Even spin glueball masses and Pomeron Regge trajectory within twist two operator from string/gauge duality

Eduardo Folco Capossoli

Colégio Pedro II/IF-UFRJ Rio de Janeiro - Brazil

in "ZIMÁNYI-COST SCHOOL'17 - WINTER SCHOOL ON HEAVY ION PHYSICS"

Budapeste, Hungary, December 04th to 08th, 2017

This talk is based on arXiv:1611.03820

Work done in collaboration with:

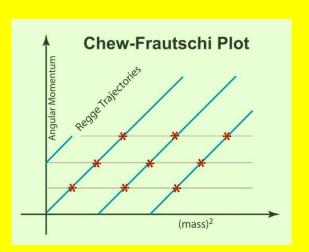
Diego M. Rodrigues and Henrique Boschi-Filho

Summary of the talk:

- motivation: Point-like scenario x String-like scenario
- Brief Review: AdS/CFT correspondence and AdS/QCD models
- Glueballs in QCD and the Pomeron
- The Hardwall model computing even glueballs states masses and the Regge trajecory for the Pomeron
- Results
- Last comments

- Current Thinking: Particles are point-like objects!
- 60's: hadrons that collided under high energy.
- Observed Hadronic Spectrum: Infinite towers of particles (ressonances) showing up in Regge trajectories.

 $J \sim m^2$



REGGE BEHAVIOUR

But what does this have to do with strings?

- This relationship is also achieved for a classical rotating string $I \sim m^2$
 - Gabriele Veneziano:

 Particles are string-like objects!

$$A_{\mathbf{Ven}}(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s) - \alpha(t))},$$

is the Gamma function

$$\alpha(s) = \bar{\alpha}'s + \bar{\alpha}_0 , \alpha(t) = \bar{\alpha}'t + \bar{\alpha}_0.$$

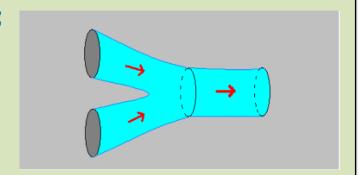
- For s $\rightarrow \infty$ with fixed t regime : $A_{Ven} \sim s^{\alpha(t)}$ Regge behaviour
- ullet For s $o \infty$ with fixed s/t regime : A_{Ven} is not good

Quantum Relativistic Strings

- Masses spectra similar to the hadrons;
- Physical states corresponding to the other particles:

$$A_{\mu}$$
 (Photon), $G_{\mu\nu}$ (Graviton),;

- String theory includes the gravitational interaction;
- The fundamental objects of nature are not Particles;
- The different particles appear from the vibration of strings;
- Bosonic strings: 26-D;
- SuperStrings (bosons + fermions): 10-D;
- Extra dimensions are compacted;



Are hadrons string-like objects?

- This relationship is not trivial
 - Hadrons have some string properties, but....

 We cannot describe all Hadrons properties just using a string model in a flat spacetime.

• The complete descriptions depends on the spacetime structure.

Quantum Chromodynamics - QCD

- ✓ used as the standard theory to explain the phenomenology of strong interactions.
- \square at the low-energy limit (g_{YM} > 1) the QCD cannot be treated perturbatively.
- Alternative W a Y
- Regge trajectories are an example of nonpertubative behavior of strong interactions: difficult to model it using QCD.

AdS/CFT correspondence

ANTI-DE SITER/CONFORMAL FIELD THEORY

AdS/CFT correspondence, J. Maldacena, 1997

(simplified version of a particular useful case)

SUPERSTRING THEORY in the AdS₅ x S⁵ spacetime.

YANG-MILLS THEORY

- Supersymmetric $\mathcal{N}=4$
- Conformal
- SU(N) symmetry, with N→∞
 in a 4-dimensional Minkowski spacetime (AdS₅x S⁵ boundary).

At low energies string theory is represented by an effective supergravity theory → gravity / gauge duality

Other versions of the Correspondence: $AdS_4 \times S^7$ or $AdS_7 \times S^4$ (M-theory in 11 dimensions)

- ➤ After breaking the conformal symmetry one can build phenomenological models that describe approximately QCD. So, AdS/QCD models (hardwall, softwall, Witten BH, etc.)
- ➤ Weak coupling theory ⇔ Strong coupling theory.

AdS/CFT Dictionary

Isometries in the bulk \leftrightarrow Simmetries in the boundary field theory

Field
$$(\phi, g_{\mu\nu}....)$$
 \leftrightarrow Operator $(TrF^2, T_{\mu\nu}....)$
Radial distance, $u \leftrightarrow$ Energy
Minimal area \leftrightarrow Wilson loop
 \vdots \vdots \vdots Minimal volume \leftrightarrow Entanglement entropy

 \leftrightarrow

Bulk field mass ↔ boundary operator scaling dimension

$$\phi: \quad \Delta(\Delta - d) = m^2$$

$$\psi: \quad |m| = \Delta - \frac{d}{2}$$

$$A_{\mu}: \quad m^2 = (\Delta - 1)(\Delta + 1 - d)$$

The AdS₅ Spacetime

Disregarding the S⁵ space, the AdS₅ Space in Poincaré coordinates is given by:

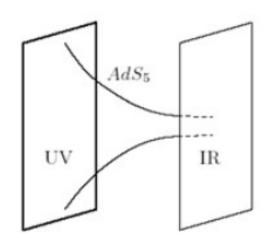
$$ds^2 = rac{R^2}{(z)^2} (dz^2 \, + (dec{x})^2 \, - dt^2 \,)$$

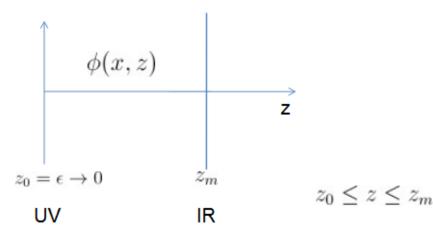
The 4-dim boundary is at z = 0



Fifth dimension $z \sim 1 / E$ where E = Energy in 4-dim boundary

An AdS/QCD model: Hardwall Model





Scattering of Glueballs using the AdS/CFT correspondence: P & S, 2001/2002

Finite region in AdS space
$$0 \le z \le z_{max}$$
 with $z_{max} = \frac{1}{\Lambda_{QCD}}$

Henrique Boschi-Filho & Nelson Braga JHEP 2003, EPJC 2004

Masses of Glueball states 0++ and its radial excited states 0++*, 0++**, 0++**, ...

Brodsky, Teramond PRL 2005, 2006; Erlich, Katz, Son, Stephanov PRL 2005.

Glueballs in QCD

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} \left(\not \!\!\!D - m \right) \psi - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a ,$$

$$G^a_{\mu\nu} = \partial_\mu \mathcal{A}^a_\nu - \partial_\nu \mathcal{A}^a_\mu + g_{YM} f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_\nu ,$$

where \mathcal{A}^a_{ν} are the gluon fields, with $a=1,\cdots,8,\ f^{abc}$ are the structure constants of SU(3) group and g_{YM} is the coupling constant of Yang-Mills (strong) interactions.

- Gluons do not carry electric charges, but they have color charge;
- Due to this fact, they coupled to each other;
- The bound states of gluons predicted by QCD, but not detect so far, are called glueballs;
- Glueballs states are characterised by J^{PC}, where J is the total angular momentum, and P and C are the P-parity (spatial inversion) and the C-parity (charge conjugation) eigenvalues, respectively.

Regge Trajectories

Strongly interacting particles (Hadrons) obey approximate relations between Angular Momentum (J) and quadratic masses (m²)

$$J(m^2) \approx \alpha_0 + \alpha' m^2$$

Where
$$lpha_0$$
 and $lpha'$ are constants

Extended for glueball: JPC

The Pomeron

For our purposes, we are interested in the reggeon (Regge pole) with intercept $\alpha_0 \approx 1$, called pomeron.

In the Chew-Frautschi plane, even spin glueball states lie on the pomeron Regge trajectory.

Experimental Regge trajectories from proton proton scattering

$$J(m^2) \approx 1.08 + 0.25m^2$$

Masses m in GeV (A. Donnachie and P. V. Landshof, Nucl. Phys. B 267, 690 (1986))

The Pomeron is related to Glueball states 2^{++} , 4^{++} , 6^{++} , 8^{++}

and may be to 0^{++}

Using the Harwall model (1)

The starting point in our calculation is the massive symmetric second-rank tensor field action which will be related to the glueball state 2^{++} . The *D*-dimensional action for a massive spin-2 field in a curved spacetime consistent with the flat space limit is given by

$$S[h_{\mu\nu}] = \frac{1}{2\kappa^2} \int d^D x \sqrt{|g|} \Big(\frac{1}{4} \nabla_{\mu} h \nabla^{\mu} h - \frac{1}{4} \nabla_{\mu} h_{\nu\rho} \nabla^{\mu} h^{\nu\rho} - \frac{1}{2} \nabla^{\mu} h_{\mu\nu} \nabla^{\nu} h + \frac{1}{2} \nabla_{\mu} h_{\nu\rho} \nabla^{\rho} h^{\nu\mu} + \frac{\xi}{2D} \mathcal{R} h_{\mu\nu} h^{\mu\nu} + \frac{1 - 2\xi}{4D} \mathcal{R} h^2 - \frac{M^2}{4} (h_{\mu\nu} h^{\mu\nu} - h^2) \Big),$$

where $h = g^{\mu\nu}h_{\mu\nu}$ is the trace, \mathcal{R} is the Ricci scalar and ξ is the only dimensionless coupling responsible for the nonminimality of interaction with the curved background. For AdS_D , the Ricci scalar is given by

$$\mathcal{R} = -\frac{D(D-1)}{R^2}.$$

Using the Harwall model (2)

With these constraints:

$$abla^2 h_{\mu\nu} + 2 \, \mathcal{R}^{\alpha\beta}_{\mu\nu} h_{\alpha\beta} - M^2 h_{\mu\nu} = 0,$$
 $h^{\mu}_{\mu} = 0,$ $abla^{\mu} h_{\mu\nu} = 0,$

In our particular case, we are interested in the 5-dimensional version of for AdS. Setting D = 5, ξ = 1, we have:

$$\begin{split} S[h_{\mu\nu}] &= \frac{1}{2\kappa^2} \int_{AdS_5} d^5x \sqrt{|g|} \Big(\frac{1}{4} \nabla_\mu h \nabla^\mu h - \frac{1}{4} \nabla_\mu h_{\nu\rho} \nabla^\mu h^{\nu\rho} - \frac{1}{2} \nabla^\mu h_{\mu\nu} \nabla^\nu h & \text{five-dimensional mass.} \\ &+ \frac{1}{2} \nabla_\mu h_{\nu\rho} \nabla^\rho h^{\nu\mu} - \frac{2}{R^2} h_{\mu\nu} h^{\mu\nu} + \frac{1}{R^2} h^2 - \frac{1}{4} M_5^2 (h_{\mu\nu} h^{\mu\nu} - h^2) \Big), \end{split}$$

> RECALL
$$ds^2 = \frac{R^2}{z^2} (dz^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu}), \qquad \eta_{\mu\nu} = (-, +, +, +)$$

EOM:
$$\left[z^3\partial_z\frac{1}{z^3}\partial_z+\Box-\frac{(M_5R)^2}{z^2}\right]\phi(z,\vec{x},t)=0\,,$$

Using the Harwall model (3)

Choosing the ansatz:
$$\phi(z, \vec{x}, t) = e^{-iP_{\mu}x^{\mu}} z^2 f(z)$$
,

we have the Bessel equation:
$$z^2 f''(z) + z f'(z) + [(m_{\nu,k} z)^2 - \nu^2] f(z) = 0$$
,

where: $\nu^2 = (M_5 R)^2 + 4$.

So, the complete solution for $\phi(z, \vec{x}, t)$ reads

$$\phi(z, \vec{x}, t) = C_{\nu,k} e^{-iP_{\mu}x^{\mu}} z^2 J_{\nu}(m_{\nu,k} z) + D_{\nu,k} e^{-iP_{\mu}x^{\mu}} z^2 N_{\nu}(m_{\nu,k} z),$$

Since we are interested in regular solutions inside AdS space, we are going to disregard the Neumann solution, then:

$$\phi(z, \vec{x}, t) = C_{\nu,k} e^{-iP_{\mu}x^{\mu}} z^2 J_{\nu}(m_{\nu,k} z),$$

where $m_{v,k}$ are the glueball masses and k= 1, 2, 3,... are the radial excitations. We just consider the ground state (K=1).

Using the Harwall model (4)

HOW TO RAISE THE GLUEBALL STATE SPIN?

Now we are going to introduce the Twist of an operator!

$$\tau = \Delta - J$$

In this work we are considering the pomeron is a twist two object

$$\Delta - J = 2$$

To raise the spin of the glueball, we will insert symmetrised covariant derivatives in a given operator with spin S in order to raise the total angular momentum, such that, the total angular momentum after the insertion is now S + J.

Using the Harwall model (5)

Now, we consider a spin J operator in the four-dimensional space, with conformal dimension Δ , denoted by \mathcal{O}_{Δ} and constructed in the following way

$$\mathcal{O}_{\Delta} \sim \operatorname{SymTr}(F_{\beta\alpha_1}D_{\alpha_2}...D_{\alpha_{J-1}}F_{\alpha_J}^{\beta}),$$

$$(M_5R)^2 = \Delta(\Delta - 4) = J^2 - 4,$$
 $\Delta = J + 2$

$$\Delta = J + 2$$

$$ightharpoonup$$
 RECALL, AGAIN $u^2 = (M_5 R)^2 + 4.$

$$\nu^2 = (M_5 R)^2 + 4.$$

$$\nu = J$$

Imposing boundary conditions:

Dirichlet b.c: $m_{\nu} = \frac{\lambda_{\nu}}{z_{max}}; \quad J_{\nu}(\lambda_{\nu}) = 0,$

Neumann b.c:
$$(2-\nu)J_{\nu}(\gamma_{\nu})+\gamma_{\nu}J_{\nu-1}(\gamma_{\nu})=0, \quad m_{\nu}=rac{\gamma_{\nu}}{z_{max}}.$$

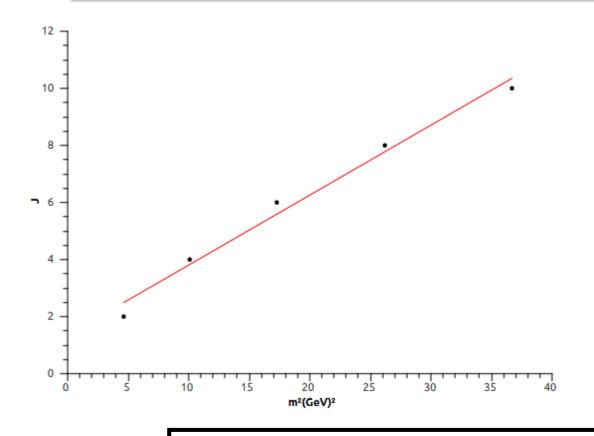
(from lattice)

In order to set
$$Z_{max}$$
: $z_{max}^D = 2.389 \, \mathrm{GeV}^{-1}$, (from lattice)

$$z_{max}^{N} = 1.782 \, {
m GeV^{-1}}.$$

Results Achieved!

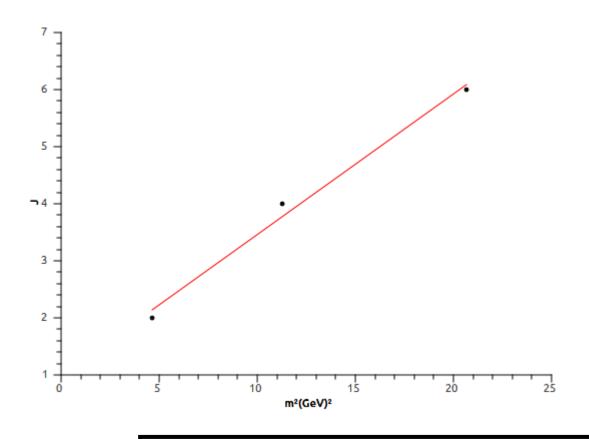
Even Glueball states in the Hardwall with Dirichlet Boundary condition



J^{PC}	Mass (GeV)
2++	2.150
4++	3.176
6++	4.159
8++	5.117
10++	6.059

$$J(m^2) = (1.34 \pm 0.39) + (0.25 \pm 0.01)m^2.$$

Even Glueball states in the Hard-wall with Neumann Boundary condition



J^{PC}	Mass (GeV)
2++	2.150
4++	3.356
6++	4.546
8++	5.725
10++	6.899

$$J(m^2) = (0.99 \pm 0.34) + (0.25 \pm 0.02)m^2.$$

Last Comments

- * The AdS/CFT correspondence an excellent tool to tackle QCD out of perturbative regime;
- * Here, the values for the glueball masses are in agreement with those found in the literature;
- * Here, the values for the Regge trajectories related to the pomeron are in agreement with those found in the literature;
- * The complete work can be seen in Phys.Rev. D95 (2017) no.7, 076011, arXiv:1611.03820; (including all details and references).

Nagyon szépen köszönöm!!