Measurements of the Y meson production in Au+Au collisions by the STAR experiment

Oliver Matonoha

STAR

for the STAR collaboration Czech Technical University in Prague oliver.matonoha@fjfi.cvut.cz Zimanyi Winter School Budapest, Hungary 4–8 December 2017

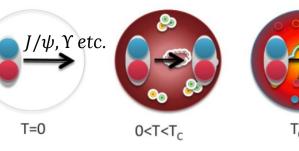
- Outline of the talk

Heavy quarkonia as a QGP probe

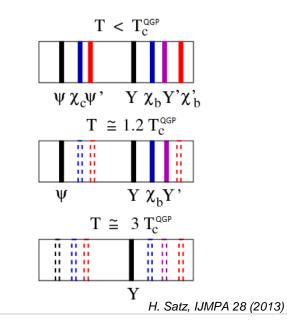
The STAR experiment

Latest Y results in p+p, p+Au, and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Comparison with LHC results and models



Summary and outlook

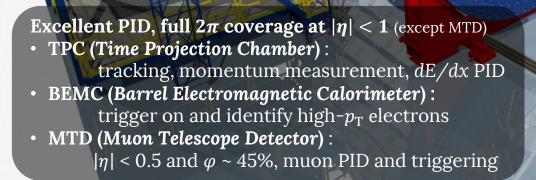

<u>Heavy quarkonia in QGP</u>

- J/ψ , Υ etc. are good candidates to probe QGP
 - $c\bar{c}$, $b\bar{b}$ pairs created mostly before the QGP formation
 - Quarkonium production cross-section can be calculated reasonably well in p+p collisions
- Dissociation by colour screening T. Matsui, H. Satz, PLB 178 (1986) 416
 - Quarkonium expected to *dissociate* if its radius is greater than the Debye radius: $r_{\text{Debye}} \propto 1/T$
- Sequential melting A. Mocsy, EPJ C61 (2009) 705
 - Dissociation depends on the quarkonium binding energy
 - Different states expected to melt at different temperatures
 - QGP thermometer

Zimanyi 2017, Y production at STAR

Other effects also play a role

- Other phenomena complicate interpretation of the measured quarkonium suppression
- Statistical recombination
 - Coalescence of deconfined quarks at QGP phase boundary
- Cold nuclear matter (CNM) effects
 - Initial state: nPDF, energy loss
 - Final state: inelastic interactions with hadrons
 - \rightarrow nuclear break-up
 - \rightarrow co-mover absorption
 - Can be studied in p+A collisions
- Feed-down


		/indico.cern.ch/event/355454/contributions/838966/		
ndary		RHIC 200 GeV	LHC 2.76 TeV	
	#.= / amont	10	11	
	<i>#cc̄</i> / event	13	115	
	$\#b\bar{b}$ / event	0.1	3	

- For $\Upsilon's$ at RHIC $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$:
- no recombination A. Emerick, X. Zhao, R. Rapp, EPJ A48 (2012) 72
- less co-mover absorption Z. Lin, C. Ko, PLB 503 (2001) 104

 \rightarrow cleaner probe!

I. Das. QM2015.

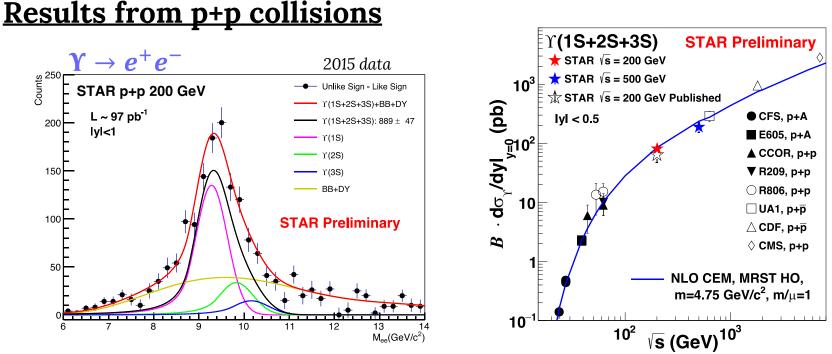
STAR experiment

RHIC (Relativistic Heavy Ion Collider)

RHIC

Upton, NY

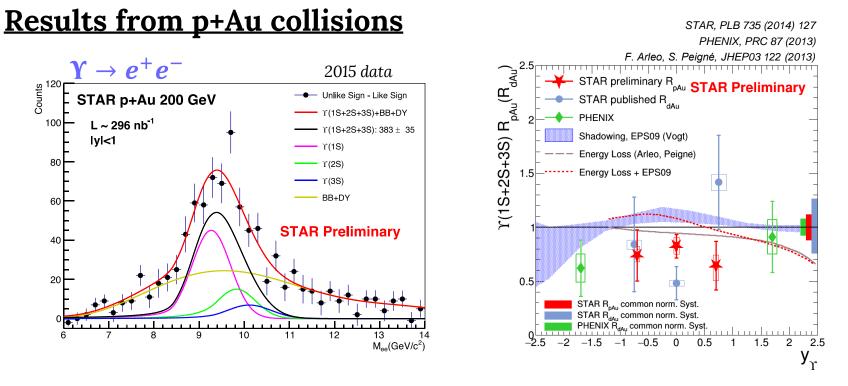
STAR



BEMC

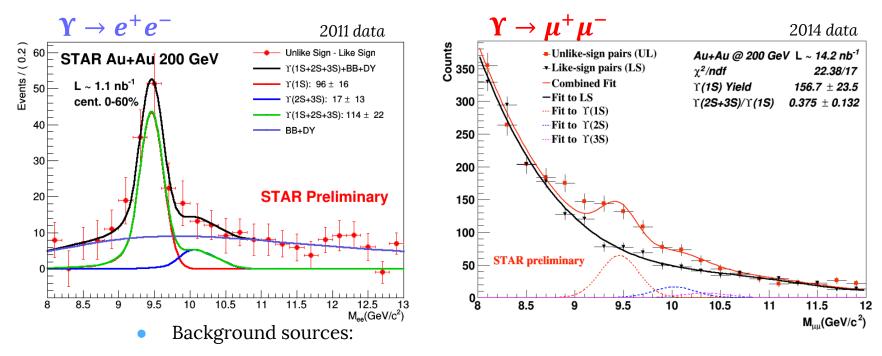
TPC

MTD


Magnet

- Precise baseline for comparison with Au+Au collisions
 - → improved precision: $\sigma = 64 \pm 10$ (stat.) ± 14 (syst.) pb → 81 \pm 5 (stat.) \pm 8 (syst.) pb
 - \rightarrow consistent with the Colour Evaporation Model (CEM) prediction

A.Frawley, T.Ullrich, R.Vogt, PR 462 (2008) 125


• Quantification of CNM effects with nuclear modification factor

 $R_{\text{pAu}}(|y| < 0.5) = 0.82 \pm 0.10 \text{ (stat.)} ^{-0.07}_{+0.08} \text{ (syst.)} \pm 0.10 \text{ (global)}$

Zimanyi 2017, Y production at STAR

STAR 🕁

Signal in Au+Au collisions

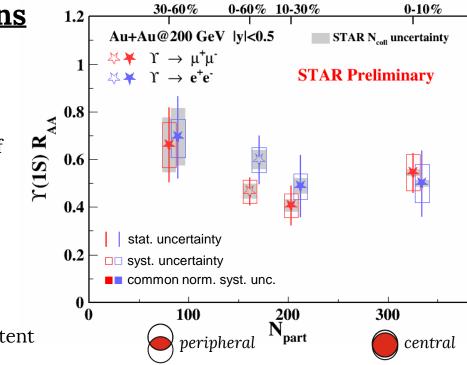
→ combinatorial background (estimated as $N_{l^+l^+} + N_{l^-l^-}$)

→ Drell-Yan process, $B\bar{B}$ semi-leptonic decays

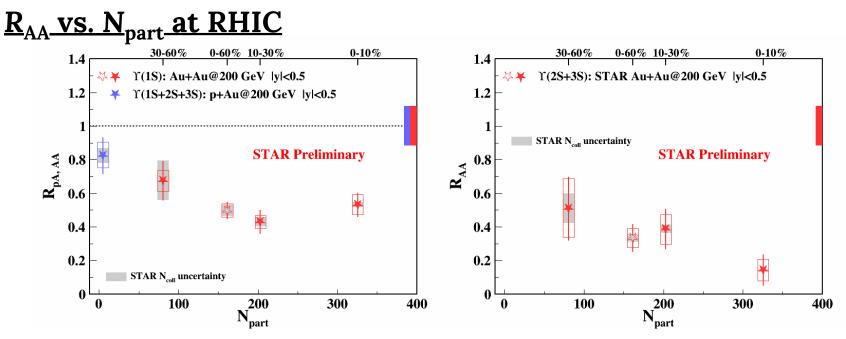
Zimanyi 2017, Y production at STAR

STAR 🕁

Results from Au+Au collisions

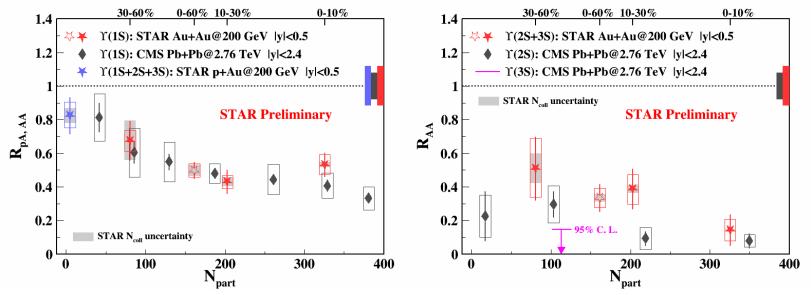

• Nuclear modification factor

 $R_{\rm AA} = \frac{\sigma_{\rm inel}^{\rm pp}}{\langle N_{\rm coll} \rangle} \frac{{\rm d}^2 N_{\rm AA}/dp_{\rm T} dy}{{\rm d}^2 \sigma_{\rm pp}/dp_{\rm T} dy} \quad \text{as a function of}$


mean number of participants N_{part}

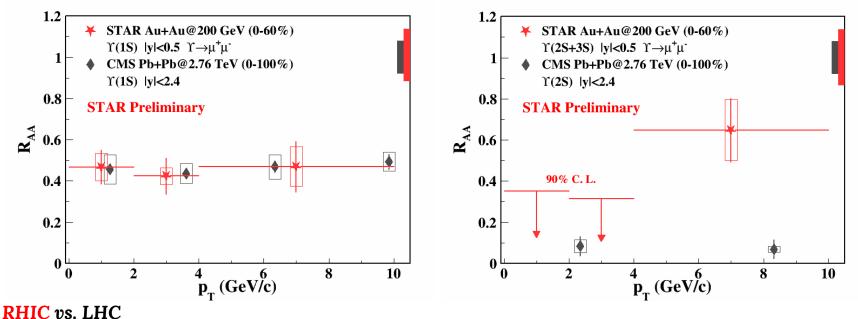
- \bigstar is a combination of \bigstar results
- **Di-muon** and **di-electron** results consistent with each other within the uncertainties

 \rightarrow results combined for increased statistical precision


400

• $\Upsilon(2S+3S)$ more suppressed than $\Upsilon(1S)$ in central collisions

Compare RHIC with LHC



- $\Upsilon(2S+3S)$ more suppressed than $\Upsilon(1S)$ in central collisions
- Comparison with LHC: CMS, PLB 770 (2017) 357
 - → comparable suppression for inclusive $\Upsilon(1S)$

 \rightarrow hint of **less suppression** for $\Upsilon(2S+3S)$ at RHIC than at LHC

Suppression vs. $p_{\rm T}$

CMS, PLB 770 (2017) 357

- Comparable suppression for inclusive $\Upsilon(1S)$
- Signs of **less suppression** at high- $p_{\rm T}$ for $\Upsilon(2S+3S)$

Comparison with models

- Strickland, Bazov : NPA 879 (2012) 25
 - No CNM, no regeneration
 - SBS (Strongly Binding Scenario): fast dissociation–potential based on internal energy
 - WBS (Weakly Binding Scenario): slow dissociation-potential based on free energy
- Liu, Chen, Xu, Zhang : PLB 697 (2011) 32
 - No CNM, SBS case
 - Dissociation only for excited states, suppression of ground state due to feed-down
- Emerick, Zhao, Rapp : EPJ A48 (2012) 72
 - Includes CNM, SBS case

 \rightarrow SBS models favoured by the data

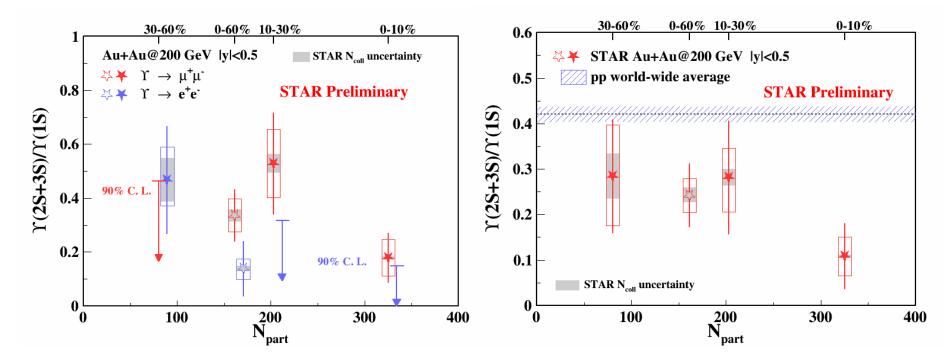
Zimanyi 2017, Y production at STAR

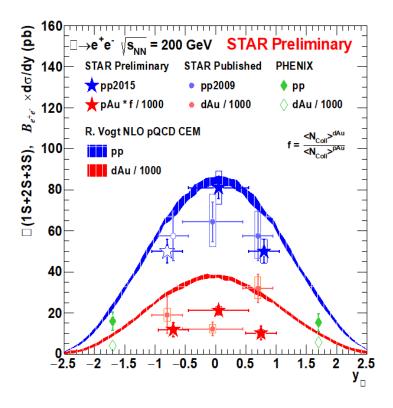
<u>Summary</u>

- p+p
 - Improved precision; consistent with the CEM model
- p+Au
 - Quantification of the CNM effect: $R_{pAu}(|y| < 0.5) = 0.82 \pm 0.10$ (stat.) $^{-0.07}_{+0.08}$ (syst.) ± 0.10 (global)
- Au+Au
 - Inclusive $\Upsilon(1S)$ suppressed at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - $\Upsilon(2S+3S)$ more suppressed than $\Upsilon(1S)$ in the most central collisions (sequential melting)
 - Inclusive $\Upsilon(1S)$ suppression at RHIC is similar to that at the LHC
 - $\Upsilon(2S+3S)$ seem to be less suppressed at RHIC than at the LHC
- Results can be used to impose constraints on the QGP temperature at RHIC

<u>Outlook</u>

• Analyses using other Au+Au data are underway \rightarrow increase in statistics by about a factor of 2


Thanks for your attention!


Back-up slides

Excited-to-ground-state ratio

Rapidity dependence

<u>Runs</u>

system:	p+p	p+Au / d+Au	Au+Au
published:	2009	2008	2010
shown:	2015	2015	2011+2014

