Instabilities I & II

JAI Graduate Course

Dr. Suzie Sheehy

Hilary Term 2018

Royal Society University Research Fellow, John Adams Institute

Our Approach

- Propose a physical concept by which a perturbation to the beam might arise
- Try to determine whether this can lead to an instability
- Figure out under which conditions it is unstable

Landau Damping

Landau Damping - the idea

In a real machine, not all particles in the beam have the same frequency. The coherent motion from an instability therefore de-coheres over time, potentially damping the instability.

Two oscillators excited together become incoherent and give zero centre of charge motion after a number of turns comparable to the reciprocal of their frequency difference.

Landau Damping - stability diagram

Landau damping applies not just to longitudinal but also transverse, single and multi-bunch instabilities. Along with active feedback systems, it is a powerful way to overcome coherent beam instabilities

The line defining zero growth rate leads us to a handy approximation for the stability limit of unbunched beams, the 'Keil-Schnell Stability Criterion':

$$\left|\frac{Z}{n}\right| \le \frac{Fm_0c^2\beta^2\gamma\eta}{I_0} \left(\frac{\Delta p}{p}\right)_{FWHH}^2 \tag{19}$$

Types of Instabilities

Types of Instabilities

Table 1: A non-exhaustive list of instabilities

	Transverse	Longitudinal
Single bunch	Rigid bunch instability	Negative mass instability Head tail instability Robinson instability Longitudinal microwave instability
Multi-bunch	Coupled bunch modes Resistive wall instability	Coupled bunch modes

For some more detailed discussion on these, [1] and [3] are useful references. Useful books include Wiedemann [5] and Chao [2].

Robinson Instability

A single bunch and a resonator over multiple turns.

The single bunch in 'dipole' or 'rigid bunch' mode rotates in longitudinal phase plane with ω_s , the phase ϕ and energy ΔE also vary with ω_s .

Robinson Instability

The bunch sees a resonator impedance at $\omega_r pprox \omega_0$

Whenever $\Delta E > 0$, for $\omega < \omega_r$:

- \bullet ω increases
- ullet sees a larger real impedance R+
- more energy taken from the beam
- STABLE

The opposite is true for $\omega > \omega_r$.

Whenever $\Delta E > 0$, for $\omega < \omega_r$:

- ullet ω decreases (above transition)
- sees a smaller R+
- less energy taken from the beam
- UNSTABLE

Robinson Instability

This instability used to be removed just by fine tuning the cavity's resonant frequency ω_r slightly away from the beam frequency $\omega=n\omega_0$ Nowadays a feedback system on the cavity tune is an efficient way of removing it for increased performance.

Multi-bunch coupling instability

In this instability, the fields induced in the resonator hang around long enough to influence subsequent bunches.

If there are M=4 bunches, they can couple together in 4 ways:

With four possible phase shifts between the four bunches, above transition, n=1 is UNSTABLE.

Longitudinal Microwave instability

This is a single bunch effect, driven by a broad-band impedance, which is caused by discontinuities in the beam pipe.

Typically results in a high-frequency density modulation superimposed on the bunch shape. Has fast growth rates and also affects lepton machines.

In oder machines, the impedance was as much as $20-50\Omega,$ whereas it is now $<1\Omega$ in a modern synchrotron.

Head Tail Instability

- Single bunch effect of transverse wakefields generated by head of the bunch on it's own tail.
- Occurs for broad-band impedances, which act very quickly and decay quickly, so only affects a single bunch.
- In a linear accelerators, can lead to beam break-up, as they have many cavities.

We can represent the head and tail as a two macro-particle model:

This produces a single bunch current $I_b = qNI_bf_{rev}$ limit of:

$$I_b \le \frac{4\pi q \gamma \omega_0 \nu_\beta \nu_s}{r_c \beta c \left(Z_\perp/n\right)_{imag}} \tag{20}$$

Severe limitation on single-bunch currents in storage rings - special care must be taken to minimize transverse impedance of the vacuum chamber

Summary

- Broad-band impedances are mainly responsible for single-bunch beam instabilities.
- Narrow-band impedances can cause multibunch instabilities but usually don't affect single bunch intensity limits.
- Both can cause longitudinal or transverse instabilities.

References i

Us particle accelerator school.

2002.

available at: https://www.classe.cornell.edu/ dugan/USPAS/.

A. Chao.

Physics of collective beam instabilities in high energy accelerators.

Wiley & Sons, USA, available at:

http://www.slac.stanford.edu/achao/wileybook.html, 1993.

G. Rumolo.

Beam instabilities i & ii.

In Proceedings of the Advanced CERN Accelerator School, 2013.

References ii

K. Schindl.

Instabilities.

In Proceedings of the CERN Accelerator School, 1999.

H. Wiedemann.

Particle Accelerator Physics.

Springer, 2007.