Search for Supersymmetry with photons in CMS at LHC

Peter Major^{1,2} for the CMS collaboration

¹ Eötvös Loránd University, Budapest ²MTA-ELTE Lendület CMS Particle and Nuclear Physics Group

Zimányi Winter School, 2017 Budapest

Introduction and Motivation

What do we mean by SUSY?

- a spacetime symmetry
- relating fermions and bosons
- focus on the Minimal Supersymmetric Standard Model (MSSM)

The problems we see:

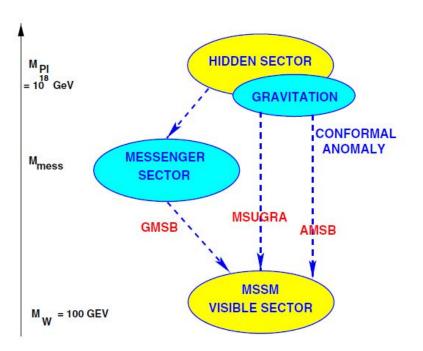
- The nature of dark matter
- Hierarchy problem
- Grand unification

Some alternatives: Compact dimensions, Composite Higgs field (Technicolor)

The MSSM Spectrum

The MSSM spectrum below the EW scale (~246 GeV)

Originally 8 degrees of freedom in the Higgs sector \rightarrow 5 Higgs fields remain Winos + Binos + Higgsinos \rightarrow Neutralinos and Charginos


FERMION	BOSON
G g X,0	G g H
χ ₂ ⁰	Y h ⁰
X_1 X_2 X_4 X_4	Z A H ±
A ₂	
$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	$\begin{pmatrix} \widetilde{\mathbf{v}}_{\mathbf{e}} \\ \widetilde{\mathbf{e}} \end{pmatrix} \begin{pmatrix} \widetilde{\mathbf{v}}_{\mathbf{u}} \\ \widetilde{\mathbf{\mu}} \end{pmatrix} \begin{pmatrix} \widetilde{\mathbf{v}}_{\mathbf{\tau}} \\ \widetilde{\mathbf{\tau}} \end{pmatrix} \begin{pmatrix} \widetilde{\mathbf{u}} \\ \widetilde{\mathbf{d}} \end{pmatrix} \begin{pmatrix} \widetilde{\mathbf{c}} \\ \widetilde{\mathbf{s}} \end{pmatrix} \begin{pmatrix} \widetilde{\mathbf{t}} \\ \widetilde{\mathbf{b}} \end{pmatrix}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
v_e v_{μ} v_{τ}	\tilde{v}_{e} \tilde{v}_{u} \tilde{v}_{r} \tilde{v}_{r} \tilde{d} \tilde{s} \tilde{b} \tilde{b}

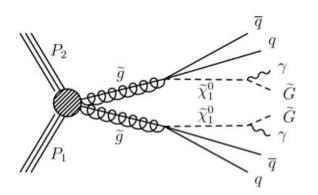
SUSY Breaking

Why do we see no traces of SUSY at low energy?

- Sleptons should be easy to see unless the SUSY is broken!
- Several symmetry breaking mechanisms proposed
 - Eg: Gauge Mediated Supersymmetry Breaking (GMSB)

R-parity and Lightest SUSY Paricle

R-parity conservation


- Baryon number conservation is not hardwired into MSSM
- R-parity is introduced to rule out undesirable couplings:

$$P_R = (-1)^{3(B-L)+2s} = egin{cases} +1 & ext{for SM particles} \ -1 & ext{for SUSY partners} \end{cases}$$

- SUSY particles are produced in pairs
- Lightest supersymmetric particles (LSP) are stable

In MSSM with GMSB and R-parity conservation:

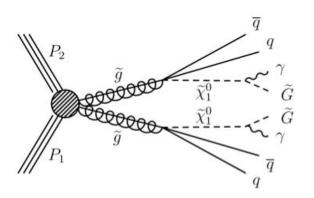
- LSP is always the gravitino (WIMP candidate)
- Next-to-LSP (NLSP) is a neutralino
- The NLSP decays as: $\widetilde{\chi}_1^0 \to \widetilde{G} + \gamma/Z/H$

Characterizing SUSY Final States

How to find traces of GMSB MSSM using photons?

Missing Transverse Energy (MET):

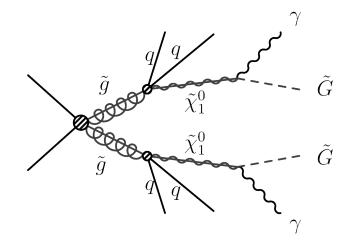
- Momentum imbalance of all observed physics objects
- Contributions:
 - MSSM signal: gravitinos
 - SM background: neutrinos, jet momentum mismeasurement

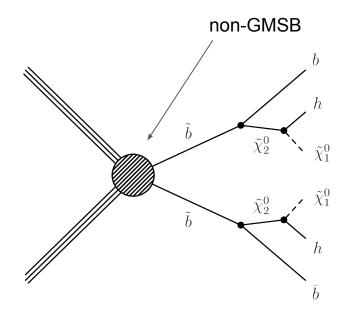

Large Hadronic Activity:

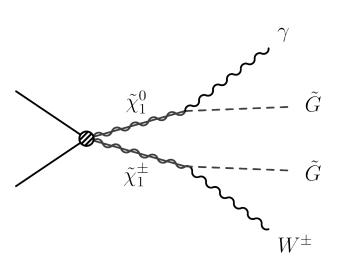
- Many reconstructed jets
- $\circ \quad H_T = \sum |p_T(i)|$

Reconstructed Photon:

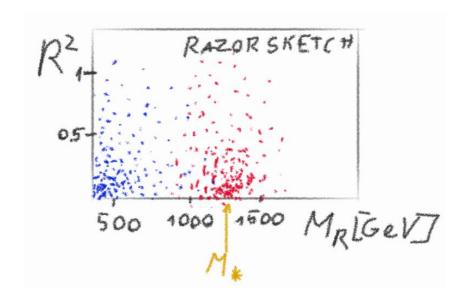
- Large transverse energy
- $\circ \quad S_T^{\gamma} = \sum_i E_T^{\gamma_i} + E_T^{miss}$
- Invariant mass of MET and photon

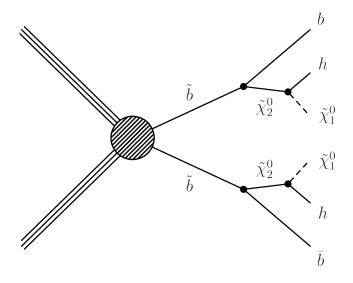

$$M_T^2(\gamma, E_T^{miss}) = 2E_T^{miss}E_T^{\gamma}[1 - \cos \Delta \phi(\vec{p}_T^{miss}, \gamma)]$$




Experimental Results Using Photons at CMS

- According to final state
 - \circ H $\rightarrow \gamma \gamma$ with Razor
 - \circ γ + MET
 - \circ γ + MET + H_{τ}
- According to tested signal
 - o Production:
 - Strong process (squark, gluino)
 - Weak process (chargino or neutralino)
 - Different susy particle decay chains to LSP

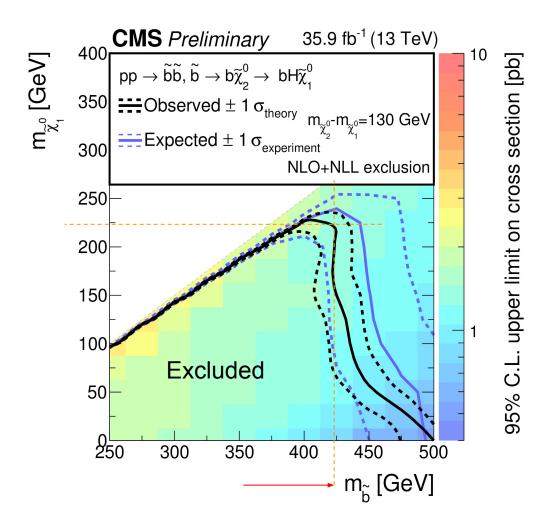

Razor $H \rightarrow \gamma \gamma$ at 13 TeV (35.9 fb⁻¹)



Results interpreted in a simplified MSSM model (non-GMSB) CMS-SUS-16-045

Event selection:

- Diphoton trigger: E_T≥ 30 GeV, 18 GeV, Invariant mass: 90 GeV
- Leading photon E_T≥ 40 GeV, subleading E_T≥ 20 GeV
- The pair with highest scalar momenta sum → Higgs candidate
- At least one jet P_T≥ 30 GeV
- The MET cut is built into the Razor variables

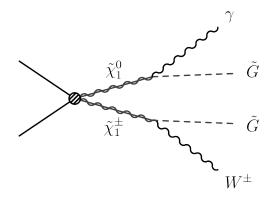


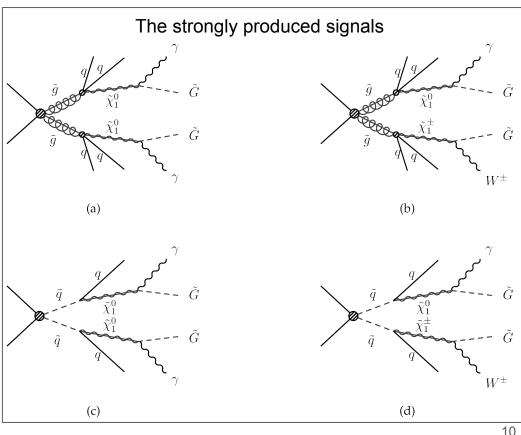
Razor H $\rightarrow \gamma \gamma$ at 13 TeV (35.9 fb⁻¹)

CMS-SUS-16-045

Exclusion plot:

γ + MET at 13 TeV (2.3 and 35.9 fb⁻¹)

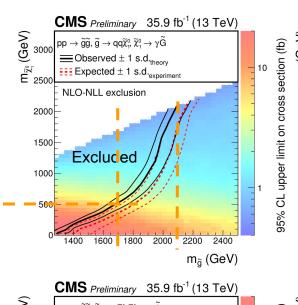


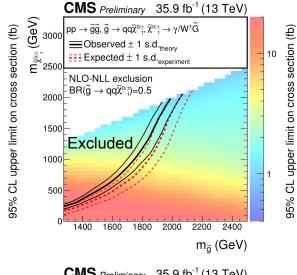

Many different signals considered in multiple search bins

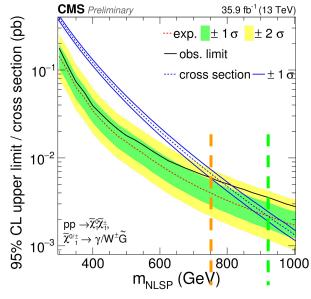
CMS-SUS-16-046

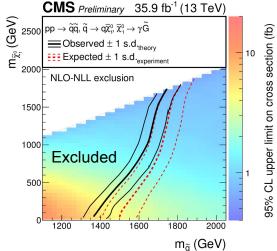
Event selection:

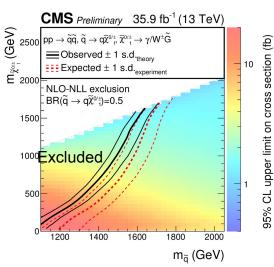
- Single photon trigger 165 GeV
- A loose photon ≥ 180 GeV on the barrel isolated from jets
- MET ≥ 300 GeV
- $M_T(\gamma, MET) \ge 300 \text{ GeV}$
- S_T gives the bins

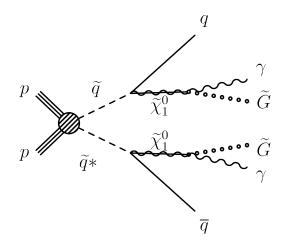

γ + MET at 13 TeV (35.9 fb⁻¹)

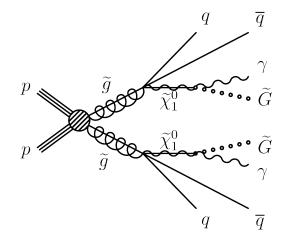



CMS-SUS-16-046

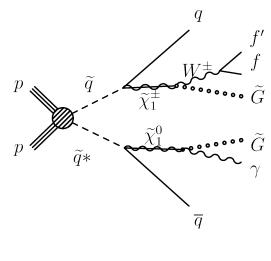

Weak case: m_{NLSP} <750 GeV, an improvement of ~150 GeV

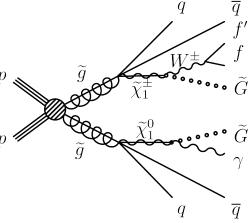

Diagonal exclusions improved in the strong channels 1740 GeV→ 2100 GeV for gluino 1300 GeV→ 1650 GeV for squark

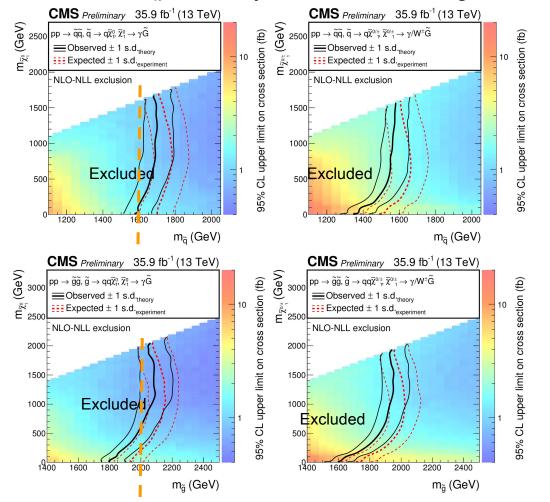

γ + MET + H_T at 13 TeV (35.9 fb⁻¹)



Strong production channels


Event selection:


- H_T ≥ 600 GeV trigger
- A photon ≥ 100 GeV
- Search bins are defined using MET and S_T



γ + MET + H_{τ} at 13 TeV (35.9 fb¹)

Gluino masses up to 2 TeV and squark masses up to 1.6 TeV are excluded (previously 1.6 and 1.35 using 2.3 fb⁻¹)

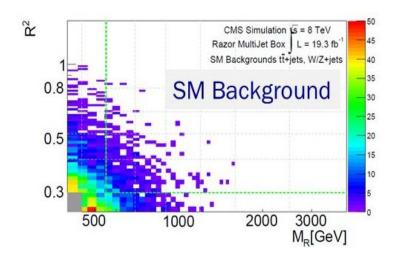
Summary

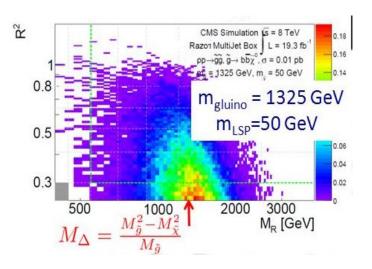
- Searches address a large area of the GMSB MSSM parameter space
- Photon and Higgs boson decay channels are popular
- If results consistent with SM, they provide limits on SUSY models, particle masses
- Efforts are made to combine the different results
- No signs of SUSY yet but it could still be hiding at many places

Only ~3% of the full pp integrated luminosity recorded yet

The adventure is just starting...

Backup - Razor variables


- Cluster all PF object in two hemispheres using the "megajet" algorithm
- The variables are computed as


$$M_{\mathrm{T}}^{\mathrm{R}} \equiv \sqrt{\frac{E_{\mathrm{T}}^{\mathrm{miss}}(p_{\mathrm{T}}^{j_{1}} + p_{\mathrm{T}}^{j_{2}}) - \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \cdot (\vec{p}_{\mathrm{T}}^{j_{1}} + \vec{p}_{\mathrm{T}}^{j_{2}})}{2}}$$
 $M_{\mathrm{R}} \equiv \sqrt{(|\vec{p}^{j_{1}}| + |\vec{p}^{j_{2}}|)^{2} - (p_{z}^{j_{1}} + p_{z}^{j_{2}})^{2}}}$
 $\mathrm{R}^{2} \equiv \left(\frac{M_{\mathrm{T}}^{\mathrm{R}}}{M_{\mathrm{R}}}\right)^{2}$

 These show exponential decay for SM Higgs production, but have large values for MSSM production

Backup - Razor variables II

