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Radka Sochorová Evolution of the moments of a multiplicity distribution 6. 12. 2017 1 / 20



Motivation

Overall observed multiplicity of different types of particles agrees with
the statistical model at temperatures above 160 MeV.

The phase transition temperature can be determined also by lattice
QCD methods → susceptibilities as functions of temperature are
changing fastest → 150 MeV.

Susceptibilities manifest themselves in higher moments of the
multiplicity distribution.

The main aim of this work is to know how fast different moments of
the multiplicity distribution approch their equilibrium value and how
they evolve if the system slips off equilibrium.

The evolution of multiplicity distribution out of equilibrium is
described by a master equation.
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Master equation

We consider a binary process a1a2 → b1b2 with a 6= b, eg. πN → KΛ

The master equation for Pn(τ), the probability of finding n pairs b1b2

at time τ has the following form

dPn

dτ
= ε [Pn−1 − Pn]−

[
n2Pn − (n + 1)2Pn+1

]
(1)

where n = 0, 1, 2, 3..., ε = G 〈Na1〉 〈Na2〉 /L, τ = t L/V -
dimensionless time variable, V /L = τ c

0 - relaxation time, V - proper
volume of the raction

For thermal distribution of particle momentum → G - ”creation
term”, L - ”anihilation term” ⇒ thermal averaged cross section
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Time evolution of the factorial moments

The scaled second factorial moment

F2(τ) = 〈N(N − 1)〉 / 〈N〉2 , (2)

the scaled third factorial moment

F3(τ) = 〈N(N − 1)(N − 2)〉 / 〈N〉3 (3)

and the scaled fourth factorial moment

F4(τ) = 〈N(N − 1)(N − 2)(N − 3)〉 / 〈N〉4 . (4)

We let the distribution of the multiplicity evolve in time according to
the master equation.

For numerical calculations were used binomial initial conditions.
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Time evolution of the 2nd, 3rd and 4th factorial moment
divided by its equilibrium value for ε = 0.1 a N0 = 0.005
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Real time and temperature dependent master equation

For further study purposes we want to add temperature and real time
dependence.

In case of constant temperature → equation formulated in
dimensionless time.

We will calculate the evolution for given chemical reaction
π+ + n→ K+ + Λ

Real time and temperature dependent master equation has the form

dPn

dt
(t/τ c

0 ) =
G

V
〈Na1〉 〈Na2〉 [Pn−1(t/τ c

0 )− Pn(t/τ c
0 )]

− L

V

[
n2Pn(t/τ c

0 )− (n + 1)2Pn+1(t/τ c
0 )
] (5)

where G ≡ 〈σGv〉 and L ≡ 〈σLv〉.
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Reaction π+ + n −→ K+ + Λ0.

For masses and spins we have

mπ+ = 139, 570 MeV, mn = 939, 565 MeV, mΛ0 = 1116 MeV,

mK + = 493, 667 MeV,
(6)

dπ+ = 0, dn = 2, dΛ0 = 2, dK + = 0. (7)

Volume of the reaction is V = 125 fm3.

Cross section for this reaction is

σΛK
πN =

0, 054 · (s1/2 − 1, 61)

0, 091
fm2, 1, 7 ≥ s1/2 ≥ 1, 61 GeV, (8)

σΛK
πN =

0, 0045

s1/2 − 1, 6
fm2, s1/2 ≥ 1, 7 GeV, (9)

σΛK
πN = 0 fm2, s1/2 ≤ 1, 61 GeV. (10)
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Real time and temperature dependent master equation -
gradual change of temperature

After complete thermalization of the factorial moments, the
temperature decreases according to the Bjorken model from the initial
temperature T0 = 165 MeV according to the relation

T = T0
t0

t
(11)

up to temperature T = 100 MeV, t0 is hadronisation time for
T = 165 MeV → t0 = 6 fm/c.

System volume varies according to the relationship

V = V0
t

t0
. (12)

We want to obtain the thermalisation time of quark-gluon plasma
(around 10 fm/c) → we vary the cross-sections.
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Scaled factorial moments for gradual change of
temperature

Decrease from 165 MeV to
100 MeV

Thermalisation time around
10 fm/c

For 15 pions and 10 neutrons

200times enlarged cross section
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Freeze-out temperature

At the beginning we set the moments to equilibrium values → we let
them evolve → we are looking for a temperature at which the
thermalized system would lead to a given value of the factorial
moment in the equilibrium state → reverse determination of the
apparent freeze-out temperature
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Central moments

For data processing → central moments, event. their combination.

2nd central moment µ2 =
〈
N2
〉
− 〈N〉2.

3rd central moment µ3 =
〈
(N − 〈N〉)3

〉
.

4th central moment µ4 =
〈
(N − 〈N〉)4

〉
.

Coefficient of skewness S =
µ3

σ3
=

〈
(N − 〈N〉)3

〉
〈(N − 〈N〉)2〉3/2

.

Coefficient of kurtosis κ =
µ4

σ4
− 3 =

〈
(N − 〈N〉)4

〉
〈(N − 〈N〉)2〉2

− 3.
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Apparent freeze-out temperature for 3rd (left) and 4th
(right) central moment for gradual change of temperature

Decrease from 165 MeV to 100 MeV for different cross sections, for
15 pions and 10 neutrons

Different apparent freeze-out temperatures for every moment
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Apparent freeze-out temperature for coefficient of
skewness (left) and kurtosis (right) for gradual change of
temperature

Decrease from 165 MeV to 100 MeV for different cross sections, for
15 pions and 10 neutrons
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Conclusion - 1st part

The phase transition temperature can also be determined by
measuring the higher moments of the proton multiplicity →
comparison with the results for the susceptibilities of the baryon
number

Fluctuations in the baryon number usually lead to a seemingly lower
phase transition temperature than examining the number of particles
→ perhaps because the higher moments seem to show a different
temperature than what we really have.

In non-equilibrium state, higher factorial moments differ more from
their equilibrium values than the lower moments.

The behavior of the combination of the central moments depends on
the combination of moments we choose.
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Master equation for reaction p + π− → ∆0 → n + π0

For masses and spins we have

mπ− = 139, 570 MeV, mπ0 = 134, 977 MeV, mn = 939, 565 MeV,

mp = 938, 272 MeV,
(13)

dπ− = 0, dπ0 = 0, dn = 2, dp = 2. (14)

Volume of the reaction is V = 125 fm3 and temperature drops from
T = 165 MeV to T = 100 MeV.
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For pion-nucleon cross section we have

σ(π+p → ∆++) =
326, 5

1 + 4

(√
s − 1, 215

0, 110

)2

q3

q3 + (0, 18)3
[mb], (15)

where q is the cm momentum

q =

[
(s − (mπ + mp)2)(s − (mπ −mp)2)

4s

]1/2

=
mp√
s
plab [GeV/c].

(16)

Then cross section for this reaction is

σ(π−p → ∆0 → n+π0) =
1

3
· 2
3
σ(π+p → ∆++) =

2

9
σ(π+p → ∆++).

(17)
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Scaled factorial moments for constant temperature

For temperature 165 MeV

Thermalisation time around
10 fm/c

For 15 protons and 10 pions
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Scaled factorial moments for gradual change of
temperature
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Conclusion - 2nd part

Factorial moments do not change in time for the gradual change of
temperature → no fluctuations in the proton and neutron number.

The same conclusion → M. Kitazawa and M. Asakawa in articles:

M. Kitazawa, M. Asakawa, Revealing baryon number fluctuations from
proton number fluctuations in relativistic heavy ion collisions, Phys.
Rev. C 85 (2012) 021901(R)
M. Kitazawa, M. Asakawa, Relation between baryon number
fluctuations and experimentally observed proton number fluctuations in
relativistic heavy ion collisions, Phys. Rev. C 86 (2012) 024904
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Backup slides
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Generating equation

The master equation can be converted into the partial differential
equation for the generating function

g(x , τ) =
∞∑

n=0

xnPn(τ) (18)

From the derivative of the generating function we can easily
determine the moments.

Multiplying eq. (18) by xn and summing over n, we find

∂g(x , τ)

∂τ
=

L

V
(1− x)(xg ′′ + g ′ − εg), (19)

where g ′ ≡ ∂g/∂x .

g(1, τ) does not change with time, which is equivalent to the
conservation of total probability.
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The equilibrium solution, geq.(x), thus obeys the following equation:

xg
′′
eq. + g

′
eq. − εgeq. = 0. (20)

The solution that is regular at x = 0 is then given by

geq.(x) =
I0(2
√
εx)

I0(2
√
ε)

(21)

The average number of b1b2 pairs per event in equilibrium is given by

〈N〉eq. = g ′eq.(1) =
√
ε
I1(2
√
ε)

I0(2
√
ε)

(22)
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Higher factorial moments in equilibrium state

We can express higher factorial moments by the derivative of the
generating function g(x , τ), which is given by eq. (18)

I also used these relations for modified Bessel functions

I
′
0(z) = I1(z) (23)

I
′
1(z) =

1

2
(I2(z) + I0(z)) (24)

I
′
2(z) =

1

2
(I3(z) + I1(z)) (25)

I
′
3(z) =

1

2
(I4(z) + I2(z)) (26)
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2nd factorial moment

The second derivative of the generating function is given by

g
′′
eq.(x) = −1

2

√
εx−3/2 I1(2

√
εx)

I0(2
√
ε)

+ ε
1

x

I2(2
√
εx) + I0(2

√
εx)

2I0(2
√
ε)

(27)

And then the equilibrium value of the second factorial moment has
the form

〈N(N − 1)〉eq. = g
′′
eq.(1) = −1

2

√
ε
I1(2
√
ε)

I0(2
√
ε)

+
1

2
ε
I2(2
√
ε) + I0(2

√
ε)

I0(2
√
ε)

(28)
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3rd factorial moment

The third derivative of the generating function is given by

g
′′′
eq.(x) =

3

4
x−5/2√ε I1(2

√
εx)

I0(2
√
ε)
− 5

4
ε

1

x2

I2(2
√
εx) + I0(2

√
εx)

I0(2
√
ε)

+
1

2
ε3/2 1

x3/2

I3(2
√
εx) + 3I1(2

√
εx)

2I0(2
√
ε)

(29)

And then the equilibrium of the third factorial moment has the form

〈N(N − 1)(N − 2)〉eq. = g
′′′
eq.(1) =

3

4

√
ε
I1(2
√
ε)

I0(2
√
ε)
− 5

4
ε
I2(2
√
ε) + I0(2

√
ε)

I0(2
√
ε)

+
1

4
ε3/2 I3(2

√
ε) + 3I1(2

√
ε)

I0(2
√
ε)

(30)
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4th factorial moment

The fourth derivative of the generating function is given by

g IV .
eq. (x) =

3

8
ε

1

x3

I2(2
√
εx) + I0(2

√
εx)

I0(2
√
ε)

− 15

8

√
εx−7/2 I1(2

√
εx)

I0(2
√
ε)

+
5

2
ε

1

x3

I2(2
√
εx) + I0(2

√
εx)

I0(2
√
ε)

− 5

8
ε3/2 1

x5/2

I3(2
√
εx) + I1(2

√
εx)

I0(2
√
ε)

−3

8

1

x5/2

I3(2
√
εx) + 3I1(2

√
εx)

I0(2
√
ε)

+
1

8
ε2 1

x2

I4(2
√
εx) + 2I2(2

√
εx) + I0(2

√
εx)

I0(2
√
ε)

(31)
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And then the equilibrium value of the fourth factorial moment has the
form

〈N(N − 1)(N − 2)(N − 3)〉eq. = g IV .
eq. (1) =

23

8
ε
I2(2
√
ε) + I0(2

√
ε)

I0(2
√
ε)

−15

8

√
ε
I1(2
√
ε)

I0(2
√
ε)
− ε3/2 4I3(2

√
ε) + 7I1(2

√
ε)

4I0(2
√
ε)

+
1

8
ε2 I4(2

√
ε) + 2I2(2

√
ε) + I0(2

√
εx)

I0(2
√
ε)

(32)
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Binomial initial conditions

On one hand, one can assume that initially there is at most one
particle in given event

Then the initial conditions are

P0(τ = 0) = 1− N0 (33)

P1(τ = 0) = N0 (34)

Pn(τ = 0) = 0, n > 1 (35)

where N0 is initial averaged number of particles

In this case, the factorial moments then start at 0
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Time evolution of the 2nd factorial moment for the
binomial initial conditions. The 2nd factorial moment for
different values of the averaged initial number of particles
N0 and for ε = 0.1
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2nd, 3rd and 4th factorial moment for the binomial initial
conditions for ε = 0.1 and N0 = 0.005
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Temperature dependent master equation

Because of averaging over relative velocities, we will assume that the
momenta are distributed according to Boltzmann distribution

ni (p) ∝ exp

−
√

m2
i + p2

T

 . (36)

The averaged cross section is then obtained as

〈
vijσ

X
ij

〉
=

∫∞√
s0
dxσX

ij (x)K1(
x

T
)
[
x2 − (mi + mj )

2
] [
x2 − (mi −mj )

2
]

4m2
i m

2
j TK2(mi/T )K2(mj/T )

(37)
where Ki ’s are the modified Bessel functions and√
s0 = max(mi + mj ,Σfinalma) is the reaction threshold.
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If we know cross section for the reactions a1a2 → b1b2, the cross
section for the inverse reactions follows from phase-space
considerations as

σ34−→12(
√
s) =

(2J3 + 1)(2J4 + 1)

(2J1 + 1)(2J2 + 1)

p2
cm(s,m1,m2)

p2
cm(s,m3,m4)

× σ12−→34(
√
s)

(38)
where Ji and mi are spins and masses of the participating species,
and pcm is the center-of-mass momentum defined as

p2
cm(s,m1,m2) =

[
s − (m2

1 + m2
2)
]2 − 4m2

1m
2
2

4s
. (39)

Radka Sochorová Evolution of the moments of a multiplicity distribution 6. 12. 2017 33 / 20



Temperature dependent master equation - constant
temperature

4th factorial moment divided by its equilibrium value for different
temperatures T = 165 MeV, T = 145 MeV and T = 125 MeV for 15

pions a 10 neutrons.
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Other ratios of central moments

While the 2nd, 3rd and 4th central moment are decreasing, the
coefficient of skewness and kurtosis increases → it is dependent on
the ratio we choose.

Volume independent ratios → useful for comparison with
experimental data, eg.

R32 =
µ3

µ2
= Sσ (40)

or
R12 =

µ1

µ2
= M/σ2 (41)

where S is coefficient of skewness, σ is standard deviation and M is
number of particles 〈N〉.
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Coefficient R32 (left) and R12 (right) for gradual change of
temperature

Decrease from 165 MeV to 100 MeV for different cross sections, for
15 pions and 10 neutrons
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