 0.5
mrad kick at 2.5 GeV – and a skew quadrupole.



In electromagnets the field is produced by electrical currents going through the
windings. In permanent magnets on the other hand the field is produced by hard
magnetic material, such as NdFeB or SmCo.

Iron dominated magnets use a yoke (usually in electrical steel or iron) to guide,
shape and reinforce the field; the position of the coil (or permanent magnet) is of
minor importance for the strength and homogeneity of the field. Coil dominated
magnets use the flux directly generated by the electric current flowing in the
windings to shape the field; the position of the iron yoke (if any) is of minor
importance for the strength and homogeneity of the field.

Normal conductive (or resistive) magnets have resistive coils, in copper or
aluminum, and they are operated around room temperature. Joule heating has to
be taken into consideration. Superconducting magnets have superconducting
coils, with no Joule heating. The known technical superconductors need to be
cooled at cryogenic temperatures to work.

The mode of operation can be static (dc, ex. main magnets in a collider or
synchrotron light source), cycled / ramped / slow pulsed (ex. main magnets in a
synchrotron for hadron therapy) or fast pulsed (ex. kickers).

In some cases, there might be some hybrids, e.g. an electromagnet with some
permanent magnet.

We will not talk about permanent magnets and fast pulsed magnets.



The jargon used in particle accelerator magnets is somewhat different from that
used in classical electromagnetism.

B is usually referred to as the magnetic field and it is measured in Tesla [T], or
Weber/m2 [Wb/m2]. This is the field interacting with the beam through the
Lorentz force.

H is mostly used when dealing with iron dominated magnets, in particular to
compute the magnetomotive force, produced in a ferromagnetic material by the
electrical current in the coils. H is measured in Ampere/m [A/m] and usually
referred to simply as the H field, or as the magnetic field strength, although the
latter can be misleading in this context.

Old units for B are Gauss [G] or kiloGauss [kG]: 10000 G = 1 T = 10 kG.

An old unit for H is Oersted (Oe): 1 Oe = 1000/(4p) A/m



The Earth’s magnetic field (for the moment) is oriented as in the figure, with the
geographic North pole being a magnetic South pole, and vice versa.

The field at our latitudes is about 0.5 Gauss.

The value above was computed using the World Magnetic Model (WMM) and the
latitude / longitude / elevation of Oxford. The date also matters, because the
Earth’s magnetic field changes in direction and amplitude with time.

You can check that out at

www.ngdc.noaa.gov/geomag/WMM



(top formulae)
The B field is divergence free, or solenoidal. The total flux entering a bounded
region equals the total flux exiting the same region (by Gauss theorem): there are
neither sources nor wells.

(middle formulae)
The curl of the H field is generated by currents. Applying Stokes’ theorem, the
integral of H around a closed loop equals the total current passing through a
surface that has that loop as a boundary. This is also known as Ampere’s law.

(bottom formula)
B and H are related by the permeability m. The relative permeability can be a
function of the field level (ex. saturation) or even of the cycle leading to that H
(ex. hysteresis).

All other expressions shown later (harmonic decompositions, Biot-Savart law) can
be derived from these three equations. An exception is the Lorentz force.

The picture shows James Clerk Maxwell as a young man – he was around 30 when
he first published these equations.



The Lorentz force is the main link between electromagnetism and mechanics.

The force acting on a beam of charged particles exploits the magnetic field
because of the (huge) leverage factor of the velocity v, which is often close to the
speed of light in our accelerators.

The expression on the right is the one used to get the force F on a conductor
carrying a current I in a field B. Especially in superconducting magnets, these
forces have to be properly considered at the design stage. For example, the LHC
dipoles at nominal field see a horizontal force of approx. 350 tons per m length.

In French, “force de Laplace” is that acting on conductors.

From wiki: The first derivation of the Lorentz force is commonly attributed to
Oliver Heaviside in 1889 (39 years old), although other historians suggest an
earlier origin in an 1865 paper by James Clerk Maxwell. Hendrik Lorentz derived it
a few years after Heaviside.



This 2D decomposition holds in a region of space:
* without currents
* without (hard or soft) magnetic materials (that is, basically, ferromagnetic
material like iron and permanent magnets)
* where the z component (3rd dimension, longitudinal) of B is constant

B (a 2D vector field) is then simply described by a series of scalar coefficients: B1,
A1, B2, A2, etc. These are the so-called (not-normalized) harmonics, or multipoles.
They have units of Tesla. R is a reference radius.

The same decomposition can be used in 3D for integrated fields. Technically, this
holds if at the beginning and end of the integration region dBz/dz = 0, which is the
case if B is integrated along a straight line all the way through a magnet.

The same decomposition can be expressed also in Cartesian coordinates (bottom
equations), using complex variables. The use of complex numbers can be seen as
a way of keeping the notation compact – or it can be given a deeper
mathematical meaning (analytic function, Cauchy-Riemann conditions).

In some cases, instead of real Bn and An coefficients, complex terms of the form Cn
= Bn + iAn are used, to then talk about magnitude and phase of the harmonics.

You can find derivations of the above in the references, for ex. [1].



Each term – taken individually – has a sort of specific meaning, both to the
magnet designer and the beam physicist.

The normal family involves a field perpendicular to the y = 0 line, that is, vertical
field in the horizontal (usually) plane. In the skew family, the field is tangential to
the same y = 0, that is, we have horizontal field in the horizontal (usually) plane.

The skew types are obtained from the normal ones with a 360/(4n) deg rotation,
ex. 90 deg for dipole, 45 deg for quadrupole, 30 deg for sextupole.

We consider from now on only magnets in the normal family, not the skew ones,
which are anyway just the same rotated.



The field expansion along x – that is, in the horizontal (usually) plane – is a
polynomial in x/R, with the same coefficients Bn of the multipole expansion.

The dipole is the B1 term, which provides a field constant in space.

The quadrupole is connected to the B2 term. A quadrupole has a linear variation
of By vs. x. In the center, there is no field. The gradient of a quadrupole is the
slope of the By vs. x line and it is measured in T/m. It turns out that Bx is also linear
vs. y – in the vertical plane – with the same gradient.

The B3 term corresponds to a sextupole. Here the field dependency is quadratic in
x. In the center, there is no field and no field gradient. A sextupole is usually
characterized by the second derivative of By vs. x. The sextupole can be thought of
as a quadrupole where the gradient (slope) changes linearly with the radial
displacement x.



In a lattice code, usually magnetic elements are described as a uniform dipole /
quadrupole / sextupole (or other) field times a magnetic length. The product of
the 2D field (or gradient) times the length is the integrated strength.

In many cases, quadrupoles, sextupoles and the alike can be considered as thin
lenses, so basically only the integrated strengths matter.

MAD-X normalizes the coefficients dividing by the beam rigidity Br. The length
definitions for an SBEND (sector bending magnet) and an RBEND (rectangular
bending magnet) are different and they can be found in the MAD-X
documentation.

For quadrupole, sextupole and higher order magnets, to avoid ambiguity it is
good to quote the pole tip field, or the field at the reference radius. The pole tip
field is

quadrupole: Bpole = G*r = B2*(r/R)

sextupole: Bpole = B3*(r/R)2

where r is the radius at the pole tip, and R the reference radius for the harmonics.
In a dipole, Bpole = B, since the field is uniform.

Note: for MAD-X, B0 is a dipole, B1 is a quadrupole, B2 is a sextupole, etc. while for
(most) magnet people n = 1 is a dipole, n = 2 is a quadrupole, etc.



The BEAM command has several possible entries. In this case, PC is specified,
which is the particle momentum times the speed of light, in GeV. The CHARGE is
not specified, so the program assumes the default of 1 proton charge. Then the
beam rigidity can be computed as

BRHO = PC / ( |CHARGE| * c * 1.e-9)

For an SBEND, the declared length is the arc length of the reference orbit, so the
dipole magnetic field is computed as shown; by the way, 2.62 T is rather an
uncommon value for the field – too high for a usual resistive magnet, too low
(that is, not worth) for a usual superconducting one.

For an RBEND, some trigonometry is needed as (normally) the length is taken
along a straight line joining the entry and exit point, so in that case

B = 2/L*sin(|ANGLE|/2)*(Br).

The gradient of a quadrupole per se does not mean much: what matters is
gradient and aperture. In this case, for example, if we had a 100 mm bore
diameter, then we would have 0.1 T ( = 2.0*0.050) as Bpole. This is quite low also
for resistive magnets, so maybe – from the magnet viewpoint – we could have the
same integrated gradient with a shorter but stronger magnet.



The simulated or measured field is often decomposed in multipole coefficients.
This decomposition holds in 2D, or in 3D for the integrated field along the
longitudinal direction, and it is valid up to a radius within which no current or
magnetic material is present. R is a reference radius. This is often referred to as
the good field region (GFR). A typical value for R is 2/3 of the physical aperture
radius.

Taking for example a dipole, in the ideal case only one term – B1 – is present in the
series. In reality, all other terms are there, though most often only the lower order
ones give a somehow significant contribution. We express these unwanted
components (errors) normalized to the fundamental (or main) component, and
multiplied by 10000. Usually the upper case Bn, An are used for the not
normalized coefficients – measured in Tesla, according to our definition – while
the lower case bn, an are reserved for the normalized terms, which are expressed
in units of 10-4.

The bn, an terms are typically a few units for well designed and well built dipoles
and quadrupoles. Higher values often come for sextupoles and correctors, whose
absolute strength is anyway much smaller than the bending and focusing magnets
in the lattice.

Note: some terms can also come from a misalignment of the magnet, for example
for a dipole a1 (skew dipole, or horizontal dipole) is connected to a roll angle
misalignment.



For a quadrupole, the relative multipole errors are a2, b3, a3, b4, a4, etc., and they
are obtained by normalizing the upper case coefficients by B2.

Usually no dipole errors (b1, a1) are considered in a quadrupole, as these
correspond to a transverse shift of the magnetic Centre (axis, in 3D); in that case,
the harmonic decomposition is re-expressed taking as the center of the circle the
point where there is no field (no integrated field in 3D).

Note: also for a quadrupole, some multipole errors can come from a
misalignment of the magnet, for example a roll angle gives rise to an a2 (skew
quadrupole) term.



We like to divide the multipole errors in two families: allowed and not-allowed (or
random).

The not-allowed (or random) terms are the ones that should not be there, thanks
to symmetries in the design. They then arise due to asymmetries introduced
during the fabrication.

The allowed multipoles remain even when perfect symmetries hold. Part of the
magnetic design focuses to optimize the geometry to cancel out these terms.

The SPS (a hybrid between an H-shape and a window frame) main dipoles are fully
symmetric dipoles. The HERA or Tevatron superconducting magnets are also fully
symmetric.

Half symmetric dipoles are resistive magnets with a C-shape yoke, for ex. the ones
of various light sources (ANKA, DIAMOND) or the LEP dipoles. The LHC main
dipoles are also – technically speaking – in this family, since there is a double
aperture breaking the full (left/right) symmetry, though the design of each
aperture separately is fully symmetric.



The field quality is also often expressed in terms of DB/B, where DB is the
difference between the actual field B and the ideal distribution Bid, normalized by
the ideal distribution Bid. Since B is a vector field, this is often done either on one
component (the main one) or on the modulus.

The plots on graph paper are measured field error curves (1970) inside the CERN
PSB (PS Booster) prototype bending magnet inner gap. The abscissa is the radial
position in the magnet aperture in mm. This particular magnet has a (wide) pole
of 460 mm width, for 70 mm of vertical gap.

These DB/B plots are typically used for resistive dipoles, which often have much of
a rectangular (i.e., not circular) aperture, so where using the standard harmonic
decomposition is not possible.



The DB/B can be built up starting from the harmonics, at least in the region where
the harmonics hold. Going the other way around – from DB/B to multipoles – is
not (mathematically speaking) really possible, but it is also done anyway.

In the case of a dipole, we consider the vertical field along the midplane, that is,
By(x) along the y = 0 line. The DB/B plot is made up of several contributions
coming from b2 (quadrupole, linear), b3 (sextupole, quadratic), b4 (octupole,
cubic) and so on.

Note 1: the harmonic expansion is valid only within a circle not containing current
or magnetic material. For resistive dipoles – even with wide poles – the same
polynomial expansion is used in practice with the coefficients of the powers in x/R
still called “quadrupole”, “sextupole” and so on.

Note 2: deriving the multipoles from the DB/B is (mostly) done using some
polynomial fitting, though the base functions are now not orthogonal…





Iron greatly enhances the field in the aperture of a magnet up to about 2 T (max).
It does so by collecting the flux lines – which tend to fill space with high relative
magnetic permeability – and by adding its own magnetization to the field produce
by the windings (or the permanent magnets).

Iron has a typical magnetic B-H characteristics. It is basically linear up to about
1.2-1.3 T – the actual knee depends on the grade of the material – to then
saturate.

The same can be looked at in terms of relative permeability mr versus H, which has
a peak of a few thousands to then decrease with the saturation.

At low field the permeability of the material is not well behaved: the iron has to
be “waken up”. Then remanence effects due to hysteresis can be important.

In most cases, the material used in the yokes of resistive magnets is an electrical
steel: Fe + a few % of other elements, mainly Si (up to about 3%), to increase the
resistivity (and so decrease eddy currents) and to minimize the hysteresis cycle.
These are called electrical steels, or Si steel. They are the same used for electrical
machines like transformers, generators, motors, etc.



The range of B fields covered by resistive magnets can be wide. Just to have some
terms of comparison, here we take a look at the fields in the gap of dipoles and
pole tip fields of quadrupoles for the largest CERN (resistive) synchrotrons and
transfer lines.

The PS – CERN’s oldest running machine – has combined function bending
magnets with a central gap field of about 1.5 T. These magnets are C shaped.

The SPS – CERN’s largest resistive synchrotron – has bending magnets which run
up to 2.0 T and quadrupoles with pole tip fields up to about 1.0 T. Pushing the
central field above that in a large resistive machine is not realistic, because of the
large electric consumption.

For the long transfer lines from the SPS to LHC (combined length of 5.6 km), the
dipoles run at 1.8 T while the quadrupoles are designed for 0.9 T at the pole tip.

Note: the pole tip field of quadrupoles (and sextupoles, etc) is smaller than what
can be achieved in a dipole, as this kind of magnets “collect flux lines in the yoke”,
that is, there is more field in the iron that you do not have in the useful (good
field region) part of the air gap.



As an example of magnets working into saturation, we show the transfer function
of the SPS main dipoles at CERN.

The plot is the actual calibration curve used by operation at CERN, which is the
average of 388 + 361=749 bending magnets, powered in series. The dashed line is
an extrapolation of the initial linear part, that is, it represents the field if there
were no saturation. At 6 kA the efficiency (the ratio of the two curves) is 89%.

When injecting beams into the LHC, the SPS works up to 450 GeV, with a field of
2.02 T.



The subscript rms stands for root mean square. Irms is the effective current, that is,
the one which is equivalent w.r.t. the losses per Joule heating in a cycle.

If the magnet is operated in dc, then peak and rms values are the same thing.

The same concept is used routinely in electrical systems working in ac. Duty cycles
of synchrotrons often involves linear ramps up / down, and possibly some flats for
beam injection / extraction – rather than pure sinusoidal oscillations – so the
corresponding rms values have to be computed case by case.



As an example of a computation of rms current, we show a typical cycle – current
I vs. time t – of the main dipoles of the PS Booster at CERN. The machine at the
moment accelerates beams up to 1.4 GeV, though an upgrade is planned to push
it to 2.0 GeV. The peak current is 5.3 kA, but the rms current is (only) 2.2 kA.

The ramp up (with beam in) is much more gentle than the ramp down (without
beam).



Usually resistive coils are either in copper or aluminum.

Copper is the most common choice nowadays for accelerator magnets, as it offers
a lower resistivity. The SPS magnets at CERN have coils in copper. This was also the
choice for all new magnets at CERN in the last years.

Sometimes aluminum becomes interesting because it is lightweight and less
expensive, also when additional material is added to keep the resistance (and
power) of the coil low. The PS main units at CERN are in aluminum, which was
chosen for economical reasons. Also the LEP main bending magnets – always at
CERN – were powered with aluminum busbars. Aluminum is used routinely in
electrical power transmission lines.

The resistances are given at 20 °C. Both Cu and Al become more resistive as the
temperature increases, with about a 4‰ increase per degree.

The raw metal prices evolve continuously, the values are just to give an idea.



The C shape provides easy access to the gap for the vacuum chamber – for this it
is often found in light sources – at the cost of a (slight) asymmetry, which
introduces the even terms in the allowed multipoles, in particular the quadrupole
(gradient).

The H shape is symmetric, at the cost of some access problems to the gap. For the
same field, this is more compact and mechanically stable than a C. The coils can
extend till the midplane – like in the SPS case, which is then a hybrid between an
H and a window frame – though then they need to be bent up in the ends to clear
the gap region. If the coil gets close to the aperture, then its position can have an
impact on field quality.

The window frame geometry provides the best field quality, thanks to the extra
wide pole; it has the same access problems of the H, plus there has to be enough
room to dimension the coil properly. As for the other cases, the position of the
windings can impact the field quality if the coil gets very close to the gap. This
type is often used for correctors, where the field is low, with the coils wound on
the return legs (figure on the bottom right). In this latter configuration, it is
somehow inefficient in 2D – the outer conductors are useless to create field in the
gap. In practice, this layout is still convenient for short magnets. The return
current on the outside adds flux in the side legs of the magnets, so more material
is needed if the working point becomes close to saturation – which is not an issue
if the magnet works at low field, like a corrector.



The magnetic circuit is designed in 2D as follows:

* the pole is wide enough to provide the required field homogeneity in the good
field region; its actual width depends if we have (or not) pole shims, if the magnet
is saturated, if we want a field uniformity in the 10-2, 10-3 or 10-4 level, etc.,
though the above formula provides a good first guess in many cases;

* to dimension the return legs, we consider that the flux in the yoke includes the
flux in the gap, but also some stray flux. The stray flux extends about one gap
width on either side of the aperture. The width of the legs is chosen to limit the B
in the yoke, usually below saturation, so to work in the high permeability regime
of the material.

Note: the density of the flux lines in the figure is – well – the flux density, that is,
the B field (Faraday); in this example, B is higher in the top / bottom legs than in
the back one.



The basic formula to compute the Ampere-turns needed for a given field and
vertical gap can be derived from the circuitation of H around a flux line (Ampere’s
law).

The term with BFe, lFe and mr is difficult to expand exactly – those can actually be
interpreted as average ones along the integral – however it does not matter. In
fact, BFe is similar to Bgap, while mr has a high value (thousands, unless the iron is
heavyly saturated) which makes that contribution small. For this reason, the
simple formula on the bottom, with just B, can be used.

The concept of magnetic efficiency h can also be introduced. Typical values are
above 95%.



There is a simple parallel between magnetic circuits and electrical ones:

* voltage drop ---> magnetomotive force

* resistance ---> reluctance

* current ---> flux

* Ohm’s law ---> Hopkinson’s law

NI – the Ampere-turns – is the magnetomotive force.

A and l are the cross section of the magnetic circuit and its length. In 2D, the area
A is the width of the magnetic circuit * 1 m.

The B field (flux density) is then the flux Φ divided by the section A.

The Ampere-turns spent in the yoke are like the voltage drop spent in connection
wires in an electric circuit.

For a C dipole, there are two main magnetic reluctances in series: the one for the
air gap (usually predominant) and the one for the iron.



These values are actually taken from existing magnets, designed in the 1970s at
CERN: the so-called MCAs and MCBs. The yoke is identical in the two cases, just
the coils are different, with a high current / low inductance and a low current /
high inductance designs. The iron length is 2.5 m. As the magnetic energy
(1/2*L*I^2) is basically the same, the inductance scales with (number of turns)^2.

Having a small number of turns carrying a large current brings down the
inductance. This can be convenient if the machine is ramped or pulsed, as the
inductive voltage L*dI/dt is the main voltage. On the other hand, high current
means larger cables and connections.

The same Ampere-turns can be achieved with a higher number of turns carrying a
smaller current each. In this case the inductance is high, which is not an issue if
the magnet is almost dc. The size of the cables and of the connections is smaller if
the current is smaller.

Best practice wants to design the coil considering also iterations of the
parameters with the colleagues of power converters.



Given the Ampere-turns – which depend basically on the field strength B, the gap
h and (to a lesser degree) the saturation level of the iron – the size of the coil
depends from the current density j.

The dc resistive power dissipated in the windings scales linearly with j – at fixed
field (that is, for the same Ampere-turns).

Below 1 – 1.5 A/mm2 (rms) the coils are usually not directly cooled, that is, they
are “air cooled” on the exterior by natural air convection. Above those current
densities, direct water cooling (with demineralized water circulating inside the
conductor) is used. A typical value is now around 5 A/mm2 (rms) for dipoles,
usually higher for quadrupoles. For both air and water cooled cases, for dc or slow
magnets, what needs to be removed is the resistive electrical power, that is R*I^2.
For very fast magnets, there are also eddy currents inside the conductor, which
are not treated here.

The choice of j depends on several factors. For large machines, we look for a
balance between an overall optimum of capital + running cost: large coils = large
capital cost = low running (electricity) cost, and vice versa.

In other cases and for single or few magnets that need to be very compact, the
current density can be much higher, like tens of A/mm2.



NI [A] total (not per pole ) Ampere-turns
B [T] field in the aperture
h [m] full vertical gap
m0 [H/m] vacuum permeability, 4p·10-7 H/m
h [/] magnetic efficiency, ≈0.95-0.98 (depends on iron saturation)
I [A] current
N [/] total (not per pole) number of turns
R [W] resistance
L [H] inductance
r [Wm] resistivity, 1.72·10-8 Wm for Cu, 2.65·10-8 Wm for Al, at 20 °C
Lturn [m] average length of a coil turn
Acond [m2] cross section of a single conductor (counting only the metal)
lFe [m] iron length, in 3D (longitudinal direction)
wpole [m] pole width

The Ampere-turns NI are directly proportional to the field B and the vertical gap h.
The formula holds in all cases, with the exception of the window frame layout
with windings on both backlegs, where the Ampere-turns need to be doubled.
The resistance depends on the resistivity r of the conductor and its cross section.
The inductance depends quadratically on the number of turns; for the same gap,
L is larger for a wider pole.



V [V] voltage
dI/dt [A/s] current ramp rate
Prms [W] resistive power (rms)
jrms [A/m2] current density (rms)
Vcond [m3] volume of conductor
Em [J] magnetic stored energy

The voltage has a resistive and an inductive part. In cycled magnets, often the
inductive voltage is larger than the resistive one.

The resistive power is usually looked at in rms terms. The formula can be used
also for the peak power, just with the peak current instead of the rms one. For a
given coil size, the power scales linearly with the field B, the gap h and the current
density j.

The magnetic stored energy could be computed also from the energy per unit
volume (B2)/(2m). Since the permeability is usually quite high in the yoke, the
magnetic energy is basically all stored in the air volume.

In their more general form, these equations hold also for other magnets, not just
dipoles.



Technical units are used in these formulae, taken from [2].
P [kW] power to be dissipated, that is, Prms in most cases
DT [°C] water temperature increase between inlet and outlet

typically up to 30 °C, in many cases lower
Qtot [l/min] total (not per hydraulic circuit) flow rate
Q [l/min] flow rate per hydraulic circuit
Nhydr [/] number of hydraulic circuits in parallel
v [m/s] water velocity; for Cu conductor, typically < 3 m/s to avoid

erosion problems, which could start already at 1.5 m/s
d [mm] diameter of the cooling duct
Re [/] Reynolds number, typically 2000 < Re < 105, to have moderately

turbulent flow
Dp [bar] pressure drop, typically around 10 bar
Lhydr [m] length of each hydraulic circuit in parallel

this can be different from NLturn, as there could be a difference
between electrical and hydraulic circuits, with for example
sub-coils all electrically in series, but hydraulically in parallel

The expressions are valid for water at around 40 °C. Other formulae are also used,
see for ex. [4] and [6].

Also in this case, the equations hold for other magnets, not just dipoles.



The allowed harmonics for the C and H designs contains rather large sextupoles b3
and decapoles b5. Solutions to improve field quality involve adding side shims
(discussed later) or widening the pole. Still, the differences between the
asymmetric C and the symmetric H layouts are rather small.

The window frame – as expected – is better, as the pole is indeed much wider.

Note 1: in these examples, wpole does not follow the rule wpole ≈ wGFR + 2.5h, as
here it is rather wpole ≈ wGFR + h; this is why the field quality is somehow poor, in
the 10-2 region.

Note 2: entries with a “0” correspond to not allowed harmonics

Note 3: it is possible to take the center of the C (for the beam) not in the middle
of the pole, but where the good field region is wider. The improvement is minor.



Resistive quadrupoles are most often of the standard type shown in the central
top figure, with four symmetrical quadrants.

Sometimes figure-of-8 (referred to also as Collins) quadrupoles are used, with the
magnetic circuit split in two halves. In this way, the magnets can be quite compact
transversally, which might be needed in very crowded regions. For example, some
quadrupoles in light sources are of this kind, to make room for outgoing photon
beam lines. We also have a few of these at CERN, as first quadrupoles in a
extraction line or after a switch dipole. This layout breaks the symmetry, somehow
like the C-shape does in dipoles.

A quadrupole with only half the coils also works just fine for weak strengths,
though it is seldom used to my knowledge.

Note: in the simulations, the same current density is applied to the various
configurations, corresponding to a pole tip field (for the standard quadrupole in
the top) of 0.8 T. This value starts to be on the high side for quadrupoles, as extra
flux is then collected in the yoke from the pole sides. As a term of comparison, the
SPS quadrupoles – which are quite “pushed” – have 1.0 T on the pole tip.



These formulae consider a standard quadrupole with 4 coils.
NI [A] Ampere-turns per pole
G [T/m] field gradient in the aperture
r [m] aperture radius
m0 [H/m] vacuum permeability, 4p·10-7 H/m
h [/] magnetic efficiency, ≈0.95-0.98 (depends on iron saturation)
I [A] current
N [/] number of turns per pole
R [W] total (not per coil) resistance
r [Wm] resistivity, 1.72·10-8 Wm for Cu, 2.65·10-8 Wm for Al, at 20 °C
Lturn [m] average length of a coil turn
Acond [m2] cross section of a single conductor (counting only the metal)

The Ampere-turns NI depend now quadratically on the gap (r2), not linearly as in
the dipoles. The derivation is similar to that for the dipoles and it can be found in
the references, ex. [4] and [6].

For the inductance, there is an approximate formula in [2]. For short magnets, 3D
simulations or measurements are needed.

The resistive power can be computed from the current and the resistance, as for
the dipoles.



It can be shown – see for ex. [1] – that the ideal pole profiles are curves of
constant scalar potential. This follows from the definition of the scalar potential
itself (not covered here) and from the fact that the flux lines are perpendicular to
the iron pole, if the iron permeability is infinite.

The expressions are quite neat in polar coordinates, though they become
cumbersome – already for a sextupole – in Cartesian coordinates.

The ideal pole profile for a dipole is simply a pair of straight lines.

The ideal pole profile for a quadrupole is a hyperbola.

In my opinion, these formulae are more of academic interest, as anyway the pole
is of finite width and its profile is optimized using some simulation tools. My
personal preference is for simple profiles – i.e., profiles that can be described with
line segments and circular arcs. This is often possible without any detrimental
effect on field quality, especially when the pole is not very wide.

All these profiles can be derived also using conformal mapping. There is quite a bit
of elegant complex mathematics in it, details can be found in some of the
references.



As an example of theoretical vs. real pole tip profile, we consider the quadrupoles
for the SESAME light source.

The hyperbola extends till infinity, without space for the coils: this is not practical.
The real pole shape is not far from the theoretical one, and then it is terminated
with shims, which are used at the design stage to minimize the allowed
harmonics, that is, to improve field quality. In a way, those shims bring in extra
material, which is in a way substituting the one going all the way to infinity in the
theoretical profiles.

In this specific case, the central part of the pole tip is not a hyperbola and the
profile is described with lines and circular arcs – with no compromise on field
quality. When designed the pole tip in 2D (with OPERA), the starting point for the
radius of the central part of the pole was the curvature radius of the theoretical
hyperbola – which turns out to be simply equal to the aperture radius, 35 mm in
this case.



The ideal poles for a dipole are two infinite parallel lines. Wide poles indeed help
for field quality – though they need to be terminated somewhere. At the
extremes, shims are then introduced. For long magnets, their size and shape can
be simulated in 2D to optimize the field quality. The real field quality will depend
also on the mechanical tolerances and the possible asymmetry in the magnetic
properties of the material.

Here the lamination for the LEP magnets is shown, where about ¼ of the pole
width is actually used for shims.

These magnets were rather particular – see the right picture. The top field was
only 110 mT, which allowed the yoke to be made in steel / concrete, with the steel
being 30% in volume. This is referred to as dilution. We say that the stacking
factor is 0.30. In the great majority of cases, the stacking factor is above 97%; the
few % unoccupied by iron is taken up by insulation in within the laminations and
voids.



Looking along the longitudinal (z) direction, the field B is maximum at the center
(z = 0) of the magnet, it is more or less constant till reaching the ends, where it
rolls off to reach a 0 value outside. The magnetic length lm is defined as that
length which – multiplied by the central field value B0 – provides the same
integrated field.

The same holds substituting the field B with the gradient G, or with any multipole
Bn, An. In this case, the integrals are carried out on the not-normalized (upper
case) coefficients, and the normalized terms (lower case) are then obtained by
dividing by the integral by the fundamental harmonic.

For long magnets – where the longitudinal dimension is much larger than the gap
– the behavior is dominated by the (long) central part, so taking the values of 2D
simulations and multiplying by a length yields good results. For short magnets, the
behavior is intrinsically 3D.



The magnetic length is larger than the iron length: there is some stray flux, that is,
there is still some field left after the iron yoke terminates, since B rolls off in a
continuous way.

The actual value of lm depends mainly on the geometry of the pole ends – abrupt,
with shims, with chamfers, with some rounded (Rogowski-like) profile – and on
the iron saturation. The same magnet can actually have slightly different magnetic
lengths when the excitation current – hence, the field level – is different. All these
effects can be assessed precisely only by 3D simulations and measurements.

In most cases, though, it is possible to estimate at first order the length with the
given simple formulae. In general, the higher the order of a magnet (quadrupole,
sextupole, octupole, etc), the less stray field is found on the axis at the ends, and
the closer are the values of lm and lFe.

Note: since in lattice codes lm is used, crowded regions – with many nearby
magnets – might have to be looked at in detail, to make sure there is enough
physical space for the magnets and their coil ends. Moreover, there might be also
some magnetic coupling between magnets which are installed very close to each
other.



One option is to have square ends – the pole profile is simply extruded in 3D and
then terminated abruptly (left figure). This introduces some field amplification in
the end of the iron, that has to carry also the stray field that extends past lFe. This
might lead to saturation and possible non-linear behavior at different excitation
currents.

Another possibility is to have end shims. These are also used to trim the actual
iron length so to have a closer magnet-to-magnet reproducibility of the field
integrals. The bottom right figure shows the design used for the SESAME
combined function bending magnets, with three separate stacks to control
integrated dipole, quadrupole and sextupole component separately (if needed).

Popular options are also 45 deg chamfers, which are often used for quadrupoles
and sextupoles.

In some cases, a rounded Rogowski-like profile, is used, to avoid flux
concentration in the ends, like for the DIAMOND dipole shown in the top right
figure.

In all cases, there is an impact on the magnetic length and on the integrated field
quality; indeed, optimizing the termination of the poles is a main reason to set up
3D magnetic simulations.



A sector dipole and a parallel faces (or rectangular) one both provide a region of
space with constant field, though they have different focusing effects on the
beam.

Other cases are possible, if the dipole ends are shaped with another angle with
respect to the incoming / outgoing beam. This is not treated here.

Note: the curvature has no effect, it is just for saving material, otherwise the pole
would have to be wider. In jargon, people talk about the sagitta of the beam going
through a dipole and then evaluate whether to curve the magnet or not. The LHC
dipoles are actually bent, by 9.1 mm. The SPS dipoles are not, that is, they are
straight. In most light sources – where the bending radii are a few meters – the
main dipoles are curved.



In a dipole, since the field is constant, particles are bent according to the same
bending radius – given by the field and the beam rigidity.

In a sector dipole, there is a difference in how much space is travelled within the
uniform field depending on the transverse position: a sector dipole focuses
horizontally.

This effect is not there in parallel ended dipoles. However, these have a edge
effect. Actually, the edges are defocusing, but the overall magnet has zero
focusing horizontally. Still it remains some vertical focusing at the edges. Most
often, if the bending angle is not so high (at least up to 45 deg) parallel ended
dipoles are more convenient to manufacture, as the yoke is built stacking up
sheets of laminations (like a deck of cards) and the pole width is reduced because
the sagitta of the beam does not need to be added.

These effects are handled differently in the various lattice codes, according to
some assumptions on the field roll-off in the ends, that somehow gradually goes
from a constant value (inside the dipole) to zero (outside). Some details about
what MAD-X does are given in its documentation, in the section Bending Magnet.





Superconductivity was discovered in the lab of Heike Kamerlingh-Onnes in Leiden
(Netherlands) in 1911:

… mercury at 4.2 K has entered a new state, which, owing to its particular
electrical properties, can be called the state of superconductivity …

Since then, many superconducting material have been found, but only a few of
them have some practical interest. The quest is (will ever be?) not over yet!

Note: the most used superconductor, Nb-Ti, is not shown on this plot… It was
discovered in 1961 and it has a critical temperature of 9.2 K.



Superconductivity implies zero electrical resistance, so that there is no power
dissipated as Joule heating (in dc). The drawback is that refrigeration power is
needed, as known superconductors work at cryogenic temperatures.

The figure shows a typical example of how much current density j can be
sustained by Nb-Ti, the most widespread technical superconductor at the
moment, vs. the B field: this is the so-called critical curve. The current density j
goes up by order of magnitudes with respect to normal conductors, and the wall
of 2 T field is breached.

We often say that the Ampere-turns are then cheap: no power consumption, no
need of large coils.



Nowadays, we have basically two families of superconductors.

LTS (low temperature superconductors)

* Nb-Ti is the workhorse material, not only for accelerator magnets. It has the
lowest critical current of the family, though it is easy to make into wires and cables
ready for winding.

* Nb3Sn also works around liquid helium temperatures. It can sustain higher field
w.r.t. Nb-Ti, thought it is brittle. It often requires a heat treatment at high
temperature (of the order of 650 °C) after winding. It is being used for some
magnets of the HL-LHC upgrade. This is also being used in parts of ITER.

* MgB2 is a more recent material, with a higher critical temperature than the
classical LTS. This has not been used for accelerator magnets (yet), though mostly
for power transmission cables, including in the future for superconducting links
for the HL-LHC upgrade.

HTS (high temperature superconductors)

These materials have much higher critical currents / temperatures / fields, but –
due also to their cost – they have seen limited application so far. For example, a
type of BSCCO is used in the LHC current leads, to carry the current from the
copper (room temperature) side to the Nb-Ti (liquid helium temperature) part.
These materials open up possibilities, on paper, to reach even higher fields; some
prototype magnets are being built.



Since the iron plays a secondary role for the central B field, instead of reasoning in
terms of magnetic reluctances and Hopkinson’s law (as for resistive magnets), it is
possible to integrate the field in 2D given by the coils directly with Biot-Savart law.

There are several coil layouts that can be used. Besides personal preferences of
the designers, the choice depends mainly on magnetic efficiency (how much B
can you get with a given amount of superconductor), field quality in the bore and
mechanical considerations (for the forces when cooling down / powering the
magnet).

Here we give the formula for sector dipoles, which are representative of the
accelerator magnets built so far. The choice of the 60 deg angle (formula on the
bottom) for the sector cancels out the first allowed harmonic, that is, b3.

The aperture radius r does not enter into the equation. Besides a geometric
factor, the field is simply a product

B ∝ j w

field ∝ current density (overall) × coil width.



You can get 8.3 T with

400 A/mm2 × 30 mm coil width (left figure, similar to LHC)

or

40 A/mm2 × 300 mm coil width (right figure, very hypothetical).

Besides the Ampere-turns, the power dissipation – if the coil were in normal
conducting Cu at room temperature – would be prohibitive, without counting the
amount of conductor needed, and the large stray field on the outside, as much
more flux is generated.



The sector layout in practice is modified to a configuration with several blocks, 6
per quadrant in the case of the LHC (in its final version). Each coil is wound with
superconducting cable, that is usually slightly tapered (keystone angle) so to help
follow the azimuthal angle as the turns pile up. Spacers (wedges) are inserted in
between the blocks. The overall geometry is optimized to improve field quality
and maximize magnetic efficiency, which in this case implies avoiding field
concentration on the coil w.r.t. the bore.

In the LHC dipoles the inner and outer layer are electrically in series, though they
are wound with a slightly different conductor (grading): the current density is
higher in the outer shell, where the field is lower. This allows saving of material.



Also in this case the LHC dipole is taken as an example. The figure though is not
the final design, it is actually among the very first ones: it dates back to 1987…
more than 20 years before first beams in the machine!

The gap between the coil and the yoke is space reserved for collars, made in
stainless steel (not magnetic) material. The collars are meant to counteract the
Lorentz force on the coils when the magnet is powered.

The main function of the iron is to provide a return path for the flux, although it
does also contribute to the field in the bore.



Superconductors carry a high current density, but they have an upper limit: this is
described by the so-called critical surface. The 3D plot is the critical surface of an
LHC Nb-Ti wire. Generally speaking, this depends on the temperature T and the
field B, and it is monotonically decreasing for increasing T and B.

To give an order of magnitude, the critical density at 5 T, 4.2 K as shown on the
graph is about 3000 A/mm2.

Note: the plot actually describes the current density in the superconductor itself.
The current density that we used before – for example 400 A/mm2 – is more an
engineering current density, or overall current density, that includes the stabilizer
in the superconducting wire, the insulation, the voids (filled by helium), etc.



The critical surface of the superconductor (the 3D plot for Nb-Ti on the left) is
reduced to 2D fixing the temperature, 4.2 K in this case (Ic plot on the right). For
convenience, the current is given instead of the current density, just multiplying
by the superconductor area Asc.

On the magnet side, there are two curves, which are very close to straight lines:
the peak field on the conductor, at different currents, and the bore field (in the
aperture). The intersection of the peak field line with the critical curve gives the
maximum (theoretical) field that can be reached by the magnet. In jargon, this is
often referred to as the short sample limit. There we expect the magnet to go
resistive, i.e. to quench. In practice magnets are trained (training) to get close to
that limit, with successive powering and quenches.

Note: short samples refer to performance of the superconducting wire (or cable)
measured, well, in short samples… Often when doing the design one accounts
also for a few % allowance, as cabling degradation.



The margin needed depends – among other things – on the superconducting
material, the design (for example, coils impregnated, typically in epoxy, or not),
the operating temperature.

Margins are ratios between an operating point (temperature, field, current) and
the limit on the critical surface of the superconductor. Typical values for Nb-Ti at
its limits (LHC main magnets) for the various margins are:
* margin along the loadline Iop / Imax ≈ 85%
* critical current margin Iop / IQ ≈ 50%
* critical field margin Bop / BQ ≈ 75 %
* temperature margin TCS - Top ≈ 1…2 K

The most used margin is probably the margin along the loadline, which is typically
just referred to as margin. Other definitions are possible (and meaningful), for
example the enthalpy margin, which is the integral of the heat capacity from the
operating temperature up to TCS.

Note: the subscript CS refers to current sharing temperature, because
superconductivity is lost and the current starts to be shared with the resistive
matrix of the stabilizer.



source:

https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots

Not only there is a range of superconducting materials, but also the technological
route along which they are produced makes quite a difference in their
performance. Some materials already show on a laboratory scale the possibility of
further enhancing their critical current density, others (in particular, Nb-Ti) have
already reached industrial maturity.

Nb-Ti provides useful current density till about 10 T: this is basically what set the
limit for LHC.

Nb3Sn can be pushed a little further. The records for prototype dipole magnets
(not yet ready for an accelerator) today is 16 T.

HTS open theoretically the way to even higher fields, entering a region where the
mechanical aspects – the containment of Lorentz forces and their stress on the
materials – will become even more critical.



There are two current densities that matter the most:

- joverall, which are the A/mm2 overall, that is dividing the Ampere-turns by the
whole section of the coil, including insulation, voids, etc.

- jsc, which are the A/mm2 just in the superconducting filaments, which are only
a part of the strands, since there is a stabilizing matrix (usually in copper): this
is the one that is used in the critical current plot.

Sometimes the ratio nCu-sc is referred to as to copper over non-copper.



For superconducting magnets, the combination of high current density and high
field results in very high electromagnetic forces.

As an example, the values for the LHC dipoles are reported. The axial force on the
coil is comparable to the weight of the cold mass.

The deformations induced by these forces have to be controlled, as the position
of the coil determines the field quality.

Moreover, a proper mechanical pre-stress is often used to minimize coil
movements, which can trigger a quench, involving a longer training of the magnet
to reach its design field.



The cross sections (to scale) of four superconducting colliders show different
design choices, such as single or double layers, wedges, coil blocks, in an effort to
achieve high magnetic efficiency and field homogeneity.

All these designs are of the so-called cos-theta family. A cos-theta distribution of
the current density with the azimuthal (theta) angle is known to yield a perfect
dipolar field. These windings – which wrap around a cylindrical mandrel – are
imagined to approximate this distribution, hence the name. An advantage with
respect to other layouts is that they do not require an inner support structure,
which eats in the available aperture.



All these machines are cooled with He. LHC is the only one to work with
superfluid helium. These extra 2 K mean a lot – the cryogenic system becomes at
once more complex and less thermodynamically efficient – though the heat
transfer between the bath and the coil is much improved. From a magnetic
viewpoint, working at 1.9 K instead of 4.2 K shifts the critical current curve of Nb-
Ti significantly.

LHC is the only twin bore layout of these four.

The Tevatron is the only one with a warm iron yoke, that is, the iron is not in liquid
helium.



In most superconducting machines, not much can be seen of the magnets once
installed if not their cryostats. An exception is the Tevatron, with its warm iron
yokes.

There are also resistive magnets in the pictures:

* at HERA, for the electron ring, below the proton machine (C dipoles);

* at Tevatron, on top of the superconducting machine (H dipoles), for the main
ring, which was a normal conducting synchrotron built before the
superconducting one, for which it also was as an injector at the beginning, before
the construction of a separate machine.





There are many magnetic simulation software available. Back in the days, many
individuals / institutes developed their own codes.
1. OPERA, http://operafea.com

This started in Rutherford Appleton Laboratory to then become one of the
most used programs in this field, for both 2D and 3D.

2. ROXIE, https://cern.ch/roxie
This started at CERN, especially for superconducting magnets.

3. POISSON, http://laacg.lanl.gov/laacg/services/download_sf.phtml
This is a historical code, still used for magnetostatic simulations in 2D,
developed at Los Alamos. It is based on a finite difference – not finite
element, like many of the others, approach. (free)

4. FEMM, www.femm.info
It’s a user friendly 2D program. (free)

5. RADIA, developed at ESRF (free)
http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia
It has quite some users, as it handles also 3D. It has been used much for
insertion devices (ex. undulators), but not only.

6. ANSYS, www.ansys.com
It is not particularly specialized for magnetic simulations.

7. Mermaid
It is a Russian code, developed at the Budker Institute of Nuclear Physics.

8. COMSOL
This is also a multi-physics environment.



FRESCA2 is the magnet we are going to model in the tutorial.

In this list, there are early papers on the design, such as [1] and [2], then papers
reporting on the fabrication, like [3] and [4], followed finally with the results [5].

This gives also an idea of the time needed to develop this (single)
superconducting dipole.



For more information, please refer for example to the references of the previous
page or the MT-22 poster (uploaded with this tutorial).



Each coil is a double-pancake.

After winding, each coil undergoes a heat treatment (to react the Nb3Sn). It is
then instrumented with voltage taps and quench heaters, before being
impregnated in epoxy under vacuum.



This picture was taken at CERN in January 2017 – one year ago.



Jc is the critical current, in A/mm2, in the superconductor.

B is the field in T.

T is the operating temperature in K.

This particular fit is called Summers’ parametrization.



I is the current. The nominal current for FRESCA2 is taken here as 11100 A, which
in our OPERA 2D model yields a central field of 13 T.

Jovr is the overall current density, that is, including voids and insulation.

Jcond is the current density on each strand.

Jsc is finally the current density on the superconducting part of the strand.

Nstr is the number of strands in the cable.

Each strand has a diameter dstr.

The copper to superconductor (or copper to non-copper) ratio is nCu-sc.

The picture of the Rutherford cable is taken from

Luc Oberli, Development of the Nb3Sn Rutherford Cable for the EuCARD High Field
Dipole Magnet FRESCA2, ASC conference, 2012



The simulation is run with a current of 11100 A.

A nonlinear BH iron curve is used, namely “tenten”, which features typical values
for a low carbon steel.

As an exercise, you can run the model without iron – you can leave it there, set a
relative permeability mr = 1, and solve the model linearly. For the same current of
11100 A, the field in the center decreases to 10.98 T. The iron provides in this
case a boost of 18% for the field, as it adds 2 T.

You can also evaluate the stray field outside of the return yoke.



The peak field in the coil is what is seen by the superconducting material. Usually
for a dipole it is a few % higher than the central field. In this case, for 13 T in the
center, we have a peak of 13.31 T in the coil closer to the midplane, which is 2.4
%. The other coil sees a peak field of 12.76 T, as the ferromagnetic pole draws
away flux lines.

To do this plot in OPERA, you can select only the regions spanned by the coils:
contour component=bmod style=zone label=values automatic=yes
lines=100 reg1=1 reg2=2 erase=yes

This shows B in regions 1 and 2; the automatic scale makes it easy to read the
peak level.
#Bpeak=maximum

This other command line stores the maximum field in a variable.

In this kind of dipoles, part of the coil also works at low field levels, and even at no
field at all – notice the blue island next to the midplane. For this reason, also
grading is often used (for ex., in the LHC dipoles), where you have the part of the
coil in low field packed with a higher current density superconductor, to be more
efficient and save material.



This kind of plots is usually called the load line of a magnet.

On one side, there is the central field and peak field (in the coil) as a function of
the current. This is a characteristic of the magnet. This is close to be a line,
besides some nonlinearity introduced by the saturation of the iron.

On the other side, there is the maximum current that can be provided by the
superconducting material at a given field and temperature. This sets the
maximum theoretical field that the magnet can achieve.



Most often, just the zoom of the load line around the nominal / high field part is
shown.

The intersection between the Bpeak curve (a characteristic of the magnet) and the
Jc curve (a characteristic of the material) gives the so called short sample current.
The Bcenter value corresponding to this current in jargon is the short sample field.

Besides other limitations – for example, of mechanical nature – the magnet can
get at most up to this value. Usually this is attained with several quenches,
following some training.

In the slide, 83% and 76% are the load line margins of the magnet when operated
at 11100 A (that is, 13 T) at 4.2 K and 1.9 K, respectively.



The mechanics of these magnets is one of their main challenges. Not only these
large Lorentz forces need to be contained, but the structure has to be stiff enough
to limit the deformation of the coil pack (at least in a traditional approach).

Usually some pre-stress is applied at room temperature to the superconducting
coils by means of their supporting structure during assembly. The differential
contractions of the different materials then might change the pre-stress
experienced by the coil after cool-down and it has to be carefully taken into
account.

Most often, these mechanical computations are performed with ANSYS.

In OPERA, you can easily compute the transversal forces for example with the
command
intarea reg1=1 reg2=2

where the numbers after reg1 and reg2 define the regions where the integration
is carried out.



Here we show the allowed harmonics (i.e., the field quality) according to our
model. All the even normal harmonics as well as all the skew harmonics are not-
allowed (that is, zero on paper) thanks to the symmetries. Other effects, coming
from example from persistent currents, also affect field quality; there are not
covered here.

Here the coefficients vary considerably with the field level. This is due to the
saturation of the iron, and most likely in particular of the pole, which is quite close
to the aperture. Such variations are quite large, but FRESCA2 is not an
“accelerator magnet”, but a one off to be used in a cable test station. This also
explains the rather generous size of the coil, that works at a reduced current
density with respect to more compact magnets designed for efficiency.

The multipoles can be computed directly in OPERA, for ex. with this script (valid
for a one quarter model of a dipole with the aperture centred in 0,0)
#rref=50*2/3 |/ reference radius for the multipoles

harm x1=#rref y1=0 x2=0 y2=#rref curv=-1/#rref np=100
comp=br/#rref type=four seri=odd peri=4

$do #i_harm 3 11 2

#b%int(#i_harm)=A_%int(#i_harm)/A_1*10000

$end do

The multipoles can then be read in variables #b3, #b5, etc.



These references are sorted chronologically (thanks to Davide Tommasini for the
help).

[1] is an early collection of papers about HE-LHC, with in particular a conceptual
design of high field dipoles.

[2] contains a parametric study of dipoles for HE-LHC, with an evolution of the
design of [1].

[3] is a milestone report for EuroCirCol, a EU funded study for a 100 TeV circular
machine. The note is a compilation of common assumptions / functional
specifications for the high field dipole, to be used among the various institutes. It
is available on cds.cern.ch/record/2150689.

FCC stands for Future Circular Colliders. HE-LHC is now covered by the FCC study.
FCC week 2017 took place in late May, beginning of June 2017 – a few months
before the MT conference. The presentations are available online at
indico.cern.ch/event/556692. You might find quite a bit of interesting material,
not just related to the dipole. For the 16 T dipole in particular, you can look at the
four presentations [4.1] to [4.4].

[5] is a concise but comprehensive review of the status of the 16 T dipole
development program – with 55 authors affiliated to 11 different institutes! This
has been presented about 4 months ago, at the last Magnet Technology
conference and it is rather up to date. It goes over the various design options and
it also provides links to other papers – going more into the details of each layout –
that have been presented at the same conference.



For FRESCA2, the early design values are used (equation given in a previous slide)
while for the 16 T case we use the assumed values (different fit provided in
reference [3]).

In both cases, there is a considerable gain – from the critical current perspective
at high field – to operate at 1.9 K instead of 4.2 K.

The performances assumed for the 16 T conductor are improved with respect to
what has already been used for FRESCA2, but they are quite close to the best
Nb3Sn material developed for HL-LHC.



This is just a proposal to give you some ideas and make sure you touch the basic
points needed for a conceptual 2D magnetic design.

There are no mechanical computations – for ex., for the peak stress on the
conductor, or for dimensioning the support structure – besides the evaluation of
the Lorentz forces.

The references given in brackets refer to p. 87.

An alternative could be to pick one of the designs found in the literature and to
set up a corresponding OPERA 2D magnetic model.


