Angular correlation results from ALICE

Monika Varga-Kofarago MTA Wigner RCP

on behalf of the ALICE Collaboration

4th December 2017 - Zimanyi Winter School

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant.

Analysis strategy

- Trigger and associated particle
- Azimuthal ($\Delta \varphi$) difference
- Pseudorapidity ($\Delta\eta$) difference

Analysis strategy

- Trigger and associated particle
- Azimuthal ($\Delta \varphi$) difference
- Pseudorapidity ($\Delta\eta$) difference

Analysis strategy

- Trigger and associated particle
- Azimuthal ($\Delta arphi$) difference
- Pseudorapidity ($\Delta\eta$) difference
- Associated yield per trigger:

$$rac{1}{N_{trig}}rac{d^2N_{assoc}}{d\Delta\eta d\Delta\varphi} = rac{S(\Delta\eta,\Delta\varphi)}{lpha M(\Delta\eta,\Delta\varphi)}$$

• Denominator normalized to 1 by α at $(\Delta \varphi, \Delta \eta) = (0, 0)$

Flow

- QGP:
 - Strongly interacting
 - Almost perfect fluid
- Initial spatial asymmetry
 - \Rightarrow Asymmetric particle distribution

Flow

- QGP:
 - Strongly interacting
 - Almost perfect fluid
- Initial spatial asymmetry

 \Rightarrow Asymmetric particle distribution

- Measured by the Fourier coefficients: $2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)]$
- Can even be visible event by event

Flow

- QGP:
 - Strongly interacting
 - Almost perfect fluid
- Initial spatial asymmetry
 ⇒ Asymmetric particle distribution
- Measured by the Fourier coefficients: $2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)]$
- Can even be visible event by event

- In Pb-Pb considered as a sign of collectivity
- Do we see the same in pp or p-Pb?

Monika Varga-Kofarago

Jets

- Quarks from initial collision fragment into collinear particles \Rightarrow jets
- $\bullet\,$ Jets interacting with the QGP lose energy $\Rightarrow\,$ jet-quenching

Jets

- $\bullet\,$ Quarks from initial collision fragment into collinear particles $\Rightarrow\,$ jets
- $\bullet\,$ Jets interacting with the QGP lose energy \Rightarrow jet-quenching
- Back-to-back jets in Pb–Pb appear with unbalanced energy
- ullet Yield of high p_{T} particles in Pb–Pb is smaller than scaled vield from pp

ALICE

Jets

- $\bullet\,$ Quarks from initial collision fragment into collinear particles $\Rightarrow\,$ jets
- $\bullet\,$ Jets interacting with the QGP lose energy \Rightarrow jet-quenching
- Back-to-back jets in Pb–Pb appear with unbalanced energy
- ullet Yield of high p_{T} particles in Pb–Pb is smaller than scaled vield from pp

Monika Varga-Kofarago

ALICE

ALICE

Possible studies with angular correlations

- Low-energy processes in the jets
- Large angle scatterings
- Inner structure of the jet
- Path-length dependence
- Collectivity in small systems
- Multiplicity dependence of flow
- Species dependence of flow

• …

ALICE

Trigger and associate selection

- (Identified) hadron (identified) hadron
- Jet hadron
- Hadron jet
- More refined probes (e.g. heavy flavor electrons, photons, b-jets)

ALICE

Trigger and associate selection

- (Identified) hadron (identified) hadron
- Jet hadron
- Hadron jet
- More refined probes (e.g. heavy flavor electrons, photons, b-jets)

Observables

- 1D or 2D per trigger yield
- IAA or ICP
- Peak width
- Peak shape

As a function of

- Multiplicity or centrality
- *p*_T
- Event plane
- Energy
- Collision system

Monika Varga-Kofarago

Results from flow measurements

Flow measurements at ALICE

132302

Phys. Rev. Lett. 116 (2016) 132302

- Measured by excluding short-range correlations (η gap)
- Characteristic shape vs centrality

Flow measurements at ALICE

6) 132302

Phys. Rev. Lett. 116 (2016) 132302

- Measured by excluding short-range correlations (η gap)
- Characteristic shape vs centrality
- Values slightly higher at 5.02 TeV
 - From average $p_{\rm T}$ difference
- Hydro models describe data

• High and low multiplicity p-Pb data look different

Ridge in small system

Phys.Lett. B719 (2013) 29-41

- High and low multiplicity p-Pb data look different
- ullet (High low) shows double ridge structure, elongated in $\Delta\eta$
- Origin?

Results from jet measurements

Relative yield in Pb-Pb

Phys. Lett. B 763 (2016) 238-250

- Study modification of the jet yield in Pb-Pb compared to pp
- Hadron hadron and π^0 hadron

Phys. Lett. B 763 (2016) 238-250

- Study modification of the jet yield in Pb-Pb compared to pp
- Hadron hadron and π^0 hadron

- Enhancement on near side
- Suppression on away side
- π^0 triggers agree with unidentified hadrons
- Suppression on away side above 4 GeV/c, enhancement below

Shape of the near-side peak in Pb-Pb

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

• Direct characterization of the peak \Rightarrow fit by generalized Gaussian

• Asymmetric broadening $(\sigma_{\Deltaarphi} < \sigma_{\Delta\eta})$ towards central collisions

Depletion

• Depletion at low $p_{\rm T}$ around $(\Delta \varphi, \Delta \eta) = (0, 0)$

Depletion

Phys. Rev. Lett. 119, 102301 (2017)

Monika Varga-Kofarago

Angular correlation results from ALICE

- JHEP 09 (2015) 170
- $\bullet\,$ Studying jets recoiling from a high $p_{\rm T}$ hadron
- Study yield and acoplanarity

Hadron – jet correlations

- ullet Studying jets recoiling from a high p_{T} hadron
- Study yield and acoplanarity

• Recoil jet yield is suppressed in Pb-Pb compared to pp

Hadron – jet correlations

- Studying jets recoiling from a high p_{T} hadron
- Study yield and acoplanarity

- Recoil jet yield is suppressed in Pb-Pb compared to pp
- No modification of the acoplanarity is observed

ALICE

JHEP 09 (2015) 170

Two plus one correlations

• Study path length dependence

 $\bullet~$ Trigger 1 and associates \Rightarrow leading jet

Two plus one correlations

• Study path length dependence

 $\bullet~$ Trigger 2 and associates \Rightarrow away-side jet

Two plus one correlations

Study path length dependence

- p_{T} of two triggers are close \Rightarrow no difference
- p_{T} is asymmetric \Rightarrow large modification for T2

Monika Varga-Kofarago

Angular correlations

- Trigger and associated object
- Study the distribution of $\Delta \varphi$ and $\Delta \eta$
- Can be used for soft and hard probes

Studying flow

- Flow in Pb–Pb higher in 5.02 TeV than 2.76 TeV
 - \Rightarrow Arising from higher average $p_{
 m T}$
- Double ridge in p-Pb

Studying jets

- ullet Yield at low p_{T} enhanced on both near- and away-side
- At higher p_{T} suppression on away-side
- ullet Peak broadened and asymmetric at low p_{T}
- Depletion around $(\Delta arphi, \Delta \eta) = (0, 0)$
- Recoil jet yield is suppressed
- $\bullet\,$ Enhancement of yield if $\ensuremath{p_{\mathrm{T}}}$ of T1 and T2 asymmetric

Thank you for your attention!

BACKUP

Flow vs p_{T_1}

Monika Varga-Kofarago

Angular correlation results from ALICE

	Femtoscopy	Angular correlations
Physics	HBT, FSI, resonancies freeze out dynamics	Jets, flow, HBT, resonancies
What to correlate	Identified particles	Anything
Correlating in	Momentum	Angles $\Delta arphi$ and/or $\Delta \eta$
Source function	Well defined, Levy distribution widely used	?
Correlation function	Stretched exponential or Generalized Gaussian widely used	
Limits	$0 < Exponent \leq 2$	Exponent positive