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Introduction



Instabilities

So you’ve carefully tuned the machine to

produce the best possible performance at

the highest intensity and you’ve invited

the lab director to the control room to

observe, for the first time, the machine

working at design intensity. The intensity

comes up, the pulse goes up and just

when you’re about to get there... there’s

a sudden loss of beam. You try again,

and it repeats. This is characteristic of an

instability.

- E. J. N. Wilson, CERN.

Ted Wilson in the SPS

control room in 1977,

Image c�CERN
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Instabilities

Instabilities are one of the main factors that limit performance.

Peak beam intensity in the CERN PS over time, Image from [2] pp. 2 and

Jacques Gareyte, 1991.
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Types of Instabilties

When pushed in terms of performance, accelerators tend to reach an

intensity limit. With analysis, understanding and (hopefully) mitigation, a

new limit emerges. The same pattern can be seen with many high

intensity and high energy accelerators.

Why does this happen?

Electromagnetic interactions with the environment can a↵ect both

individual particles and the collective motion of the whole bunch.

We can have both transverse and longitudinal instabilities.

There are also both single and multi-bunch instabiltities.
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Impedance of the wall

• There is a wall current IW due to the circulating bunch

• Vacuum pipe is not smooth, so IW sees an impedance.

Z = Zr + iZi (1)

• The induced voltage is V ⇡ IWZ = �IBZ which acts back on the

beam.

Instabilities are intensity dependent.
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Test of an Example Instability

From an initial small perturbation, we can test if the perturbation is:

• Increased, thus INSTABILITY

• Decreased, thus STABILITY

Example: perturbation in the local line density of charge around a

synchrotron.

If the forces set up by a pattern of perturbation reinforce the shape, it is

sure to grow exponentially.
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Negative Mass Instability

No longer a problem, but helps us understand the mechanisms of

instabilities.

Imagine a ring with a modulation in the line density �(s), around the ring.

What is the result? E = �
h

q
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i
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@s .

• Particle B finds itself with a larger charge density behind it than in

front of it, pushing it forward.

• Conversely particle A will be decelerated by the mountain of charge

in front of it.
7



Negative Mass Instability

E = �
h

q
4⇡✏
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i
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So is this stable or unstable? Depends on �t .

Stability

If � < �t : if energy is gained, revolution frequency increases, and A and

B move away from the ‘hump’ of charge STABLE

If � > �t : if energy is gained, revolution frequency decreases, and A and

B move toward the ‘hump’ of charge. UNSTABLE
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Impedance



Impedance and Instabilities

• In general, impedances are complex, and are functions of the

frequency Z (!) = Z (!)real + iZ (!)imag

• Strong coupling between beam and vacuum chamber if the

impedance and particle beam have a significant component at the

same frequency

• Impedance depends on each piece of vacuum chamber including

cavities, or changes in beam pipe diameter, material, shape etc...

Impedances for a particular component can be narrow band quality

factor Q >> 1 as in an accelerating cavity

OR they can be broadband with Q ⇡ 1 due to change in vacuum

chamber cross section.
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Driving terms

Spectrum from a bunch showing response of an r.f.

cavity

Fourier analysis of a circulating delta

function bunch of charge passing an

observer.

I =
X

Ine
in!

0

t (2)

Produces a fundamental at the revolution

frequency plus all higher harmonics in equal

strength
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Impedance in a cavity

The voltage experienced in local enlargement in the

beam pipe (which acts like a cavity) has the form:

I = Î e

�i!t ,V = V̂ e

�i!t (3)

We can relate force on particles to the Fourier

component of the beam current which excites the

force.

The impedance is a complex quantity. V (!) = �Z (!)I (!)

• REAL if voltage and current are in phase

• IMAGINARY if 90 degrees or i between voltage and current.

(Inductive = +, Capacitive= �)

• Di↵ers from RF wave by 90 degrees

The resistive part of the impedance can lead to a shift in the betatron

oscillation frequency of the particles while the reactive or imaginary part

may cause damping or anti-damping. 11



RLC Circuit Impedance

A cavity can be modelled as an AC resonant circuit:

!r =
1p
LC

(4)

Where the quality factor Q = R

p
C/L = R/L!r = RC!r

And a di↵erential equation can be written down for voltage and current:

V̈ +
!r

Q

V̇ + !2

r V = !r
R

Q

İ (5)
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RLC Circuit Impedance

The solution is a damped resonant circuit, damping rate ↵ = !r/2Q

V = V

0

e

�↵t sin

"
!r

r
1� 1

4Q2

t

#
+ � (6)

http://www.amanogawa.com/archive/CircuitsA.html
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RLC Circuit Impedance

If the current in the circuit is I = Î e

i!t it can be shown [4] that the

impedance seen is:

Z (!) = Zr (!) + iZi (!) = R

2

64
1� iQ

⇣
!2�!2

r

!!r

⌘

1 + Q

2

⇣
!2�!2

r

!!r

⌘
2

3

75 (7)

• When ! is below resonant frequency, the reactive component is

inductive or positive

• When the driving frequency is above the resonant frequency, it

becomes negative and capacitive
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Impedance e↵ects

• For a narrow-band impedance, high Q factor and low damping rate

↵. Thus signal will oscillate for many turns and produce multi-bunch

e↵ects

• For a broad-band cavity, Q is low, ↵ is large, the fields collapse

rapidly and don’t a↵ect subsequent bunches. May produce single

bunch e↵ects
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RLC Circuit Impedance

For a high Q cavity (narrow band resonator) this can be simplified near

the resonance frequency with �! = ! � !r to:

Z (!) ⇡ Rs

1� i2Q �!
!r

1 +
⇣
2Q �!

!r

⌘
2

(8)

K. Schindl, ”Instabilities”, CERN Accelerator School
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General Method for Studying

Instabilities



Our Approach

• Propose a physical concept by which a perturbation to the beam

might arise

• Try to determine whether this can lead to an instability

• Figure out under which conditions it is unstable
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Negative Mass Instability again

We can describe the beam line density �(✓) and the corresponding

instantaneous current I (✓) as DC with a small AC component:

I = I

0

+ I

1

e

i(n✓�⌦t) (9)

Where n describes the ‘humps’ (n = 8 in previous slides), ⌦ = n!
0

is the

angular frequency.

This induces a voltage per turn due to the longitudinal impedance:

Us = �I

1

e

i(n✓�⌦t)
Z (⌦) (10)
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Frequency Shift

We postulate that this produces a complex frequency shift �⌦ which

modifies the pattern:

⌦ = n!
0

+�⌦ (11)

Now we take a little short-cut... recalling that the motion in an

accelerating cavity with voltage V

0

and frequency hf

0

with a phase angle

�s = 0 (stationary bucket), we get an equation of motion in �:


E

0

�2�

2⇡⌘hf 2
0

e

�
�̈+ V

0

� = 0 (12)

And the small amplitude synchrotron oscillation frequency is:

!2

s =


e⌘hV

0

!2

0

2⇡E
0

�2�

�
(13)
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Frequency Shift

!2

s =


e⌘hV

0

!2

0

2⇡E
0

�2�

�
(14)

From this, we replace the term describing voltage and harmonic number

with: V
0

h ! �inZI

0

Note that the i is due to the fact that unlike the RF, the voltage induced

by a resistive impedance passes zero 90 degrees after the particle passes.

Which happens to be the correct result, and gives us the frequency shift:

(�⌦)2 = (⌦� n!
0

)2 = �i


⌘!2

0

nI

0

2⇡�
2

E

�
(Zr + iZi ) (15)
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Growth, Damping and Frequency Shift

If we put the complex frequency shift back into the equation for

instantaneous current, we get:

I (t, ✓) = I

0

+ I

1

e

�⌦i t
e

i(n✓�(n!
0

+�⌦r )t) (16)

• the �⌦i term describes the growth or damping of the mode

• the �⌦r term is the real frequency shift of the rotating pattern
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Stability diagram

Take Equation 15 and lump all the beam

parameters into a constant ⇠, to get:

(�⌦)2 = ⇠(Zr � iZi ) = (�⌦r + i�⌦i )
2

(17)

Equate the real and imaginary parts, to get

parabolic contours for �⌦i = const:

Zr = 2�⌦i

q
Zi/⇠ +�⌦2

i /⇠
2 (18)

Relates the imaginary part of �⌦ the growth (or damping) rate, to the

complex impedance Z as a plot of contours of constant growth rate in

the Zr ,Zi plane. The area where there is no growth is infinitely small and

concentrated on the axis. So: the negative mass instability should drive

any unbunched beam mode unstable due to the resistivity of the vacuum

chamber!?
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Landau Damping



Landau Damping - the idea

In a real machine, not all particles in the beam have the same frequency.

The coherent motion from an instability therefore de-coheres over time,

potentially damping the instability.

Two oscillators excited together become incoherent and give zero centre

of charge motion after a number of turns comparable to the reciprocal of

their frequency di↵erence.
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Landau Damping - stability diagram

Landau damping applies not just to longitudinal but also transverse,

single and multi-bunch instabilities. Along with active feedback systems,

it is a powerful way to overcome coherent beam instabilities

The line defining zero growth rate leads us to a handy approximation for

the stability limit of unbunched beams, the ’Keil-Schnell Stability

Criterion’: ����
Z

n

���� 
Fm

0

c

2�2�⌘

I

0

✓
�p

p

◆
2

FWHH

(19)
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Types of Instabilities



Types of Instabilities

Table 1: A non-exhaustive list of instabilities

Transverse Longitudinal

Single bunch Negative mass instability

Rigid bunch instability Head tail instability

Robinson instability

Longitudinal microwave instability

Multi-bunch Coupled bunch modes Coupled bunch modes

Resistive wall instability

For some more detailed discussion on these, [1] and [3] are useful

references. Useful books include Wiedemann [5] and Chao [2].
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Questions?
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