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One (or more) step away from the hard scattering: the parton shower

Apart from the hard matrix element, an exact description of all the parton
radiation is not feasible: an approximation is needed

Hard scattered partons are heavily accelerated, which means that they radiate
(colour) charge, i.e. mostly gluons, which radiate in turn, since they are colour
charged too, unlike photons. This is why the emission pattern is so intricate.

Evolution in energy ≈ evolution in time
up to the hard collision (Initial state shower) and thereafter (final state shower)

Tools :



Real and resolvable emissions: universal collinear splitting
dσn+1 = dσn

αs
2π

dθ2

θ2 Pji (z, φ) dz dφ+O(θ) θ : emission angle

Virtual part and unresolvable emissions: the Sudakov form factor

∆i (q
2
1 , q

2
2) = exp

{
−αs

2π

∫ q2
1

q2
2

dq2

q2
∫ 1−Q2

0/q
2

Q2
0/q

2 dz
∫ 2π
0 dφPji (z, φ)

}
Q0 : soft scale

Take-home message:
the splitting function is the foundational tool for a parton shower Monte Carlo
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The usual tool for a parton shower: the DGLAP evolution equations

Gribov, Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438
Altarelli, Parisi, Nucl. Phys. B126 (1977) 298;
Dokshitzer, Sov. Phys. JETP 46 (1977) 641

dfi (x , q2)

d log q2 =
∑
j

αs

2π

∫
dz

z
Pij (αs , z) fj

( x
z
, q2
)

Pij ≡ splitting functions ≈ probability that i(k)→ j(q) + something(p′)

k

p0

q

1 1 1

kµ = ypµ qµ = zkµ+qµ⊥+
q2 + q2

2xp · n
nµ p′ = q−k , pµ = (1, 0, 0, 1) , nµ = (1, 0, 0,−1)

(Main) DGLAP-based Monte Carlo programs:
Sjostrand et al., Pythia
Webber et al. HERWIG
Krauss et al. SHERPA
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Other evolution equations (for TMD gluon PDF): BFKL and CCFM

High-energy (small-z) limit of gluon emissions: BFKL kernel

PBFKL
gg (αs , q, k) ≈

αs

|q − k|2
− αs δ(q2 − k2)

1
π

∫ k d2q
q2

BFKL-based Monte Carlo programs:
Andersen, Smillie, Lonnbland et al., HEJ (High Energy Jets)
JHEP 1106 (2011) 010, JHEP 1107 (2011) 110...
Agustin Sabio Vera and Grigorios Cachamis (unpublished)

Soft limit (p′ ⇒ 0) of gluon emissions: CCFM kernel

PCCFM
gg (αs , q, k) ≈ z

[
αs(q2(1− z)2)

1− z
+
αs(k2)

z
(1 + . . . )

]
CCFM-based Monte Carlo program: CASCADE

Hannes Jung, Gavin Salam et al.
Eur.Phys.J. C19 (2001) 351-360
Comput.Phys.Commun. 143 (2002), Eur.Phys.J. C70 (2010)
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What is your purpose: the TMD splitting kernels

Short term: connecting DGLAP and low-x evolutions.
Medium/long-term: Monte Carlo evolution bridging between

DGLAP, CCFM and BFKL
Squared matrix elements for the determination of the real contributions to the

splitting functions à-la Curci-Furmanski-Petronzio (CFP)

k

p0

q

1 1 1

kµ = ypµ + kµ⊥ qµ = xpµ + qµ⊥ +
q2 + q2

2xpn
nµ p′ = q − k

pµ = (1, 0, 0, 1) nµ = (1, 0, 0,−1)

First three computed and consistent with DGLAP
Catani and Hautmann Nucl.Phys. B427 (1994)

Gituliar, Hentschinski, Kutak JHEP 1601 (2016) 181
So far, a computation of the P̃gg kernel which could successfully reproduce the

DGLAP AND BFKL limit not done: let me (briefly) show why !
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High Energy Factorization: more degrees of freedom

High Energy Factorization (Catani,Ciafaloni,Hautmann, 1991 / Collins,Ellis, 1991)

σh1,h2→qq̄ =

∫
d2k1⊥d

2k2⊥
dx1

x1

dx2

x2
Fg (x1, k1⊥, µ

2)Fg (x2, k2⊥, µ
2) σ̂gg (m, x1, x2, s, k1⊥, k2⊥)

Fg ’s: unintegrated gluon densities,
∫
d2kTFg (x , kt , µ2) = fg (x , µ2).

Non negligible transverse momentum ⇔ small x physics.
Exact initial state kinematics ⇒ collinear higher order effects ab initio.

Momentum parameterization:

kµ1 = x1 l
µ
1 + kµ1⊥ , kµ2 = x2 l

µ
2 + kµ2⊥

l2i = 0, li · ki = 0, k2
i = −k2

i ⊥, i = 1, 2
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Gauge invariant amplitudes with off-shell gluons
Kutak, Kotko, van Hameren, JHEP 1301 (2013) 078

Problem: general partonic processes must be described by gauge invariant amplitudes
⇒ ordinary Feynman rules are not enough !

THE IDEA:
on-shell amplitudes are gauge invariant, so off-shell gauge-invariant amplitudes could

be got by embedding them into on-shell processes...
...result for gluons...: represent g∗ as coming from a q̄qg vertex

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

+ +

pA pA ′

pB pB ′

k1

k2

=

pA pA ′

pB pB ′

+ · · ·

embed the scattering of the off-shell gluons in the scattering of two quark pairs
carrying momenta pµA = kµ1 , p

µ
B = kµ2 , p

µ
A′ = 0, pµ

B′ = 0

Assign the spinors |p1〉, |p1] to the A-quark and ik/
k2 →

i p/1
p1·k

to the A-propagators;
same for the B-quark line.

ordinary Feynman elsewhere and factor x1
√
−k2
⊥/2 to match to the collinear limit

Big advantage: Spinor helicity formalism
for off-shell quakrs: Kutak, Salwa, van Hameren, Phys.Lett. B727 (2013)
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Open-index vertices in HEF: Γµg∗g∗g (q, k, p′)

+ +

1

HEF gluon q = y p+q⊥ , HEF gluon k = x p+k⊥ , radiated gluon p′ = k−q p′2 = 0

A(q, k, p′) = (
√
2)

pµ1 nµ2 εµ3 (p′)

q2 k2

{
Vλκµ3 (q, k, p′) dµ1

λ(q) dµ2
κ(k)

+ dµ1µ2 (k)
q2nµ3

n · p′
− dµ1µ2 (q)

k2pµ3

p · p′

}
≡ (

√
2)

pµ1 nµ2 εµ3 (p′)

q2 k2 Γµ1µ2µ3 (q, k, p′)

Vλκµ3 (q, k, p′): ordinary 3-gluon vertex
dµν not invertible in light-cone gauge ⇒ it has to be kept everywhere !

dµν(p) = −gµν + nµpν+nνpµ

n·p
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Open-index vertices in HEF: all of them, with color

Full set of gauge invariant 3-point off-shell vertices

Γµq∗g∗q(q, k, p′) = i g ta dµν(k)

(
γν −

nν

k · n
q/

)
Γµg∗q∗q(q, k, p′) = i g ta dµν(q)

(
γν −

pν

p · q
k/

)
Γµq∗q∗g (q, k, p′) = i g ta

(
γµ −

pµ

p · p′
k/+

nµ

n · p′
q/

)
Γµg∗g∗g (q, k, p′) = i g f abc

{
Vλκµ3 (q, k, p′) dµ1

λ(q) dµ2
κ(k)

+ dµ1µ2 (k)
q2nµ3

n · p′
− dµ1µ2 (q)

k2pµ3

p · p′

}
We still need a suitable procedure

to extract splitting functions from these vertices...
to which we turn next !
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The fundamental result to start from

Why does the parton model work so well ?
Ellis, Georgi, Machacek, Politzer, Ross, Nucl. Phys. B152 (1979)

Proof of collinear factorisation based on
2 Particle Irreducible expansion of the scattering process

In light-cone gauge, ALL the IR divergences come only from the convolution
integral over the intermediate momenta connecting the 2PI kernels K

How to put at work this result to get an evolution equation ?
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The CFP approach to factorisation: isolating the IR poles

Crucial point: introduce a projector to isolate the infrared poles in ε

k

q

l

k

l

q

A

B

↵

�

↵0

�0

⌘
Z

ddl

(2⇡)d
A↵↵0

��0 (k, l) B��0

��0(l, q)

1

Intermediate quark:

A(q, l)...αα′ Ps αα′
ββ′ B

...ββ′ (l , k)

≡ A(q, l)...αα′
(l/)αα

′

2
(n/)ββ′

2n · l
B...ββ

′
(l , k) ,

Intermediate gluon

A(q, l)...µ′ν′ Ps µ′ν′
µν B...µν(l , k)

≡ A(q, l)...µ′ν′
dµ
′ν′ (l)

d − 2
(−gµν)B...µν(l , k) ,

We can split the spin projectors into an "in" and "out" component

Ps ≡ Ps
in ⊗ Ps

out

The momentum Pε projector extracts the poles in ε from the
∫
dd l after

setting the incoming particle on-shell
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Modifying the collinear projectors

Collinear spin projectors:

Ps µν
g, in =

1
d − 2

(
−gµν +

lµnν + nµlν

l · n

)
, Ps µν

g, out = −gµν

Ps
q, in =

/l

2
, Ps

q, out =
/n

2 n · l

Important to keep in mind:

The "In" projector is a d-dim average over incoming particle helicities
Projectors are defined only modulo finite terms (renormalization scheme)
In order to move on to TMDs, one needs gauge-invariant generalisation of
the collinear vertices
need some projectors with something retaining TMD dependence and
reducing to the CFP projectors (modulo finite terms) in the collinear limit
and squares to itself all the way through

Someone did this already (more on this later):
Catani and Hautmann, Nucl.Phys. B427 (1994) 475-524
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Modifying the Catani-Hautmann projectors

The modified projectors for HEF
gluons: Catani and Hautmann, Nucl.Phys. B427 (1994) 475-524
quarks: Gituliar, Hentschinski, Kutak - JHEP 1601 (2016) 181

l = y p + l⊥ , ⇒

 Ps µν
g, in = − l

µ
⊥ lν⊥
l2⊥

Ps µν
g, out = −gµν

Ps
q, in = y p/

2 Ps
q, out = /n

2 n·l

CH prescription derived from analysis of heavy quark production
⇒ both numerators of gluon propagators factorize

Our modified set of projectors

l = y p + l⊥ , ⇒

 Ps µν
g, in = −y2 pµpν

l2⊥
Ps µν
g, out = −gµν + lµnν+lνnµ

l·n − k2 nµnν
(l·n)2 ,

Ps
q, in = y p/

2 Ps
q, out = /n

2 n·l
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The gluon TMD

For quark TMDs, we exactly recover the result of
Catani and Hautmann, Nucl.Phys. B427 (1994) 475-524
Gituliar, Hentschinski, Kutak - JHEP 1601 (2016) 181

The central new result of this work: the gluon TMD splitting function

P̃
(0)
gg (z, q̃, k) = CA

(
q̃2

q̃2 + z(1− z)k2

)2 q̃2

(q̃ − (1− z)k)2

×
[
−

4z2 − 4z + 2
z(1− z)

− z(1− z)(4z4 − 12z3 + 9z2 + 1)
k4

q̃4

−4z(1− z)
k · q̃2

k2q̃2 + 2(4z3 − 6z2 + 6z − 3)
k · q̃
q̃2

−4z(1− z)2(3− 5z)
k · q̃2

q̃4 − (4z4 − 8z3 + 5z2 − 3z − 2)
k2

q̃2

+8z(1− z)2
k · q̃3

k2q̃4 − 2z2(1− z)(3− 4z)(3− 2z)
k2 k · q̃

q̃4

]
−εCA z(1− z)

q̃2

k2

(
(2z − 1)k2 + 2k · q̃
q̃2 + z(1− z)k2

)2

q̃ = q − z k
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Kinematical limits of the P̃gg TMD: DGLAP

1. Introduce angular averaging

P̄
(0)
ij =

1
π

∫ π

0
dφ sin2ε φ P̃

(0)
ij

and easily get the DGLAP limit ⇒ al least not everything is wrong !

lim
|~k⊥|→0

P̄
(0)
gg = 2CA

[
z

1− z
+

1− z

z
+ z (1− z)

]
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Kinematical limits of the P̃gg TMD: BFKL

1. Introduce angular averaging

P̄
(0)
ij =

1
π

∫ π

0
dφ sin2ε φ P̃

(0)
ij

and easily get the DGLAP limit ⇒ al least not everything is wrong !

lim
|~k⊥|→0

P̄
(0)
gg = 2CA

[
z

1− z
+

1− z

z
+ z (1− z)

]
2. In the high energy limit z → 0:

lim
z→0

P̂gg

(
z,

k2

µ2 , ε, αs

)
=

αsCA

π(eγE µ2)ε

∫
d2+2εp̃
π1+ε

Θ
(
µ2
F − (k − p̃)2

) 1
p̃2

=

∫
d2+2εq
π1+ε

Θ
(
µ2
F − q2) αsCA

π(eγE µ2)ε
1

(q − k)2
,

the real part of the LO BFKL kernel ⇒ something is probably correct !
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Kinematical limits of the P̃gg TMD: CCFM

Last we are interested in the limit p̃ → 0,
i.e. vanishing transverse momentum of the produced gluon

For p̃ → 0 we get the real CCFM kernel

P̂gg

(
z,

k2

µ2 , 0, αs

)
= z ·

∫
0

d p̃2

p̃2
αsCa

π

[
1
z

+
1

1− z
+O

(
p̃2

k2

)]
p̃ =

k − q
1− z

Comes "for free"...no ad hoc assumptions made a priori
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Kinematical limits of the P̃gg TMD: CCFM

Last we are interested in the limit p̃ → 0,
i.e. vanishing transverse momentum of the produced gluon

For p̃ → 0 we get the real CCFM kernel

P̂gg

(
z,

k2

µ2 , 0, αs

)
= z ·

∫
0

d p̃2

p̃2
αsCa

π

[
1
z

+
1

1− z
+O

(
p̃2

k2

)]
p̃ =

k − q
1− z

Comes "for free"...no ad hoc assumptions made a priori
⇒ something must be RIGHT !
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Conclusions and perspectives

The method by Curci, Furmanski and Petronzio was successfully extended to the
TMD case using gauge invariant vertices. Subtleties preventing the
Catani-Hautmann generalisation from being directly extended to the Pgg case
were uncovered and worked out.

All the three limits, DGLAP, BFKL and CCFM are consistently satisfied: very non
trivial consistency check ! For other early attempts, see
Ciafaloni, Colferai, Salam, Stasto Phys. Lett. B587 (2004)
Kwiecinski, Martin, Stasto Phys. Rev. D56 (1997)
The next step are the virtual corrections, for which a systematic method has
recently been proposed in A. van Hameren, arXiv:1710.07609...
Higher orders will come next, once the complete consistency of the LO formalism
has been fully established

A Monte Carlo implementation is the main medium-term goal on the agenda...so
stay tuned, please !
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