(Outline	VdW-GCE	QvdW	Nuclear matter	Summary

Critical point of nuclear matter

Roman Poberezhnyuk

Collaborators: Volodymyr Vovchenko, Dmitry Anchishkin and Mark Gorenstein

Bogolyubov Institute for Theoretical Physics

Budapest - 2017

Outline	VdW-GCE	QvdW	Nuclear matter	Summary
Outline				

- VDW GCE
- OVDW with quantum statistics (QVDW)
- Ouclear matter with the VDW equation of state
 - Phase diagram
 - Fluctuations in the region of the critical point
 - Comparison with Walecka model

Van der Waals model in GCE

Van der Waals EoS (CE)

$$P(T, V, N) = \frac{NT}{V - bN} - a\frac{N^2}{V^2}, \quad a > 0, b > 0.$$

Transition to GCE¹:

$$\begin{split} & \left(\frac{\partial F}{\partial V}\right)_{T,N} = -p(T,V,N) \Rightarrow F(T,V,N) ; \\ & \mu = \left(\frac{\partial F}{\partial N}\right)_{T,V} \Rightarrow \mu = \mu(T,V,N) \Rightarrow N = N(T,V,\mu) ; \end{split}$$

Equations for $n(\overline{T,\mu})$

$$\frac{N}{V} \equiv n(T,\mu) = \frac{n_{\rm id}(T,\mu^*)}{1 + b n_{\rm id}(T,\mu^*)}, \quad \mu^* = \mu - b \frac{n T}{1 - b n} + 2a n.$$

when a = b = 0: $n(T, \mu) = n_{id}(T, \mu)$.

¹Vovchenko, Anchishkin, Gorenstein, J. Phys. A, (2015).

1

Quntum van der Waals model (QVDW)

Requirements for quantum version of EoS

- 1) Should reduce to ideal gas Eos as a = 0 and b = 0
- 2) Should reduce to classical VDW EoS when quantum statistics can be neglected
- 3) $s \ge 0$ and $s \to 0$ as $T \to 0$

Pressure VDW-GCE

$$p(T,\mu) = p^{\mathrm{id}}(T,\mu^*) - an^2, \quad \mu^* = \mu - b p - a b n^2 + 2an$$

$$p^{\mathrm{id}}(T,\mu) = \frac{d}{3} \int \frac{d^3k}{(2\pi)^3} \frac{k^2}{\sqrt{m^2 + k^2}} \left[\exp\left(\frac{\sqrt{m^2 + k^2} - \mu}{T}\right) + \eta \right]^{-1}$$

Density

$$n(T,\mu) = \left(\frac{\partial p}{\partial \mu}\right)_{T} = \frac{n^{\mathrm{id}}(T,\mu^{*})}{1+b n^{\mathrm{id}}(T,\mu^{*})}$$

Vovchenko, Anchishkin, Gorenstein, Phys. Rev. C, (2015).

Nuclear matter with van der Waals EoS

parameters values

 $\mu \geq 0$, $\eta = +1$, g = 4 , $m = 938~{
m MeV}$.

ground state properties, T = 0

$$p = 0$$
, $\varepsilon/n \cong m + E_B \cong 922 \text{ MeV}$, $n = n_0 \cong 0.16 \text{ fm}^{-3}$

Outline

QvdW

5

0 880

890

900

μ (MeV)

910

920

Nuclear matter

Summary

Nucleon number fluctuations

$$\omega[N] = \omega_{\rm id} \left[\frac{1}{(1-bn)^2} - \frac{2an}{T} \omega_{\rm id} \right]^{-1}$$
$$S\sigma = \frac{k_3}{k_2} = \omega[N] + \frac{T}{\omega[N]} \left(\frac{\partial \omega[N]}{\partial \mu} \right)_T$$
$$\kappa\sigma^2 = \frac{k_4}{k_2} = (S\sigma)^2 + T \left(\frac{\partial[S\sigma]}{\partial \mu} \right)_T$$

6

-10.00

-40.00

930

Nuclear matter: QVDW vs Walecka

QVDW:

$$p(T,\mu) = p^{id}(T,\mu^*) - a n^2(T,\mu)$$
$$\mu^* = \mu - b p(T,\mu) - a b n^2(T,\mu) + 2 a n(T,\mu)$$
$$n(T,\mu) = \frac{n^{id}(T,\mu^*)}{1 + 1 + 1 + 1 + 1}$$

$$(I, \mu) = \frac{1}{1 + b n^{\mathrm{id}}(T, \mu^*)}$$

Walecka model:

$$p(T,\mu) = p^{\mathrm{id}}(T,\mu^*;m^*) + \frac{c_v^2}{2}n(T,\mu) - \frac{(m-m^*)^2}{2c_s^2}$$

$$\mu^* = \mu - c_{\rm v}^2 n(T,\mu) \qquad \frac{m}{m^*} = 1 + c_{\rm s}^2 \frac{g_N}{2\pi^2} \int_0^\infty k^2 dk \, \frac{f_{\rm k}(T,\mu^*;m^*)}{\sqrt{m^{*2} + k^2}}$$

 μ)

$$n(T,\mu) = n^{id}(T,\mu^*;m^*)$$

from the same ground state properties

 $c_{
m v}^2~\cong~11.0~{
m fm}^2~,~~c_{
m s}^2~\cong~14.6~{
m fm}^2~.$

Outline	VdW-GCE	QvdW	Nuclear matter	Summary
Critical p	oint			

¹Elliott, Lake, Moretto, Phair, Phys. Rev. C (2013).

	Outline	VdW-GCE	QvdW	Nuclear matter	Summary
--	---------	---------	------	----------------	---------

Critical exponents

	1	2	3	4
exponent	scaling	path	mean-field theory	empirical
α	$c_{ m v}~=~A~ au^{-lpha}$	$\tau \rightarrow 0^+, \ \widetilde{n} = 1$	0	0.11
β	$\frac{\widetilde{n}_{\rm l} - \widetilde{n}_{\rm g}}{2} = B (-\tau)^{\beta}$	au $ ightarrow$ 0 ⁻	$\frac{1}{2}$	0.33
γ	$\kappa_T = p_c^{-1} G \tau^{-\gamma}$	$\tau \rightarrow 0^+, \ \widetilde{n} = 1$	1	1.24
δ	$\widetilde{p} - 1 = D \widetilde{n} - 1 ^{\delta} \operatorname{sgn}(\widetilde{n} - 1)$	$n~ ightarrow~1^{\pm}$, $ au~=~0$	3	4.79

Critical amplitudes: $G\simeq 0.257$, $D\simeq 1.4$.

Outline	VdW-GCE	QvdW	Nuclear matter	Summary
Summary				

- Van der Waals equation can be generalized to include quantum statistics effects.
- Applied to the description of nuclear matter the model predicts rich structures of fluctuations in the region of critical point.
- In the region of critical point model predictions are very similar to the corresponding predictions of Walecka model.

Thank you for attention!

Acknowledgement: Hungarian-Ukrainian Joint Research Programme NKM-92/2017