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Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P,∆) defined
in (1). Double arrows marked by “FT” denote a Fourier transform between ∆ and b or between k and z. Fractions of plus-
momentum (commonly called “longitudinal momentum fractions”) are written as x = k+/P+ and 2ξ = −∆+/P+. The invariant
momentum transfer can be expressed in terms of longitudinal and transverse variables as ∆2 = −(4ξ2m2 +∆

2)/(1− ξ2). Only
kinematic arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (µ) of by the regulation
of rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

∫
dk− and

∫
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

where “average” and “difference” refer to the right and
left hand sides of figure 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in figure 2. Let us start at the
top of the hierarchy.

1. In the forward limit ∆ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact descrip-
tion of final-state kinematics [7,8]. Under the name of
“beam functions”, they have also been introduced in
soft-collinear effective theory (SCET) for the resum-
mation of large logarithms in observables sensitive to
the proton remnants (called “beam jets”) [9,10,11].
In that case, distributions differential in k− but inte-
grated over k are referred to as beam functions as well.
The considerations in [6] and [9,10,11] focus on the re-
gion of large parton virtuality k2 and compute the un-
integrated distributions in terms of conventional par-
ton distribution functions (PDFs), an aspect we will
discuss in more detail for TMDs in section 4.
A detailed analysis of factorisation with unintegrated
distributions has been given for semi-inclusive deep in-
elastic scattering (SIDIS) in [8]. For hadron-hadron

collisions there are strong arguments that this type
of factorisation generically fails, due to soft gluon ex-
change between the spectator partons in each hadron
[12,13]. In kinematics referred to as the Glauber re-
gion, these soft interactions “tie together” the two had-
rons in a way that prevents one from describing the
non-perturbative dynamics by matrix elements that
pertain to only one hadron and not to both. To estab-
lish factorisation, one has to show that (after appro-
priate approximations) gluon exchange in the Glauber
region cancels in the observable at hand.
Not being integrated over any momentum component,
parton correlation functions retain manifest Lorentz
invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
relate different distributions that descend from them.
Examples are given in [14] for ∆ = 0 and in [15] for
∆ ̸= 0.

2. Wigner distributions depend on the average momen-
tum and the average position of the quark. From the
uncertainty principle it is clear that they cannot rep-
resent joint probabilities in these two variables, but
integrating over any one of them, one obtains a prob-
ability in the other.
The most straightforward interpretation of these dis-
tributions is in the forward limit ξ = 0 of longitu-
dinal momentum. Integrating the Wigner distribution
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of which is strongly restricted by rotational invariance).
Several GPDs and TMDs describe specific spin-orbit cor-
relations at the parton level and are sensitive to parton or-
bital angular momentum, which is a crucial ingredient in
describing how the overall spin of the nucleon arises from
its constituents. In section 5 we make some comments on
this topic, which is reviewed in detail in a dedicated con-
tribution to this volume [1].

For definiteness, we will mostly consider distributions
for quarks and antiquarks in the following. Gluon distribu-
tions can be discussed in close analogy, with appropriate
adaptions.

2 Space-time and momentum structure

In this section we review the variables on which differ-
ent kinds of parton distributions depend. This will allow
us to see how the different distributions are related to
each other. Any process that probes partons inside a nu-
cleon singles out a particular direction, providing a phys-
ical distinction between “longitudinal” and “transverse”.
This is naturally implemented in the parton model, where
one chooses a reference frame in which the hadron un-
der consideration moves fast. One is however not limited
to this choice: parton distributions are defined in a co-
variant way, and one can also discuss them in the hadron
rest frame. Of course, the process probing the parton still
singles out a particular direction in that frame, so that
transverse and longitudinal directions play different roles.
Thus, the information one can gain about partons in the
proton inevitably breaks manifest three-dimensional rota-
tion invariance. For definiteness, we will in the following
consider a reference frame in which the hadron moves fast
in the positive z direction (exactly or approximately). A
suitable set of coordinates is then given by the light-cone
coordinates v± = (v0 ± v3)/

√
2 and the transverse com-

ponents v = (v1, v2) of a given four-vector v.
A two-parton correlation function for quarks is defined

as the matrix element of a bilinear quark field operator
between proton states:

H(k, P,∆) = (2π)−4

∫
d4z eizk

×
〈
p(P + 1

2∆)|q̄(− 1
2z)Γ q(12z)|p(P − 1

2∆)
〉
. (1)

The Dirac matrix Γ selects the twist1 and the parton spin
degrees of freedom, and we have omitted labels for the
proton spin state. For the moment we put aside field the-
oretical issues such as the regularisation and renormalisa-
tion of the operator and the insertion of a Wilson line be-
tween the two quark quark fields. The parton and proton
momenta are shown in figure 1. Notice that the on-shell
condition for the proton states results in the conditions
P∆ = 0 and 4P 2 + ∆2 = 4m2, where here and in the
following m denotes the proton mass.

1 There are several – slightly different – definitions of the
term “twist”. We will not expand on this topic here and refer
to [2] for a detailed discussion.

While H(k, P,∆) is a smooth function of ∆, the cases
where this momentum transfer is zero or not correspond
to distinct physical situations:

1. In the forward limit ∆ = 0 the function appears in
the cross section of inclusive processes. Glossing over
complications from confinement, one may insert a com-
plete set |X⟩⟨X | of states between the fields q̄ and q
in the matrix element (1). This gives essentially the
amplitude A for emitting a quark or antiquark from
the proton, with a system of spectator partons X left
behind, multiplied by the conjugate A∗ of that ampli-
tude as required for the computation of a cross sec-
tion. The representation as a squared amplitude A∗A
opens the possibility to interpret certain forward dis-
tributions as probability densities in the sense of quan-
tum mechanics. Taken literally, this interpretation no
longer holds after the regularisation and renormalisa-
tion already mentioned, but if taken with due caution
it remains a valuable guide for physical intuition.
We note that in the forward limit, it is convenient to
take a frame where P = 0, so that the proton moves
exactly along the z axis.

2. In non-forward kinematics ∆ ̸= 0 the function appears
in the amplitude of exclusive reactions, with an incom-
ing proton of momentum P−∆/2 and an outgoing one
of momentum P +∆/2. The functions in this case are
often called “generalised”.

In physical observables, the correlation function (1) typ-
ically is integrated over one or more components of the
four-momentum k. Let us review this step by step.

1. After an integral over k−, the quark and antiquark
fields are evaluated at z+ = 0. This admits a very
elegant interpretation in the framework of light-cone
quantisation: quark fields are quantised at light-cone
time z+ = 0, where they obey the anticommutation
relations for free fields and have a Fourier decomposi-
tion in terms of creation and annihilation operators for
quarks and antiquarks. This may be seen as the field
theory implementation of the parton model, where par-
tons are regarded as quasi-free just before they are
probed in a physical process. The parton states cre-
ated or annihilated by the fields have positive plus-
momentum, so that depending on the respective signs
of k+ −∆+/2 and k+ +∆+/2, the matrix element in
figure 1 describes the emission and reabsorption of a
quark, the emission and reabsorption of an antiquark,
or (for ∆+ ̸= 0 only) the emission or absorption of a
quark-antiquark pair (see figure 3 below). At z+ = 0,
the representation of the parton correlation function as

k − 1
2∆ k + 1

2∆

P − 1
2∆ P + 1

2∆

Fig. 1. Momentum assignments in the general quark correla-
tion function (1).
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What do we know about the nucleon? It is a complicated object!
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Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P,∆) defined
in (1). Double arrows marked by “FT” denote a Fourier transform between ∆ and b or between k and z. Fractions of plus-
momentum (commonly called “longitudinal momentum fractions”) are written as x = k+/P+ and 2ξ = −∆+/P+. The invariant
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∫
dk− and

∫
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

where “average” and “difference” refer to the right and
left hand sides of figure 1, or equivalently to the light-cone
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look at the different distributions that can be obtained
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mation of large logarithms in observables sensitive to
the proton remnants (called “beam jets”) [9,10,11].
In that case, distributions differential in k− but inte-
grated over k are referred to as beam functions as well.
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priate approximations) gluon exchange in the Glauber
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Not being integrated over any momentum component,
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invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
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The so-called Wigner distribution is known to provide maximally detailed information on quantum
systems describing the distribution of particles in phase space. In the case of hadron structure, the QCD
Wigner distribution [1–3], or its Fourier transform, the Generalized Transverse Momentum Dependent
Distribution (GTMD) [4–7], provides multidimensional partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8, 9]). It gives the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in perturbative QCD, the question of its measurement
naturally arises.

The measurement of various nonperturbative ingredients of QCD factorization (“partonometry”) is in
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The gluon Wigner distribution at small x: dipole picture

From quark to gluon:

Staple-shaped Wilson lines:
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The so-called Wigner distribution is known to provide maximally detailed information on quantum
systems describing the distribution of particles in phase space. In the case of hadron structure, the QCD
Wigner distribution [1–3], or its Fourier transform, the Generalized Transverse Momentum Dependent
Distribution (GTMD) [4–7], provides multidimensional partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8, 9]). It gives the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in perturbative QCD, the question of its measurement
naturally arises.

The measurement of various nonperturbative ingredients of QCD factorization (“partonometry”) is in
general a challenging problem. While spin-averaged and spin-dependent parton distributions can be stud-
ied in (inclusive) Deep Inelastic Scattering (DIS), the studies of the Transverse Momentum Dependent
Distributions (TMDs) rely mostly on semi-inclusive DIS (SIDIS), and the Generalized Parton Distri-
butions (GPDs) are extracted from the data on exclusive processes, mostly Deeply Virtual Compton
Scattering (DVCS). However, these processes are sensitive to either the transverse momentum ~q? or im-

pact parameter ~b? of partons, whereas the Wigner distribution W (x, ~q?,~b?) depends on both1. Is there
a way to phenomenologically access such detailed information on parton tomography in the nucleon?

Recently, new observables to measure gluon GTMDs in the small-x region in exclusive di↵ractive dijet
production at an electron-ion collider (EIC) have been proposed in Ref. [10] (see also a related work
[11])2. In particular, it was understood that the gluon GTMD distribution at small-x can be considered
as a Fourier transform of an impact parameter dependent forward dipole amplitude (or dipole S-matrix),
which provides access to the gluon saturation e↵ects at small-x (see e.g. Ref. [13]). Moreover, the process

is also sensitive to the characteristic azimuthal angular correlation between ~q? and ~

b? governed by the
“elliptic” gluon Wigner distribution [10, 14, 15]. The actual measurement of the proposed observables
in lepton-nucleon scattering is challenging, as it requires reconstruction of full dijet kinematics vetoing
any other hadronic activity in order to reduce the backgrounds associated with the Pomeron and photon
breakup. In addition, it is mandatory to detect the forward proton to ensure exclusivity of the di↵ractive
process. While these experimental challenges are likely to be overcome at the planned EIC, the extraction
of the GTMD is further complicated by the fact that the cross section is not directly proportional to the
GTMD, but is given by its convolution integral which is di�cult to invert. It is thus worthwhile to look
for other processes in which the latter problem becomes simpler. The vast experimental data on hadronic
and nuclear collisions are now emerging from the LHC, and it would be very desirable to exploit them
for GTMD studies. We will show below that di↵ractive dijet production in ultraperipheral pA collisions
(UPCs) at the LHC and at the RHIC is a particularly important example that provides an essential
means for such studies.

In UPCs the relativistic colliding systems (such as nucleons and nuclei) pass each other at large trans-
verse distances without interacting hadronically, only electromagnetically through the emission of quasi-
real Weiszäcker-Williams (WW) photons [16, 17]. The e↵ective WW photon flux of a charged particle
is scaled as the square of its charge and thus is noticeably enhanced for heavy ions making UPCs in pA

more advantageous compared to those in pp. Besides, the WW spectrum is rather broad with the maxi-
mal photon energy in the target rest frame scaling linearly with the nuclear Lorentz factor. In addition,
UPCs in pA provide good experimental opportunities for studies of exclusive di↵ractive observables by
detecting the intact protons and possibly also ions using the LHC forward proton spectrometers (such as
Roman pots in TOTEM [18], CT-PPS [19] at the CMS side or ALFA [20] and AFP [21, 22] at ATLAS
side). Together with measurements of the di↵ractive dijet system, the latter would enable full kinematic
reconstruction by identifying the momentum transfers from the proton and the ion separately3. Due
to a large relative distance between the scattering particles, the measurements of UPCs in pA can be

1 Here, x denotes the longitudinal momentum fraction. Throughout this paper, we suppress the dependence on the skewness
parameter ⇠. In the small-x region which we are interested in, e↵ectively ⇠ ⇡ x.

2 More recently, a method to access the quark GTMDs for generic values of x in the exclusive double Drell-Yan process
has been proposed [12].

3 It should be, however, noted that detailed feasibility studies for the double-tagging in p+Pb runs are still to be performed.
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where |P i is the proton state and U± is the staple-shaped Wilson line which goes to light-cone infinity
z

+ = ±1 and comes back. The GTMD distribution xW (x, ~q?, ~�?) is then given by the Fourier transform
~

b? ! ~�?. The key observation of Ref. [10] is that the gluon GTMD distribution at small-x is proportional
to the Fourier transform of the dipole S-matrix
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in terms of the lightlike Wilson line U in the fundamental representation and the number of QCD colors
N

c

= 3. Eq. (2) shows that the measurement of the GTMD distribution boils down to that of the dipole
S-matrix. In order to be sensitive to both ~q? and ~�?, it has been suggested in Ref. [10] to measure
exclusive di↵ractive dijet production in lepton-nucleon scattering in which the proton scatters elastically
with momentum transfer ~�? and the virtual photon splits into a qq̄ pair (dipole) and then hadronizes

into a dijet in the forward region with transverse momenta ~

k1? and ~

k2? such that ~k1? + ~

k2? = �~�?.
By measuring the di↵erential cross section as a function of the relative transverse momentum of the dijet
~
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2 (
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k1?) at fixed ~�?, one can get information about the ~q?-dependence of the GTMD. The

problem, however, is that the scattering amplitude ~

M is given by a complicated convolution integral of
the dipole S-matrix. For the transversely polarized virtual photon, the relation is
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where ✏
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2
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. (Here, z (or 1� z) is the momentum fraction of the quark (or antiquark)

and Q

2 is the photon virtuality. We neglect the quark mass m

f

.) In order to make the extraction of S
from M easier, the authors of Ref. [10] suggested looking at the small-Q2 region where the ~q?-integral
in Eq. (4) is dominated by ~q? ⇠ ~

P?. In this paper, we push this idea to the extreme and consider the
photoproduction limit of small Q2 ! 0.

In the lepton-nucleon scattering, approaching the kinematical boundary Q

2 ! 0 is experimentally
feasible as HERA indeed has measured the parton density functions (PDFs) in the proton down to
Q

2 = 0.05 GeV2. There is, however, a more e�cient way to prepare a flux of almost real photons. This
is pA UPCs in which the nucleus is treated only as a source of WW photons. By using a large nucleus,
the smallness of the electromagnetic coupling ↵

em

is compensated by the atomic number squared Z

2.
Moreover, since the photons are almost on shell, they only have transverse polarizations. (When Q

2 6= 0,
the contribution from the longitudinally polarized virtual photon should be added to Eq (4); see also
Refs. [31, 32].) Note in our case one should ensure exclusivity of the process such that the proton and
nucleus remain intact. This is especially important for the proton as one should detect the final proton
in order to recover the full kinematics necessary for GTMD. On the untagged nucleus side we do not
consider resolved photon processes but we rather concentrate on the so-called direct photon process.
Below we consider exclusive di↵ractive dijet production in UPCs and demonstrate that, in the ideal case
Q

2 = 0, the convolution (4) can be analytically inverted.
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The so-called Wigner distribution is known to provide maximally detailed information on quantum
systems describing the distribution of particles in phase space. In the case of hadron structure, the QCD
Wigner distribution [1–3], or its Fourier transform, the Generalized Transverse Momentum Dependent
Distribution (GTMD) [4–7], provides multidimensional partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8, 9]). It gives the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in perturbative QCD, the question of its measurement
naturally arises.

The measurement of various nonperturbative ingredients of QCD factorization (“partonometry”) is in
general a challenging problem. While spin-averaged and spin-dependent parton distributions can be stud-
ied in (inclusive) Deep Inelastic Scattering (DIS), the studies of the Transverse Momentum Dependent
Distributions (TMDs) rely mostly on semi-inclusive DIS (SIDIS), and the Generalized Parton Distri-
butions (GPDs) are extracted from the data on exclusive processes, mostly Deeply Virtual Compton
Scattering (DVCS). However, these processes are sensitive to either the transverse momentum ~q? or im-

pact parameter ~b? of partons, whereas the Wigner distribution W (x, ~q?,~b?) depends on both1. Is there
a way to phenomenologically access such detailed information on parton tomography in the nucleon?

Recently, new observables to measure gluon GTMDs in the small-x region in exclusive di↵ractive dijet
production at an electron-ion collider (EIC) have been proposed in Ref. [10] (see also a related work
[11])2. In particular, it was understood that the gluon GTMD distribution at small-x can be considered
as a Fourier transform of an impact parameter dependent forward dipole amplitude (or dipole S-matrix),
which provides access to the gluon saturation e↵ects at small-x (see e.g. Ref. [13]). Moreover, the process

is also sensitive to the characteristic azimuthal angular correlation between ~q? and ~

b? governed by the
“elliptic” gluon Wigner distribution [10, 14, 15]. The actual measurement of the proposed observables
in lepton-nucleon scattering is challenging, as it requires reconstruction of full dijet kinematics vetoing
any other hadronic activity in order to reduce the backgrounds associated with the Pomeron and photon
breakup. In addition, it is mandatory to detect the forward proton to ensure exclusivity of the di↵ractive
process. While these experimental challenges are likely to be overcome at the planned EIC, the extraction
of the GTMD is further complicated by the fact that the cross section is not directly proportional to the
GTMD, but is given by its convolution integral which is di�cult to invert. It is thus worthwhile to look
for other processes in which the latter problem becomes simpler. The vast experimental data on hadronic
and nuclear collisions are now emerging from the LHC, and it would be very desirable to exploit them
for GTMD studies. We will show below that di↵ractive dijet production in ultraperipheral pA collisions
(UPCs) at the LHC and at the RHIC is a particularly important example that provides an essential
means for such studies.

In UPCs the relativistic colliding systems (such as nucleons and nuclei) pass each other at large trans-
verse distances without interacting hadronically, only electromagnetically through the emission of quasi-
real Weiszäcker-Williams (WW) photons [16, 17]. The e↵ective WW photon flux of a charged particle
is scaled as the square of its charge and thus is noticeably enhanced for heavy ions making UPCs in pA

more advantageous compared to those in pp. Besides, the WW spectrum is rather broad with the maxi-
mal photon energy in the target rest frame scaling linearly with the nuclear Lorentz factor. In addition,
UPCs in pA provide good experimental opportunities for studies of exclusive di↵ractive observables by
detecting the intact protons and possibly also ions using the LHC forward proton spectrometers (such as

1 Here, x denotes the longitudinal momentum fraction. Throughout this paper, we suppress the dependence on the skewness
parameter ⇠. In the small-x region which we are interested in, e↵ectively ⇠ ⇡ x.

2 More recently, a method to access the quark GTMDs for generic values of x in the exclusive double Drell-Yan process
has been proposed [12].
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where |P i is the proton state and U± is the staple-shaped Wilson line which goes to light-cone infinity
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N
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in terms of the lightlike Wilson line U in the fundamental representation and the number of QCD colors
N

c

= 3. Eq. (2) shows that the measurement of the GTMD distribution boils down to that of the dipole
S-matrix. In order to be sensitive to both ~q? and ~�?, it has been suggested in Ref. [10] to measure
exclusive di↵ractive dijet production in lepton-nucleon scattering in which the proton scatters elastically
with momentum transfer ~�? and the virtual photon splits into a qq̄ pair (dipole) and then hadronizes

into a dijet in the forward region with transverse momenta ~

k1? and ~

k2? such that ~k1? + ~

k2? = �~�?.
By measuring the di↵erential cross section as a function of the relative transverse momentum of the dijet
~

P? = 1
2 (
~

k2? � ~

k1?) at fixed ~�?, one can get information about the ~q?-dependence of the GTMD. The

problem, however, is that the scattering amplitude ~

M is given by a complicated convolution integral of
the dipole S-matrix. For the transversely polarized virtual photon, the relation is
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where ✏

2
f

= z(1� z)Q2 +m

2
f

. (Here, z (or 1� z) is the momentum fraction of the quark (or antiquark)

and Q

2 is the photon virtuality. We neglect the quark mass m

f

.) In order to make the extraction of S
from M easier, the authors of Ref. [10] suggested looking at the small-Q2 region where the ~q?-integral
in Eq. (4) is dominated by ~q? ⇠ ~

P?. In this paper, we push this idea to the extreme and consider the
photoproduction limit of small Q2 ! 0.

In the lepton-nucleon scattering, approaching the kinematical boundary Q

2 ! 0 is experimentally
feasible as HERA indeed has measured the parton density functions (PDFs) in the proton down to
Q

2 = 0.05 GeV2. There is, however, a more e�cient way to prepare a flux of almost real photons. This
is pA UPCs in which the nucleus is treated only as a source of WW photons. By using a large nucleus,
the smallness of the electromagnetic coupling ↵

em

is compensated by the atomic number squared Z

2.
Moreover, since the photons are almost on shell, they only have transverse polarizations. (When Q

2 6= 0,
the contribution from the longitudinally polarized virtual photon should be added to Eq (4); see also
Refs. [31, 32].) Note in our case one should ensure exclusivity of the process such that the proton and
nucleus remain intact. This is especially important for the proton as one should detect the final proton
in order to recover the full kinematics necessary for GTMD. On the untagged nucleus side we do not
consider resolved photon processes but we rather concentrate on the so-called direct photon process.
Below we consider exclusive di↵ractive dijet production in UPCs and demonstrate that, in the ideal case
Q

2 = 0, the convolution (4) can be analytically inverted.
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Conclusions

✓   Quasi-probability (quark and gluon) Wigner distributions represent  
      5D snapshot of the hadronic structure and contain full information about  
      it equivalent to knowing the exact wave functions of partons in the nucleon. 

✓   The elliptic gluon Wigner distribution contains an important info on azimuthal  
      angle correlation due to dipole orientation effects and is responsible e.g.  
      for the elliptic flow and angular correction in exclusive dijet production. 

✓   One of the most promising ways to access the gluon Wigner distribution  
      is by measuring the differential cross section of exclusive dijet production  
      in ultraperipheral pA/AA collisions. A dedicated analysis for a given  
      experiment is necessary.


