#### Angular Correlations in AMPT

Balázs Endre Szigeti<sup>1</sup>

Supervisor: Mónika Varga-Kőfaragó<br/>²

<sup>1</sup>Eötvös Loránd University

<sup>2</sup>Wigner Research Center for Physics

Zimanyi School, 2017





500

ł

(日) (월) (분) (분)

# Motivation

#### ► Analysis in ALICE Experiment<sup>1</sup>:

- Study jets using correlations
- With unidentified particles

<sup>1</sup>[Adam, Jaroslav and others; Phys.Rev. C96 (2017), 034904] → (Ξ) → Ξ → ¬¬¬¬ Balázs Endre Szigeti 2/17 Angular Correlations in AMPT

# Motivation

#### ► Analysis in ALICE Experiment<sup>1</sup>:

- Study jets using correlations
- ▶ With unidentified particles
- ► Results:
  - Central collisions in **low**  $p_T$ 
    - $\rightarrow$  the peaks are wider, asymmetry between  $\Delta\varphi$  and  $\Delta\eta$
  - ▶ Depletion in the centre of the jet peak

 <sup>1</sup>[Adam, Jaroslav and others; Phys.Rev. C96 (2017), 034904] → (Ξ) → Ξ

 Balázs Endre Szigeti
 2/17

 Angular Correlations in AMPT

# Motivation

#### ► Analysis in ALICE Experiment<sup>1</sup>:

- Study jets using correlations
- With unidentified particles
- ► Results:
  - Central collisions in **low**  $p_T$ 
    - $\rightarrow$  the peaks are wider, asymmetry between  $\Delta\varphi$  and  $\Delta\eta$
  - ▶ Depletion in the centre of the jet peak
- Our goal:
  - ► Simulate heavy-ion collisions with **AMPT**
  - ▶ Identified trigger particles
  - ▶ Which particles show **similar** properties?

<sup>1</sup>[Adam, Jaroslav and others; Phys.Rev. C96 (2017), 034904] → (=) = ∽ <

# A Multi-Phase Transport Model (AMPT)

- Developed to simulate heavy-ion collisions
- ► Combines several model:
  - ▶ ART, ZPC, PYTHIA, and LUND/JETSET, HIJING

・ロト ・四ト ・ヨト ・

Э

# A Multi-Phase Transport Model (AMPT)

- ► Developed to simulate heavy-ion collisions
- ► Combines several model:
  - ► ART, ZPC, PYTHIA, and LUND/JETSET, HIJING
- ► Four main components:
  - Initial conditions, Partonic interactions, Hadronization, Hadronic interactions

# A Multi-Phase Transport Model (AMPT)

- ► Developed to simulate heavy-ion collisions
- ► Combines several model:
  - ► ART, ZPC, PYTHIA, and LUND/JETSET, HIJING
- ► Four main components:
  - Initial conditions, Partonic interactions, Hadronization, Hadronic interactions
- ► Collective effects:
  - hadronic and partonic rescattering

# A Multi-Phase Transport Model (AMPT)

- Developed to simulate heavy-ion collisions
- ► Combines several model:
  - ▶ ART, ZPC, PYTHIA, and LUND/JETSET, HLIING
- ► Four main components:
  - Initial conditions, Partonic interactions, Hadronization, Hadronic interactions
- ► Collective effects:
  - hadronic and partonic rescattering
- ► Two main settings:
  - Default and String Melting

# Default AMPT model

- Initial distributions imported from HIJING (Glauber model)
- ► Partonic scattering modelled with elastic scattering cross section
- ► The Freeze-out modelled by symmetric fragmentation function
- Hadronic two-particle scatterings modelled via ART



# String Melting AMPT model

- Converts excited strings into (anti)quarks
- Partonic Scatterings treated via ZPC
- ▶ Quark Coalescence model:
  - ► Nearest quark-antiquark pair  $\rightarrow$  meson
  - $\blacktriangleright$  Nearest three quark  $\rightarrow$  baryon
- Hadronic two-particle scatterings modelled via ART



Monte Carlo Simulations

Compared with Experimental Data

▶ The simulated data compared with experimental data from LHC and RHIC



Balázs Endre Szigeti

6/17

Angular Correlation

## Motivation

#### Jet Reconstruction is limited to:

- ► High-energy region
- ▶ small areas around jet cone

# Motivation

#### Jet Reconstruction is limited to:

- ▶ High-energy region
- ▶ **small areas** around jet cone

#### Detailed studies in high-energy jets show:

- ► Lost energy reappears **outside jet cone**
- low to intermediate region (0.5-3 GeV/c)

# Motivation

#### Jet Reconstruction is limited to:

- ▶ High-energy region
- ▶ **small areas** around jet cone

#### Detailed studies in high-energy jets show:

- ► Lost energy reappears **outside jet cone**
- ▶ low to intermediate region (0.5-3 GeV/c)
- Angular correlation powerful tool to study:
  - High and low  $p_T$  region

# Method

- ▶ Trigger and associated particle  $(\Delta \varphi, \Delta \eta)$
- ▶ Identified trigger  $(\pi^+)$
- ▶ Particle's momentum represent by:
  - pseudorapidity  $(\eta)$
  - azimuthal angle  $(\varphi)$
- $(\Delta \varphi)$  and  $(\Delta \eta)$  differences
- ► Associated yield per trigger:

$$\bullet \ \frac{1}{N_{trigger}} \frac{d^2 N_{assoc}}{d\Delta \varphi d\Delta \eta} = \frac{S(\Delta \varphi; \Delta \eta)}{M(\Delta \varphi; \Delta \eta)}$$



## Same and Mixed Event

- $\Delta \varphi \Delta \eta$  distribution calculated when:
  - ► Trigger and associated from same event
  - $\blacktriangleright$  Associated from an another event
- Division removes acceptance effects and detector efficiency effects



## Same and Mixed Event

- $\Delta \varphi \Delta \eta$  distribution calculated when:
  - Trigger and associated from same event
  - $\blacktriangleright$  Associated from an another event
- Division removes acceptance effects and detector efficiency effects





## Same and Mixed Event

- $\Delta \varphi \Delta \eta$  distribution calculated when:
  - Trigger and associated from same event
  - ▶ Associated from an another event
- ► Division removes acceptance effects and detector efficiency effects







Balázs Endre Szigeti

Angular Correlations in AMPT

- ▶ Large transverse momentum quarks and gluons
- Produced in QGP hard scattering process
- ▶ We only detect colorless hadrons:
  - fragmentation of **partons**  $\rightarrow$  detected **hadrons**
- In angular correlations jets manifest as a peak

- ▶ Large transverse momentum quarks and gluons
- ▶ Produced in QGP hard scattering process
- ▶ We only detect colorless hadrons:
  - fragmentation of **partons**  $\rightarrow$  detected **hadrons**
- ▶ In angular correlations jets manifest as a peak
  - Angular correlations powerful tool to study jets:



- ▶ Large transverse momentum quarks and gluons
- ▶ Produced in QGP hard scattering process
- ▶ We only detect colorless hadrons:
  - fragmentation of **partons**  $\rightarrow$  detected **hadrons**
- ▶ In angular correlations jets manifest as a peak



- Angular correlations powerful tool to study jets:
  - where quenching effect expected to be large

Angular Correlation

#### Jets

- ▶ Large transverse momentum quarks and gluons
- Produced in QGP hard scattering process
- ▶ We only detect colorless hadrons:
  - fragmentation of **partons**  $\rightarrow$  detected hadrons
- In angular correlations jets manifest as a peak



#### Angular correlations powerful tool to study jets:

- ▶ where quenching effect expected to be large
- ▶ where Jets cannot be reconstructed event-by-event

- ▶ Large transverse momentum quarks and gluons
- Produced in QGP hard scattering process
- ▶ We only detect colorless hadrons:
  - fragmentation of **partons**  $\rightarrow$  detected **hadrons**
- In angular correlations jets manifest as a peak



#### Angular correlations powerful tool to study jets:

▶ where quenching effect expected to be large

- ▶ where Jets cannot be reconstructed event-by-event
- ▶ to consider the jet shape centrality and  $p_T$ dependence

- ▶ Large transverse momentum quarks and gluons
- ▶ Produced in QGP hard scattering process
- ▶ We only detect colorless hadrons:
  - fragmentation of **partons**  $\rightarrow$  detected **hadrons**
- ▶ In angular correlations jets manifest as a peak



#### Angular correlations powerful tool to study jets:

- ► where quenching effect expected to be large
- ► where Jets cannot be reconstructed event-by-event
- ► to consider the jet shape centrality and p<sub>T</sub> dependence
- ► Flow is a background for jet studies => (=> = ∽) < ?</p>

## Fitting methods

 Fit the jet with a Generalised Gaussian:



<ロト < 四ト < 回ト < 回ト

э

• 
$$G_{\gamma_x,\omega_x}(x) = \frac{\gamma_x}{2\omega_x\Gamma(1/\gamma_x)}exp\left[-\left(\frac{|x|}{\omega_x}\right)^{\gamma_x}\right]$$

• The  $\sigma_{\Delta\varphi}$  and  $\sigma_{\Delta\eta}$  variance values characterise the jet shape

#### Results: $\Delta \phi$ variances



Results

#### Results: $\Delta \eta$ variances



Balázs Endre Szigeti

13/17

Angular Correlations in AMPT

Angular Correlation Results

# Summary

#### ► AMPT:

- ▶ Four main components: initial conditions, parton level, hadronozation, hadron cascade
- Default and Melting model
- ► Collective effects
- Angular Correlation:
  - Trigger and associated particles
  - Identified trigger particles  $(\pi^+)$
  - Distribution of  $\Delta \varphi$  and  $\Delta \eta$
  - AMPT simulations hint species dependence at low  $P_T$

#### Plans for the future:

- Simulation with other settings
- Other triggers  $(\pi^-, p^+)$
- Comparing results with experimental data

<ロト <部ト <きト <きト = 3

# Thank You!

Balázs Endre Szigeti

15/17

7 Angular Correlations in AMPT

E

## Flow

- QGP strongly interacting almost perfect fluid
- ► From initial spatial asymmetry → asymmetry in particle distribution
- Flow is a background for jet studies
- Can be subtracted on a statistical basis



<ロト <問ト < 回ト < 回ト

## $\Delta \eta$ independent structure

- Parabola structure in  $\Delta \eta$
- ► This structure comes from:
  - $\Delta \eta$  dependence of particle generation
  - centrality bin size isn't infinitesimal
  - $\Delta \eta$  dependence of flow



Angular Correlation Results

[Adam, Jaroslav and others; Phys.Rev. C96 (2017), 034904]

Balázs Endre Szigeti

・ロト ・四ト ・ヨト ・ヨト

E