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Continuum vs. kinetic theory: the role of entropy flux

Motivation: describing dissipative fluids

Kinetic theory: mostly for rarefied gases, dense matter(?),
closure problem(?), large system of PDEs, stability(?)

Second law: stability, consistent constitutive equations

Causality: hyperbolic or parabolic?

Relativistic models → hyperbolic equations: finite but can be
higher than c; parabolic eq.: preserves infinite speed
In local equilibrium:
Eckart theory, unstable due to heat conduction
Out of local equilibrium:
Israel-Stewart (hyperbolic?, stability?) Müller-Ruggeri
(divergence type, hyperbolic), etc...

A simple benchmark: non-relativistic experiments!
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Continuum vs. kinetic theory: the role of entropy flux

Motivation for extensions of classical ideas

Experiments:

Heat conduction: ballistic and over-diffusive propagation
NaF and inhomogeneous samples

low and room temperature

Acoustics: rarefied gas, ballistic transport
monatomic and polyatomic gases

low and room temperature

Analogy:

(kinetic) modeling of rarefied gases, phonon vs particles
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Continuum vs. kinetic theory: the role of entropy flux

Theory?

Goal:
SIMPLE

INDEPENDENT OF MICRO / MESO / MACRO
STRUCTURE

EASY TO USE AND IMPLEMENT

→ NON-EQUILIBRIUM THERMODYNAMICS
WITH INTERNAL VARIABLES

See also: Berezovski - Ván: Internal Variables in Thermoelasticity
(2017, Springer)
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Continuum vs. kinetic theory: the role of entropy flux

Generalizations of entropy density and entropy flux

Classical:

entropy density: s = se(e, ρ)

entropy current: J i = qi/T

local equilibrium

Navier-Stokes-Fourier system

Extended Thermodynamics:

entropy density: s(e, ρ, qi ) = se(e, ρ)− m1
2 qiq

i

entropy current: J i = qi/T

qi : heat flux ≡ vectorial internal variable

a hope of hyperbolic equations

no coupling between qi and P ij with these assumptions
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Continuum vs. kinetic theory: the role of entropy flux

Generalizations of entropy density and entropy flux

Rational Extended Thermodynamics
derived from kinetic theory for dense gases:

∂tF + ∂kF
k = 0, mass balance

∂tF
i + ∂kF

ik = 0, momentum balance
∂tF

ij + ∂kF
ijk = P ij ,

∂tG
ii + ∂kG

iik = 0, energy balance
∂tG

ppi + ∂kG
ppik = Qppi

Reason: energy is the trace of pressure

doubled hierarchy

reason: originally the energy balance is not independent

hyperbolic equations

constraints for coefficients
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Continuum vs. kinetic theory: the role of entropy flux

Generalizations of entropy density and entropy flux

Non-equilibrium thermodynamics with current multipliers

entropy density: s(e, ρ, qi ,Q ij) = se(e, ρ)− m1
2 qiq

i − m2
2 QijQ

ij

entropy current: J i = bi j q
j + B i

jk Q jk

qi : heat flux ≡ vectorial internal variable

Q jk ≡ tensorial internal variable: pressure!

bi j and B i
jk : current multipliers

→ coupling between qi and P ij ⇒ CONSEQUENCE:

parabolic equations → simplified to hyperbolic ones

LET US SEE THE EXAMPLES!
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Continuum vs. kinetic theory: the role of entropy flux

Generalization of heat conduction

Rigid body → ρ = const.

Entropy production: σs = ṡ + ∂iJ
i ≥ 0 in 1 spatial dimension:(

b − 1
T

)
∂xq + (∂xb −m1∂tq) q − (∂xB −m2∂tQ)Q + B∂xQ ≥ 0

Linear relations between thermodynamic fluxes and forces, isotropy:

m1∂tq − ∂xb = −l1q,
m2∂tQ − ∂xB = −k1Q + k12∂xq,

b − 1

T
= −k21Q + k2∂xq,

B = n∂xQ.
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Generalization of heat conduction

Rigid body → ρ = const.

Entropy production: σs = ṡ + ∂iJ
i ≥ 0 in 1 spatial dimension:(

b − 1
T

)
∂xq + (∂xb −m1∂tq) q − (∂xB −m2∂tQ)Q + B∂xQ ≥ 0

Linear relations between thermodynamic fluxes and forces:

m1∂tq − ∂xb = −l1q,
m2∂tQ − ∂xB = −k1Q + k12∂xq,

b − 1

T
= −k21Q +���k2∂xq,

B = ���n∂xQ.

Compatibility with
kinetic theory,
hyperbolic eq.

⇒ SAME structure as 3 momentum eqs. of phonon hydro.
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Continuum vs. kinetic theory: the role of entropy flux

Ballistic-conductive system, tested on NaF experiments!

ρc∂tT + ∂xq = 0,

τq∂tq + q + λ∂xT + κ∂xQ = 0,

τQ∂tQ + Q + κ∂xq = 0.
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Continuum vs. kinetic theory: the role of entropy flux

Generalization of fluid dynamics: Meixner’s theory

Balances: mass, energy, momentum →
ρ̇+ ρ∂iv

i = 0,
ρė + ∂iq

i = −P ij∂ivj ,
ρv̇ i + ∂jP

ij = 0,
and P ij = Πij + pδij (static (p) és dynamic (Πij) pressure).

entropy density: s(e, ρ,Q ij) = seq(e, ρ)− m1
2 QijQ

ij ,

entropy current: J i = qi/T , classical! →
NO coupling!

Constitutive equations: generalized Navier-Stokes

q + λ∂xT = 0,
τΠΠ̇ + Π + ν∂xv + φ∂x v̇ = 0.

Q ij : pressure!
Heat conduction? Coupling?
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Continuum vs. kinetic theory: the role of entropy flux

Generalization of fluid dynamics: RET

Rational Extended Thermodynamics
Arima et al. (2014)

∂tF + ∂kF
k = 0, mass balance

∂tF
i + ∂kF

ik = 0, momentum balance
∂tF

ij + ∂kF
ijk = P ij ,

∂tG
ii + ∂kG

iik = 0, energy balance
∂tG

ppi + ∂kG
ppik = Qppi

Constitutive equations (1D), linearized, coupled!

τqq̇ + q + λ∂xT + aT0∂xΠ = 0,

τΠΠ̇ + Π + ν∂xv +
ν

1 + c∗v
∂xq = 0.
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Continuum vs. kinetic theory: the role of entropy flux

Generalization of fluid dynamics: NET + IV

Non-equilibrium thermodynamics with internal variables
Balances +

entropy density:
s(e, ρ, qi ,Q ij) = se(e, ρ)− m1

2 qi · qi − m2
2 QijQ

ij

entropy current: J i = bi j q
j + B i

jk Q jk → coupling!

Constitutive equations (1D), linearized, coupled!

τqq̇ + q + λ∂xT + ε∂xΠ = 0,

τΠΠ̇ + Π + ν∂xv + η∂xq = 0.

Q ij : pressure = Meixner’s theory!
”Ballistic generalization”: thermodynamic equivalence between

phonon and real gases!
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Continuum vs. kinetic theory: the role of entropy flux

Generalization of fluid dynamics: NET + IV

Preliminary test: acoustic damping in rarefied gases
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Continuum vs. kinetic theory: the role of entropy flux

Thank you for your kind attention!
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Continuum vs. kinetic theory: the role of entropy flux

”Death match” of different descriptions I.

Phonon hydrodynamics (RET) vs NET+IV
At least N=30 momentum eqs. vs 3 eqs.

No. of fitted parameters: 2 relaxation time vs. 2+1 parameters
Solved on semi-infinite region vs real domain

Relative amplitudes: false vs true
Summary: RET results are more like model testing than fitting;

Wrong: heat pulse length, sample size, thermal conductivity
Is the RET model appropriate? Can not be decided.
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Continuum vs. kinetic theory: the role of entropy flux

”Death match” of different descriptions II.
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”Death match” of different descriptions III.
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”Death match” of different descriptions IV.

Hybrid phonon gas model of Y. Ma vs NET+IV
Longitudinal signal: artificial extension vs simplified model

Fitted parameters: 2 relaxation time vs 2+1
Boundary conditions: no information vs effective cooling

Wrong thermal conductivity, no information about the others.
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Continuum vs. kinetic theory: the role of entropy flux

What about on room temperature?

Role of material heterogeneities?! Let’s see the experiments!

Arrangement of the measurement, DEE BME
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Continuum vs. kinetic theory: the role of entropy flux

Over-diffusive phenomenon I.

Measurement at room temperature, metal foam sample
τq∂ttT + ∂tT = a∂xxT + κ2∂txxT , Fourier equation
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Over-diffusive phenomenon II.

Measurement at room temperature, metal foam sample
τq∂ttT + ∂tT = a∂xxT + κ2∂txxT , Guyer-Krumhansl equation,
κ2/τq > a!! Enhanced diffusion?!
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