

INITIAL ENERGY DENSITY IN P+P AND A+A COLLISIONS

UNIVERSE 3 (2017) 1, 9 ARXIV:1609.07176 + ARXIV:1711.10740 + MANUSCRIPT IN PREP. M. CS., T. CSÖRGŐ, Z-F. JIANG, G. KASZA. M. NAGY

2017/12/07

Zimányi School 2017

2 INTRODUCTION

Goals of high energy heavy ion physics

The Bjorken estimate of initial energy density

PHASE DIAGRAM OF QUARK MATTER

- Hadron gas, quark medium, many other phases
- Necessary and sufficient conditions fpr quark medium?

2017/12/07

4 THE BJORKEN-ESTIMATE

- The original idea: energy density based on dE/dy
- QGP critical $\epsilon_c \sim 1$ GeV/fm³ (from $\epsilon_c = (6-8) \times T_c^4$)

AN ACCELERATING SOLUTION OF HYDRO

- Fact: dN/dy not flat
- Finiteness & acceleration
 - Acceleration parameter λ
 - Velocity: tanh(λη)
- Two modifications:
 - $y \neq \eta \& \eta_{\text{final}} \neq \eta_{\text{initial}}$
- Work by acceleration!
- Correction w.r.t. EoS: $\epsilon = \epsilon_{\rm Bj} (2\lambda - 1) \left(\frac{\tau_f}{\tau_i}\right)^{(\lambda - 1)(2 - c_{\rm sound}^2)}$

M. Nagy, T. Csörgő, M.Cs. et al, PLB663(2008)306, PRC77(2008)024908

2017/12/07

5 THE PSEUDORAPIDITY DENSITY

•
$$\frac{dN}{dy} \cong N_0 \cosh^{-\frac{\alpha}{2}-1}\left(\frac{y}{\alpha}\right) \exp\left[-\frac{m}{T_f} \cosh^{\alpha}\frac{y}{\alpha}\right]$$

- Main parameter: $\alpha = \frac{2\lambda 1}{\lambda 1}$
- Particle mass *m*,
- Freeze-out temp. T_f
- Measure acceleration!
- Extension to more complex flows:
 G. Kasza et al.

• Extension to viscous flows: Z. Jiang et al.

2017/12/07

Zimányi School 2017

7 HOW DOES THIS WORK?

In A+A collisions: very well!

PSEUDORAPITY DENSITIES IN A+A

INITIAL ENERGY DENSITY AT RHIC

- Bjorken estimate from BRAHMS: $\epsilon_{Bj} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dN}{d\eta} \cong 5 \text{ GeV/fm}^3$
- Advanced estimate: $\epsilon = \epsilon_{\rm Bj} (2\lambda 1) (\tau_f / \tau_i)^{(\lambda 1)(2 c_{\rm sound}^2)}$
- Correction: 2-3x, result ~15 GeV/fm³, QCD agreement!
- Corresponds to $T_{ini} \cong 2T_c \cong 340$ MeV, confirmed by γ spectra

O ENERGY DENSITIES IN AA, RHIC TO LHC

- Effect of acceleration and equation of state
- How about the effects of viscosity?
 - Work in prep.: G. Kasza, J. Ze-Fang, M. Nagy, T. Csörgő

2017/12/07

Zimányi School 2017

II WHAT ABOUT PP COLLISIONS?

Can an sQGP created there as well?

Yes, depending on multiplicity

BJORKEN ENERGY DENSITY ESTIMATE IN PP

- Rough estimate via the Bjorken formula: $\epsilon_{\rm Bj} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dN}{d\eta}$

 - Number of particles at midrapidity: 1.5×5.89
 - Average energy: $\langle m_t \rangle = \langle E \rangle = 0.562 \text{ GeV}$
 - Transverse size of the system $R^2 \pi = \sigma_{tot}^2 / 4\sigma_{el} = 9.8 \text{ fm}^2$
 - Formation time $\tau_0 = 1 \text{ fm}/c$ (conservative estimate) •
- Energy density from this:

 $\epsilon_{\rm Bj}(7\,{\rm TeV}) = \frac{1}{R^2 \pi \tau_0} \frac{dE}{d\eta} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dn}{d\eta} = \frac{0.562 \times 1.5 \times 5.89}{1.76^2 \pi} \frac{{\rm GeV}}{{\rm fm}^3} = 0.507 \frac{{\rm GeV}}{{\rm fm}^3}$ $\epsilon_{\rm Bj}(8\,{\rm TeV}) = \frac{1}{R^2 \pi \tau_0} \frac{dE}{d\eta} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dn}{d\eta} = \frac{0.571 \times 1.5 \times 6.17}{1.80^2 \pi} \frac{{\rm GeV}}{{\rm fm}^3} = 0.519 \frac{{\rm GeV}}{{\rm fm}^3}$

• This is at average multiplicity; compare to $\epsilon_{\rm crit} \approx 1 \frac{\rm GeV}{\rm fm^3}$

13 CORRECTED ENERGY DENSITY ESTIMATE

• **7** TeV: $\lambda = 1.076$, **8** TeV: $\lambda = 1.066$

• 7 TeV: $\epsilon_{\text{corr}} = 0.645 \frac{\text{GeV}}{\text{fm}^3}$, 8 TeV: $\epsilon_{\text{corr}} = 0.641 \frac{\text{GeV}}{\text{fm}^3}$

• This is at average multiplicity; compare to $\epsilon_{\rm crit} \approx 1 \frac{{\rm GeV}}{{\rm fm}^3}$

4 DEPENDENCE ON INITIAL TIME AND C_{SOUND}

• Recall the correction factor:

5 DEPENDENCE ON MULTIPLICITY

- Several multiplicity classes, 6-20, even 40-50 seen!
- Initial energy density estimate above I GeV/fm³, if:
 - Bjorken estimate: $dN_{\rm ch}/d\eta > 12$
 - Corrected estimate: $dN_{\rm ch}/d\eta > 9$

16 INITIAL TEMPERATURE ESTIMATE

- Temperature from $\epsilon \sim T^4$
- Values above 150-170 MeV reached

17 IS IT UNPRECEDENTED? CONSEQUENCES?

- Bjorken and Landau worked out hydro for pp and pA
- Success of hydro to describe h+p, with <n> = 7-8... Phys.Lett. B422 (1998) 359-368
- Bjorken: it is not hadrons that play billiard balling
- If p+p is a complex system:
 - Gamma/pi0 ratio
 - Radial flow
 - Elliptic flow, scaling
 - HBT radii, scaling
 - Low mass dilepton enhancement
 - Direct photon enhancement
- R_{AA} might not be the best measure: divide by length scale?

8 WHAT DID WE LEARN?

- Experimentally widely used Bjorken estimate
- Advanced estimate: acceleration work, from $dN/d\eta$
- Hydro $dN/d\eta$ works well in A+A from 130 to 2760 GeV
- It also works in p+p
- From TOTEM and CMS p+p data at 7 & 8 TeV:
 - $\epsilon_{\rm corr} \approx 0.64 \, {\rm GeV/fm^3}$
 - This at dN/dy=6 & linearly rises with multiplicity, up to 60!
- Critical energy density: 1 GeV/fm³
- Not incompatible with sQGP phase in <u>high multiplicity</u> p+p

2017/12/07

19 THANK YOU FOR YOUR ATTENTION

... and let me invite you to the Zimányi School 2018!

ZIMÁNYI SCHOOL'18

18. Zimányi

WINTER SCHOOL ON HEAVY ION PHYSICS

Dec. 2018, Budapest, Hungary

József Zimányi (1931 - 2006)

Janos Kass: Falanszter (Phalanstere)

2017/12/07

20 SYSTEMATIC UNCERTAINTIES

• All sources of uncertainties at 7 TeV:

Parameter	Value	Stat.	Syst. Eff. on ϵ
λ	1.073	0.1%	0.4% (from data)
c_s^2	0.1	-	$-2\% + 0.2\%$ (if $0.05 < c_s^2 < 0.5$)
τ_f / τ_0	2	-	$-4\% + 10\%$ (for τ_f / τ_0 in 1.5–4)
τ_0 (fm/c)	1	-	underestimates ϵ
<i>R</i> (fm)	1.766	-	1.3% (from σ_{tot})
$\langle E \rangle (\text{GeV}/c^2)$	0.562	0.5%	3%
$dN/d\eta _{\eta=0}$	5.895	0.2%	3% (equivalently from N_0)

21 SOURCES OF UNCERTAINTIES

- For the correction factor ϵ/ϵ_{B_i} :
 - Fit parameter λ
 - Statistical error (from the data)
 - Speed of sound c_s²
 - Duration τ_f / τ_i
- For the original Bjorken-estimate:
 - Main uncertainty source: multiplicity at midrapidity dN/dy
 - Area (if taken from cross-section): very precise
 - Formation time
 - Average transverse mass

2017/12/07

22 MULTIPLICITY DEPENDENCE

²³ COMMENT: DN/DH @ LHC IS NOT TRIVIAL

- Not trivial for MC models
- TOTEM Coll., EPL, 98 (2012) 31002

