PHENIX results on Lévy analysis of HBT correlation functions

17th Zimányi Winter School on Heavy-Ion Physics, Budapest

Daniel Kincses for the PHENIX Collaboration

Eötvös University, Budapest, Hungary

December 4, 2017

17th Zimányi School

D. Kincses

The phase-diagram of QGP

Early stages of the Universe? High energy heavy-ion collisions!

- One of the most important still open questions:
 Is there a critical point,
 - and if there is, where?
- How can we look for a critical point?

The phase-diagram of QGP

Early stages of the Universe? High energy heavy-ion collisions!

Baryochemical potential

- One of the most important still open questions: Is there a critical point, and if there is, where?
- How can we look for a critical point?

#

Beam Energy Scan!

D. Kincses

Summary

The PHENIX experiment and the RHIC BES

√s _{NN} [GeV]	2010	2011	2012	2013	2014	2015	2016	₅ ○ p + p
510.0	100		0	0			200	Ο Αυ+Αυ
500.0		0						
200.0	•	•	00		••	••	00	O d+Au
130.0								
62.4	0						\bigcirc	○ U+U
39.0	0						\bigcirc	
27.0	25	0					1	• Cu+Au
22.5								
19.6		0					0	He+AU
14.6					0			p+Au
11.5	0							
7.7	0							• p+Al

► Au+Au collision energies: 200 GeV - 7.7 GeV

- ▶ µ_B = 23.5 MeV 422 MeV, T = 166 MeV 139 MeV
- How can we gain information about the Quark-Gluon Plasma?

Colliding nuclei \rightarrow QGP \rightarrow hadronization \rightarrow detecting the particles \rightarrow correlations/distributions of particles \rightarrow information about the initial stage

The HBT-effect

- R. Hanbury Brown, R. Q. Twiss observing Sirius with radio telescopes
- ▶ Intensity correlations as a func. of det. distance: $C(\Delta) = \frac{\langle I_A I_B \rangle}{\langle I_A \rangle \langle I_B \rangle}$
- They could measure the size of point-like sources!
- Correlation \iff Fourier-transform of S(r) source distribution

High energy physics: momentum correlations of pions

We can map out the particle-emitting source on the femtometer scale!

Lévy femtoscopy and the search for the CEP

- The assumed shape of the source distribution is usually Gaussian
- Generalization of Gaussian Lévy distribution

 - Anomalous diffusion Gen. Central Limit Th. $\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy

D. Kincses

Lévy femtoscopy and the search for the CEP

- The assumed shape of the source distribution is usually Gaussian
- Generalization of Gaussian Lévy distribution

 - Anomalous diffusion Gen. Central Limit Th. $\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy
- At the crit. point the spatial corr. \$\phi r^{-(d-2+\eta)}\$
 In case of Lévy source \$\to spatial corr. \$\phi r^{-1-\alpha}\$
- ► QCD universality class ↔ (random field) 3D Ising

▶ $\eta < 0.5$

The shape of the corr. func. with Lévy source:

$$C_2(q) = 1 + \lambda \cdot e^{-(Rq)^{lpha}}$$
 $lpha = 2$: Gaussian
 $lpha = 1$: Exponentic

Anomalous diffusior (Lévy fliat

Normal ffusion

PHENIX Lévy HBT analysis - overview (arXiv:1709.05649)

- ▶ Data set: Run-10, $\sqrt{s_{NN}}$ =200 GeV Au+Au, ~ 7 · 10⁹ evts., identified pions
- Some details of the analysis:
 - Measurements of 1D $\pi^{\pm}\pi^{\pm}$ corr. func. as a function of m_T
 - ▶ 31 m_T bins, $m_T = (0.24 0.85)$ GeV/ c^2 , 0-30% centrality
 - Investigation of systematic uncertainties
 - One- and two-particle criteria (PID, matching, pair cuts)
 - Other sources of syst. uncertainties (e.g. fit stability)
 - Fitting the measured corr. func. with Lévy shape
 - Coulomb effect incorporated in the fit function
 - Investigation of the source parameters ($\lambda(m_T), \alpha(m_T), R(m_T)$)
 - Publication from the first results already on arXiv (nucl-ex 1709.05649)

Summary

Example correlation function

- $\pi^{-}\pi^{-}$ corr. func., $m_{T} = (0.33 - 0.35) \text{GeV}/c$
- ► Fitted function: HBT-correlation ⊗ Coulomb interaction ⊗ linear background

D. Kincses

Summary

Example correlation function

- $\pi^{-}\pi^{-}$ corr. func., $m_{T} = (0.33 - 0.35) \text{GeV}/c$
- ► Fitted function: HBT-correlation ⊗ Coulomb interaction ⊗ linear background

D. Kincses

Lévy exponent α

- Hydrodynamics $\rightarrow \alpha = 2$
- Measured value: $\alpha \approx 1.2$
- Measured value far from Gaussian ($\alpha = 2$) and exp. ($\alpha = 1$)
- Also far from rfd.3D lsing CEP value ($\alpha = 0.5$)
- More or less constant (within syst. err.)
- If we go to lower energies α vs. $\sqrt{s} \rightarrow$ CEP?

17th Zimányi School

Lévy scale parameter R

- Similar decreasing trend as Gaussian radii
- Hydro calculations for Gaussian radii $ightarrow 1/R^2 \sim m_T$
- In case of low m_T , the linear scaling of $1/R^2$ holds

Correlation strength λ

- Core-Halo model: $S = S_C + S_H$
- Primordial pions Core $\lesssim 10$ fm
- Resonance pions Halo

•
$$C(q) \xrightarrow{q \to 0} 1 + \lambda$$

$$\lambda = \left(N_C / (N_C + N_H) \right)^2$$

J. Bolz et al, Phys.Rev. D47 (1993) 3860-3870 T. Csörgő et al, Z.Phys. C71 (1996) 491-497

- Decrease at small m_T: increase of halo fraction
- Different effects can cause this:
 - Resonance effects
 - Partial coherence
 - Random fields

Precise measurement is important

Correlation strength λ

- Core-Halo model: $S = S_C + S_H$
- Primordial pions Core $\lesssim 10$ fm
- Resonance pions Halo

$$C(q) \xrightarrow{q \to 0} 1 + \lambda$$

$$\lambda = \left(N_C / (N_C + N_H) \right)^2$$

J. Bolz et al, Phys.Rev. D47 (1993) 3860-3870 T. Csörgő et al, Z.Phys. C71 (1996) 491-497

- Decrease at small m_T: increase of halo fraction
- Different effects can cause this:
 - Resonance effects:
- Indirect method for investigating the in-medium mass modification of η'

17th Zimányi School

Newly found scaling parameter R

- Physical interpretation \rightarrow open question

Future plans

Summary

Summary

- Data set: Run-10 200 GeV Au+Au, 0-30% cent., identified pions
- precise measurement of Lévy source parameters (R, λ , α)
 - At 200 GeV, $1 < \alpha < 2$
 - Hydro prediction ($\alpha = 2$) is not fulfilled, but $1/R^2 \sim m_T$ approximately holds
 - Decrease of λ at small $m_T \rightarrow$ increase of resonance fraction
- Empirically found scaling parameter: $\hat{R} = R/(\lambda(1+\alpha))$, \hat{R}^{-1} linear in m_T
- The showed results are in the process of publication (arXiv:1709.05649)
- Current work: investigation of energy/centrality dependence

Thank you for your attention!

Supported by the ÚNKP new national excellence program of the Hungarian Ministry of Human Capacities as well as the following grants: NKTIH FK 123842, FK 123959, EFOP 3.1.6-16-2016-00001

D. Kincses

Lévy-HBT correlations

BACKUP SLIDES

D. Kincses

17th Zimányi School

(1)

Introduction to Bose-Einstein correlations

 $N_1(p), N_2(p)$ - invariant momentum distributions, the definition of the correlation function:

$$C_2(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_1(p_2)}$$

The invariant momentum distributions

$$N_1(p) - \text{norm.}, N_2(p_1, p_2) = \int S(x_1, p_1) S(x_2, p_2) |\Psi_2(x_1, x_2)|^2 d^4 x_2 d^4 x_1$$
 (2)

S(x, p) source func. (usually assumed to be Gaussian - Lévy is more general)
 Ψ₂ - interaction free case - |Ψ₂|² = 1 + cos(qx)

Sometimes this simple formula fails (cf. experimentally observed oscillations at L3, CMS)

D. Kincses

The out-side-long system, HBT radii

- \blacktriangleright Corr. func. (with Gaussian source): $C_2(q) = 1 + \lambda \cdot e^{-R^2_{\mu
 u}q^\mu q^
 u}$
- Bertsch-Pratt pair coordinate-system
 - out direction: direction of the average transverse momentum (K_t)
 - Iong direction: beam direction (z axis)
 - side direction: orthogonal to the latter two
- LCMS system (Lorentz boost in the long direction)
- From the $R^2_{\mu\nu}$ matrix, $R_{out}, R_{side}, R_{long}$ nonzero HBT radii
- Out-side difference $\Delta \tau$ emission duration
- From a simple hydro calculation:

$$R_{out}^2 = \frac{R^2}{1 + \frac{m_T}{T_0} u_T^2} + \beta_T^2 \Delta \tau^2 \qquad R_{side}^2 = \frac{R^2}{1 + \frac{m_T}{T_0} u_T^2}$$

RHIC: ratio is near one \rightarrow no strong 1st order phase trans.

An example for paircuts

D. Kincses

Event mixing method

- Corr.func. from actual and background events
- $\blacktriangleright C(q) = A(q)/B(q)$
- 3% wide cent. and 6 cm wide zvtx classes
- Event mixing:
 - From the background pool we choose N evts., where N is the multiplicity of the act. evt.
 - From every chosen evt. we chose one pion randomly
 - Background distribution: from correlating the chosen pions

Fitting with iterative method

- ► The func. containing the Coulomb int. is pre-calculated and stored in a database $\rightarrow C_2(\lambda, R, \alpha; q)$
- Numerically fluctuating χ^2 map
- We need a second-round iterative afterburner:

$$C_2^{(0)}(\lambda, R, \alpha; q) \frac{C_2(\lambda_0, R_0, \alpha_0; q)}{C_2^{(0)}(\lambda_0, R_0, \alpha_0; q)} \times N \times (1 + \varepsilon q),$$

ahol
$$C_2^{(0)}(\lambda, R, \alpha; q) \equiv C_2^{(0)}(q) = 1 + \lambda \cdot e^{-(qR)^{\alpha}}$$

As long as the new parameters differ significantly from the previous, we continue iterating

$$\Delta_{\text{iteration}} = \sqrt{\frac{(R_{n+1} - R_n)^2}{R_n^2}} + \frac{(\lambda_{n+1} - \lambda_n)^2}{\lambda_n^2} + \frac{(\alpha_{n+1} - \alpha_n)^2}{\alpha_n^2} < 0.01.$$

D. Kincses