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Outline
• Transport in heavy ion collisions

• A modern approach to an effective kinetic theory 
for transport (and jets, thermalization, ...)

• Incorporating NLO (O(g)) and non-perturbative 
effects: testing the stability of these perturbative 
results 
 
Pedagogical review in JG Teaney 1502.03730 (in QGP5)  
Gritty details for jets in JG Moore Teaney JHEP1603 (2016)  
NLO transport JG Moore Teaney, in preparation  



 

Overview



Flow: a bulk property
• Initial asymmetries in position space are converted by 

collective, macroscopic (many body) processes into 
final state momentum space asymmetries

• Quantitatively: azimuthal Fourier decomposition of 
the final state particle spectra  
 
 
 
vzero amplitude + vn coefficients

• 2D analogue of the multipole expansion of the CMB
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• Hydrodynamics describes the buildup of flow. The shear 
viscosity parametrizes the efficiency of the conversion

A famous example:elliptic flow
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Large pressure gradients No more flow
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From initial symmetry to final fixed anisotropy



Hydrodynamics
• Field theories admit a long-wavelength hydrodynamical 

limit. Hydrodynamics: Effective Theory based on a 
gradient expansion of the flow velocity

• For hydro fluctuations with local flow velocity v around an 
equilibrium state (with temp. T), at first order in the 
gradients and in v  
 
 
 
 
Navier-Stokes hydro, two transport coefficients: bulk and 
shear viscosity
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T ij = (p� ⇣r · v)�ij � ⌘

✓
@iv

j + @jv
i � 2

3
�ijr · v

◆



The shear viscosity

• Finite shear viscosity smears out flow differences (diffusion)

⌘ = 0

No friction

⌘ > 0

Friction



Hydro meets data

• The shear viscosity, being dissipative, smears out flow 
differences and makes the position→momentum conversion 
less efficient  
Plot from Luzum Romatschke PRC78 (2008)
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Fig. 15. Figure from Ref.31 which shows how elliptic flow depends on shear viscosity. The theory
curves are most dependable for pT <∼ 1.5GeV and should be compared to the “non-flow corrected”
data. The Glauber and CGC initial conditions have different eccentricities as described in the text.

where the overall constant is adjusted to reproduce the multiplicity in the event.
The simulations assume Bjorken boost invariance with the ansatz

e(τ,x⊥, η) ≡ e(τ,x⊥) , (111)

uµ(τ,x⊥, η) = (uτ , ux, uy, uη) = (uτ (τ,x⊥), ux(τ,x⊥), uy(τ,x⊥), 0) . (112)

In cartesian coordinates uz = uτ sinh(ηs) and ut = uτ cosh(ηs). The calcula-
tions typically assume zero transverse flow velocity at the initial time τo

ux(τo,x⊥) = uy(τo,x⊥) = 0 , uτ (τo,x⊥) = 1 . (113)



Estimating η: counterintuitive?

• Weak coupling: long 
distances between 
collisions, easy 
diffusion. Large η  
 

• Strong coupling: short 
distances between 
collisions, little 
diffusion. Small η 



• Using                         and in the high-T limit (vx~1)

• u flow velocity, vx microscopical velocity of particles

Estimating η 
 (or why is η/s natural)

Kinetic Theory estimate

(x) = 0

Longitudinal flow

Longitudinal flow

u

u z

z Transverse particle transfer

vx
l

l

(x+l)

(x−l)

u z
uz : Flow velocity
vx : Average speed of micro-

scopic particles

Rough estimate (fluid rest frame, or uz(x) = 0)
The momentum density: T0z = (✏+ P)u0uz diffuses in the x
direction with vx = ux/u0. Net change:

h✏+ Pi |vx |u0(uz(x � lmfp)� uz(x + lmfp))

⇡ �2 h✏+ Pi |vx | u0 lmfp@xuz(x)
⇠ �⌘u0@xuz

Here lmfp: Mean free path
Recall thermo. id.: h✏+ Pi = sT

⌘ ⇠ h✏+ Pi lmfp h|vx |i ⇠ s T lmfp h|vx |i

Jeon (McGill) Soft Stony Brook 2013 49 / 89
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• T0z=(e+P)u0uz diffuses along x with vx=ux/u0 . Net change

(e+ p)vxu0(uz(x� lmfp)� uz(x+ lmfp) ⇡ �2(e+ p)vxu0lmfp@xu
z(x) ⇠ �⌘u0@xu
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Figure by S. Jeon



• (Mean free path)-1~ cross section x density  
 

• Cross section in a perturbative gauge theory (T only scale*)  
 

* Coulomb divergences and screening scales (mD~gT) in 
gauge theories 
 

• From holography one instead has η/s=1/(4π) (for  
SYM) and a conjectured lower limit  
Kovtun Son Starinets Policastro PRL87 (2001) PLR94 (2004)
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Estimating η 
 (or why is η/s natural)

N = 4



The effective kinetic theory



• pQCD: QCD action (and EFTs thereof). Can be 
done both in and out of equilibrium. Real world: 
extrapolate from g≪1 to  αs~0.3

• lattice QCD: Euclidean QCD action, equilibrium 
only. Real world: analytically continue to 
Minkowskian domain

• AdS/CFT:            action, in and out of equilibrium, 
weak and strong coupling. Real world: extrapolate 
to QCD 

=)
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+ Crossings

Figure 4. Cut of a two loop diagram (left) corresponds to a 2 $ 2 scattering process (right).
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Figure 5. Two-loop diagram cut through a self-energy correction on the gluon, which corresponds
to scattering-induced photon radiation (crossings not shown)

significant spectral weight in this region. This leads to a distinct contributing kinematical

region which corresponds to scattering-induced emission, as shown in Fig. 5. We will call

these collinear processes or collinear splitting processes. Aurenche et al [20] first showed

that these processes are also leading order and can even be numerically dominant. The

reason is that the process includes a kinematical region in which the intermediate quark

line in Fig. 5 is nearly on the mass shell. But this near-singularity requires the inclusion

of self-energy corrections, which bring in additional diagrams by gauge invariance and the

necessity to correctly represent charge conservation. Therefore, in the kinematic region

where gluons are soft and spacelike (representing scattering processes), one must sum

over multiple gluon exchanges, such as the diagram of Fig. 6. The interference e↵ect this

generates and the associated suppression are called Landau-Pomeranchuk-Migdal (LPM)

e↵ect.

In [13], AMY showed that these two kinds of processes (elastic scattering when one

gluon is on-shell, scattering induced emission with any number of soft spacelike gluons) are

both needed in the calculation, but arise from kinematically distinct momentum regions.

Therefore the computation can be separated into a contribution from each process. The

easiest way to see that this is true is to consider the components of the o↵-shell fermion’s

momentum P , particularly the transverse component p? and the longitudinal component

p+. As illustrated in Fig. 7, the relevant momentum regions are quite distinct when viewed

– 6 –

Theory approaches to transport 
coefficients

N=4



The weak-coupling pictureBasic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵s = g2/4⇡

• The soft fields can be treated classically since their occupation number is large

nB(!) =
1

e!/T � 1
' T

!
⇠ 1

g

Figure by D. Teaney

Hard particles, P~T

Soft 
field 

modes 
P~gT

↵s =
g2

4⇡

• The gluonic soft fields have large occupation numbers ⇒ 

they can be treated classically
nB(!) =

1

e!/T � 1
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Weak-coupling thermodynamics

• Successful for static (thermodynamical) quantities. 
Possibility of solving the soft sector non-perturbatively 
(dimensionally-reduced theory on the lattice)
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Figure 3. The Nf = 3 second (left) and fourth (right) order diagonal QNS normalized to their
respective Stefan-Boltzmann values. The truncated three-loop HTLpt results are from [26] and the
lattice data are from BNL-Bielefeld (BNL-B) [5–7] and Wuppertal-Budapest (WB) [8, 9].

renormalization scale sensitivity of their results. For the gauge coupling, they used a one-

loop running with ⇤MS = 176 MeV, which for Nf = 3 gives ↵s(1.5 GeV) = 0.326 as well.

4.2 Results for three flavors

Let us begin the analysis of our results from the quark number susceptibilities in the

physically most interesting case of Nf = 3. In figure 3 (left), we display the second order

diagonal susceptibility �u2 normalized to its Stefan-Boltzmann limit �u2,SB = T 2. The

blue band in the figure corresponds to the DR result, obtained by varying the values of

both ⇤̄ and ⇤MS in the ranges explained above, while the red and orange bands are the

exact one-loop and truncated three-loop HTLpt results. The thick dashed lines inside the

bands correspond to the central values of the renormalization and QCD scales. Finally, we

note that the three-loop HTLpt band in fact corresponds to the baryon (and not quark)

number susceptibility [26]; however, for the second order susceptibilities the di↵erence

between these two quantities should be hardly visible [5].

The widths of the bands shown indicate that the scale dependence of the DR result is

extremely weak, except for the very lowest temperatures. At the same time, the one- and

three-loop HTLpt results are also quite close to one another for temperatures above 500

MeV, indicating that the quantity under consideration nicely converges at these tempera-

tures.4 In figure 3 (left) we also display lattice results from both the BNL-Bielefeld (BNL-B,

black dots) [5] and Wuppertal-Budapest (WB, green dots) [8] collaborations. Both sets of

data have been continuum extrapolated. We observe that the DR and three-loop HTLpt

results are all in good agreement with the two lattice results for temperatures of roughly

500 MeV and higher; at even lower T , some di↵erences do, however, occur and it is the

resummed DR result that seems to agree better with the lattice data points.

In figure 3 (right), we next show our results for the fourth order diagonal QNS �u4

normalized to the corresponding Stefan-Boltzmann limit �u4,SB = 6/⇡2. Once again, the

4
Although we do not show it in figure 3 (left), the two-loop HTLpt result for the second-order suscepti-

bility is also quite close to the three-loop HTLpt result for temperatures above 500 MeV [24].

– 14 –
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The effective kinetic theory

Baym Braaten Pisarski Arnold Moore Yaffe Baier Dokshitzer Mueller 
Schiff Son Peigné Wiedemann Gyulassy Wang Aurenche Gelis Zaraket 
Blaizot Iancu . . .



• Justified at weak coupling, but can be extended to factor in 
non-perturbative contributions (in progress, more later)

• The effective theory is obtained by integrating out (off-shell) 
quantum fluctuations (for instance from Kadanoff-Baym 
equations). Appropriate for describing the dynamics of 
excitations on scales large compared to 1/T, which is the size of 
the typical de Broglie wavelength of an excitation. 

• Boltzmann equation for the single-particle phase space-
distribution: its convective derivative equals a collision 
operator

The effective kinetic theory

(@t + vp ·r)f(p,x, t) = C[f ]



• The effective theory is obtained by integrating out (off-shell) 
quantum fluctuations (for instance from Kadanoff-Baym 
equations). Appropriate for describing the dynamics of 
excitations on scales large compared to 1/T, which is the size of 
the typical de Broglie wavelength of an excitation. 

• Boltzmann equation for the single-particle phase space-
distribution: its convective derivative equals a collision 
operator

• In other words at weak coupling the underlying QFT has well-
defined quasi-particles. These are weakly interacting with a 
mean free time (1/g4T) large compared to the actual duration of an 
individual collision (1/T)

The effective kinetic theory

(@t + vp ·r)f(p,x, t) = C[f ]



The AMY kinetic theory
• Effective Kinetic Theory (EKT) for the phase space 

density of quarks and gluons 
s

• At leading order: elastic, number-preserving 2↔2 
processes and collinear, number-changing 1↔2 
processes (LPM, AMY, all that) AMY (2003)  
 
 
 

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss
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Fig. 1. Hard 2 $ 2 collision contributing the collision rate C2$2[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp
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In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,

q̂
ij
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i
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i
v̂
j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂UV (µ) =g
2
CAT

m
2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}
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Here the Debye mass is given by the integral over distribution functions

m
2

D
= 2g2CA

Z
d
3
p

(2⇡)3
np(1 + np)

T
=

1

3
g
2
CAT

2
, (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss
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(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
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m
2
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2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

✓
@

@t
+ v ·rx

◆
f(p) = C2$2 + C1$2



Transport coeffs from the EKT
• To obtain the transport coefficients linearize the theory  
 

• Driving term equates linearized collision operator. 
Since                  ,                              η requires ℓ=2, Dq ℓ=1

• Transport coefficients obtained by the kinetic thy 
definitions of T, J once δfℓ has been obtained. Solution 
easier in quadratic form (variational). LO η,D~1/g4  
 
 
Arnold Moore Yaffe (2003)
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The EKT and transport 
• Linearized EKT equivalent to Kubo formula (S TT part of T)  

• Not practical at weak coupling: loop expansion breaks 
down AMY (2000-2003)

• For the SM at T>160 GeV η is dominated by the slowest 
processes, those involving right-handed leptons only  
 
 
 
g1 hypercharge coupling with screening mass  
AMY (2000-2003)

112 Linear response theory

Now BL(ω = 0,k → 0) = −B00
R (ω = 0,k → 0) = ∂2P/∂µ2

B = ∂nB/∂µB.
(The reasoning is the same as for the electric screening mass.) Further-
more,

BL(ω, |k| → 0) = k̂ik̂ j Bij
R (ω, |k| → 0) (6.151)

where k̂i = ki/|k| is a unit vector in the direction of k. Putting all this
together and using the rotational symmetry yields a linear response for-
mula for the thermal conductivity:

χT =
1
3
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w

nB
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1
ω

∫
d4x eiωt

〈[
Ĵ i
B(t,x), Ĵ i

B(0,0)
]〉

θ(t) (6.152)

The factor (w/nB)2arises in the conversion of baryon current to enthalpy
current. Alternatively, (6.152) could be written in terms of the spectral
densities for the longitudinal part of the baryon response function as

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω
ρn
L(ω, |k| = 0)

=
1

3T

(
w

nB

)2

lim
ω→0

ρ+
L (ω, |k| = 0) (6.153)

The latter equality follows from the relation ρn = (1 −e−βω)ρ+, as dis-
cussed in Section 6.2.

There are Kubo-type linear-response expressions for the viscosities too.
These may be derived in a way analogous to that for the thermal con-
ductivity since Tµν may be viewed as representing a set of four conserved
currents. One obtains

η =
1
20

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Sij(t,x), Sij(0,0)

]〉
θ(t) (6.154)

ζ =
1
2

lim
ω→0

1
ω

∫
d4x eiωt⟨[P(t,x), P(0,0)]⟩θ(t) (6.155)

where P = −1
3T

i
i represents the trace of the momentum tensor (the pres-

sure in equilibrium) and Sij = T ij −δijP represents the traceless part.
These follow from the dispersion relation for the transverse part of the
momentum density,

ω = −iDSk2 (6.156)

where DS = η/w, and from the dispersion relation for pressure waves,

ω2−v2
Pk2+ iDPωk2= 0 (6.157)
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Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥
∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η ≃
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η ≃ 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full
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Hard off−shell
Soft, spacelike, gauge boson, HTL resummed
Hard on−shell, resummed with diagrams of form

, , etc.

FIG. 6: Typical diagram needed in the leading-order evaluation of the shear viscosity in QCD. The

crosses at the left and right denote Tij (stress tensor) insertions.

Leading-order results for transport coefficients may themselves be expanded in powers
of 1/ ln(g−1). We have explicitly computed both leading and first sub-leading terms for
shear viscosity and quark diffusivity in U(1), SU(2), and SU(3) gauge theories with various
numbers of fermion fields (as well as several more terms for three flavor QCD). For QCD,
the next-to-leading log result (with the sub-leading term absorbed by suitably shifting the
scale inside the leading log) was found to be remarkably close to the full leading-order
result as long as mD/T ≤ 1. This is a much larger domain of utility than one might have
expected. For these transport coefficients, we also find that only roughly 10% errors are
made if one neglects near-collinear 1 ↔ 2 particle splitting processes, which are considerably
more difficult to analyze than 2 ↔ 2 particle scattering processes. (However, it should be
noted that some transport coefficients which we have not analyzed, such as bulk viscosity,
depend primarily on particle number-changing processes and so may be expected to depend
essentially on 1 ↔ 2 processes.)

Because the expansion in inverse powers of ln(g−1) is only asymptotic, not convergent, as
demonstrated in Appendix C, we are not able to give a unique, unambiguous prescription for
separating leading-order contributions from higher-order effects. As discussed in Appendix
C, it appears that the inverse log expansion is not Borel summable, which would imply that
no clean separation is possible. In practice, this means that any specific calculation yielding
results of leading-order accuracy will necessarily include some contributions from higher-
order effects. However, our examination of several different prescriptions for computing
leading-order results suggests that this is not a significant issue for mD <∼ 0.8T .

Our tool for studying transport coefficients has been kinetic theory, specifically the effec-
tive kinetic theory presented in our previous paper [22]. As originally shown by Jeon [20],
in the context of weakly-coupled relativistic scalar theories, it is also possible to compute
transport coefficients diagrammatically starting from the appropriate Kubo formulae involv-
ing current-current or stress-stress correlators. Such a diagrammatic approach amounts to a
complicated way to derive the appropriate linearized Boltzmann equation specialized to the
particular symmetry channel of interest. For gauge theories, this diagrammatic approach

23

SijSij



Reorganization
• The NLO corrections come from regions sensitive to 

soft gluons (no quarks in this illustration)

• Before we get there, let’s have a reorganized 
perspective on these regions at LO

• Look at 2↔2 scattering
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p

p0

Q

k0

k

Fig. 1. Hard 2 $ 2 collision contributing the collision rate C2$2[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) v
i
@fp

@pi
+

1

2
q̂
ij

UV (µ)
@
2
fp

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,

q̂
ij

UV (µ) ⌘ q̂L,UV (µ)v̂
i
v̂
j +

1

2
q̂UV (µ)(�

ij
� v̂

i
v̂
j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log
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2
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, (14){uvqhat}
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Here the Debye mass is given by the integral over distribution functions

m
2

D
= 2g2CA

Z
d
3
p

(2⇡)3
np(1 + np)

T
=

1

3
g
2
CAT

2
, (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains
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LO soft gluon scattering
• When Q=P’-P becomes soft there are two possibilities 

for  
 
 
 
 

• Left: diffusion terms, p and p’ strongly correlated 
 
 
identify a longitudinal and a transverse momentum 
broadening contribution,       and

Q Q

Soft HTL-
resummed 
propagator

Z

pkp0k0

��M(p,k;p0,k0)
��2(2⇡)4 �(4)(P+K�P 0�K 0)

⇥ fEQ(p) fEQ(k) [1 + fEQ(p
0)] [1 + fEQ(k

0)]

⇥
h
�`(p) + �`(k)� �`(p

0)� �`(k
0)
i2

�
�`(p)� �`(p

0)
�2

= (p̂ · q)2[�0(p)]2 +
`(`+ 1)

2

q2 � (p̂ · q)2

p2
[�(p)]2

�
�`(p) = f`(p̂)�(p)

�

q̂L q̂

�l(p) �l(p
0)

�l(k
0)



• When Q=P’-P becomes soft there are two possibilities 
for  
 
 
 
 

• Diffusion terms: transverse becomes Euclidean  
 
 
 
Aurenche Gelis Zaraket JHEP0205 (2002), Caron-Huot PRD79 (2009)  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3.3. Longitudinal di↵usion and non-Euclidean operators
{sub_sumrule}

As we mentioned at the beginning of Sec. 3, not all lightcone or light-front supported
operators admit a three-dimensional, Euclidean description for the soft modes. A
prime example is the longitudinal momentum di↵usion coe�cent q̂L, as given by
Eq. (27). At leading order it is given by the diagram shown in Fig. 5. In any

Fig. 5. The leading-order soft contribution to q̂L. The two dots are the two field strengths and
the double line is the adjoint Wilson line connecting them. The curly line is a soft HTL gluon. {fig_lo_soft}

non-singular gauge it reads

q̂L = g
2
CA

Z
+1

�1
dx

+

Z
d
4
Q

(2⇡)4
e
�iq

�
x
+

(q+)2G��
rr

(Q), (67){lo}

where again G
��
rr

(Q) is given by Eq. (58). The x
+ integration sets q

� to zero.
We clearly see that, although originating from a lightcone operator, q+ cannot be
evaluated in EQCD: indeed, the zero-mode contribution exactly vanishes when the
previous techniques are applied.

We can however evaluate Eq. (67) by employing sum rules that are rooted in the
same analyticity properties that were used in the derivation of Eq. (64). In detail,
we plug the result of Eq. (58) in Eq. (67). Up to O(g2) correctionsm we then have

q̂L = g
2
CA

Z
dq

+
d
2
q?

(2⇡)3
Tq

+(G��
R

(q+, q?)�G
��
A

(q+, q?)). (68){lo2}

This too would be a simple enough numerical integral49 over the HTL spectral
function in the Landau cut, of di�cult extension to higher orders. However, as
we have previously remarked, retarded (advanced) two-point functions are analytic
in the upper (lower) half-plane in any timelike or light-like variable. We can thus
deform the integration contours16 away from the real axis onto CR (|q+| = µ

+
� gT ,

Im q
+
> 0) and CA (|q+| = µ

+
� gT , Im q

+
< 0), as depicted in Fig. 6.n µ

+ is a

mWhen expanding the statistical factor in the soft region in Eq. (58), one has nB(!) + 1/2 =
T/!(1 +O(g2)).
nThe longitudinal and transverse contributions to G

��
R (Q) contain poles at q

+ = q
�
/2 ± iq?

(q2 = 0), which, being on both sides of the complex plane, appear to violate analyticity. However
their residue cancels in the sum of longitudinal and transverse components. As observed in12 ,
they are artifacts of the decomposition into Lorentz-variant longitudinal and transverse modes and
their contribution has to vanish in all gauge-invariant quantities.

F F



• When Q=P’-P becomes soft there are two possibilities 
for  
 
 
 
 

• Diffusion terms: longitudinal with lightcone sum rule  
 
 
 
JG Moore Teaney (2015)  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3.3. Longitudinal di↵usion and non-Euclidean operators
{sub_sumrule}

As we mentioned at the beginning of Sec. 3, not all lightcone or light-front supported
operators admit a three-dimensional, Euclidean description for the soft modes. A
prime example is the longitudinal momentum di↵usion coe�cent q̂L, as given by
Eq. (27). At leading order it is given by the diagram shown in Fig. 5. In any

Fig. 5. The leading-order soft contribution to q̂L. The two dots are the two field strengths and
the double line is the adjoint Wilson line connecting them. The curly line is a soft HTL gluon. {fig_lo_soft}
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We clearly see that, although originating from a lightcone operator, q+ cannot be
evaluated in EQCD: indeed, the zero-mode contribution exactly vanishes when the
previous techniques are applied.

We can however evaluate Eq. (67) by employing sum rules that are rooted in the
same analyticity properties that were used in the derivation of Eq. (64). In detail,
we plug the result of Eq. (58) in Eq. (67). Up to O(g2) correctionsm we then have
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This too would be a simple enough numerical integral49 over the HTL spectral
function in the Landau cut, of di�cult extension to higher orders. However, as
we have previously remarked, retarded (advanced) two-point functions are analytic
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• When Q=P’-P becomes soft there are two possibilities 
for  
 
 
 
 

• Diffusion terms: easy with light-cone techniques*  
 
 
give rise to the leading log contribution  
*Caron-Huot PRD82 (2008) JG Moore Teaney (2015)  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• When Q=P’-P becomes soft there are two possibilities 
for  
 
 
 
 

• Right: cross terms, p,p’ and k,k’ not correlated.  
Two-point function of two uncorrelated deviations 
from equilibrium  
(diffusion was the response of an off-eq leg to the 
equilibrium bath)  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• When Q=P’-P becomes soft there are two possibilities 
for  
 
 
 
 

• Right: cross terms, p,p’ and k,k’ not correlated.  
Light-cone techniques not applicable, have to use 
numerical integration.  
Easy at LO, where they are finite (no leading log 
contribution)  

Q Q

Soft HTL-
resummed 
propagator

Z

pkp0k0

��M(p,k;p0,k0)
��2(2⇡)4 �(4)(P+K�P 0�K 0)

⇥ fEQ(p) fEQ(k) [1 + fEQ(p
0)] [1 + fEQ(k

0)]

⇥
h
�`(p) + �`(k)� �`(p

0)� �`(k
0)
i2 �

�`(p) = f`(p̂)�(p)
�

�l(p) �l(p
0)

�l(k
0)

LO soft gluon scattering



• 1↔2 processes: strictly collinear kinematics, unaffected 
by reorganization

Reorganization

• Reorganization of the LO collision operator
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(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads
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wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is
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• Final ingredient: 2↔2 large angle 
scatterings, IR-regulated to avoid 
the soft region
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Fig. 1. Hard 2 $ 2 collision contributing the collision rate C2$2[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) v
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In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,
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The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log
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Here the Debye mass is given by the integral over distribution functions
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and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains



Going to NLO

• The diffusion, cross and collinear terms receive O(g) 
corrections

• There is a new semi-collinear region



Collinear corrections
• The differential eq. for LPM resummation  gets correction 

from NLO C(q⟂) and from the thermal asymptotic mass 
at NLO (Caron-Huot 2009)  
 
 
 
                 complicated but analytical (Euclidean tech)  
Caron-Huot PRD79 (2009), Lattice: Panero et al. (2013)

• Regions of overlap with the diffusion and semi-collinear 
regions need to be subtracted  
 

Figure 5. The soft-K limits of a 1 $ 2 process. The diagram on the left amounts to a di↵usion
process at NLO, whereas the diagram on the right amounts to a conversion process. {fig_collsoft}

leave the dependence on the regulator implicit. C
coll
a [P ] is the purely collinear part of

the e↵ective 1 $ 2 processes, i.e. with the di↵usion and conversion limits subtracted

o↵. As we mentioned, those limits are a relative O(g) correction, so that, at LO ,

C
coll
a [P ] = C

1$2
a [P ], as given by Eq. (2.8). We thus defer the presentation of the explicit

form of Ccoll[P ] to Sec. 5, where we also introduce its NLO corrections.

3.1 Large-angle scattering

In more detail, for what concerns C large
a [P ], one needs to deal with the matrix elements

listed in Table 1, i.e. the standard, leading-order QCD matrix elements, summed over all

colour and spin indices, with the Mandelstam variables s = �(P +K)2, t = �(P �P
0)2

and u = �(P �K
0)2. The presence of di↵erent channel exchanges and their integration

in the collision operator is best dealt with by using the techniques of [8], which treat

each one di↵erently.

Singly-underlined matrix elements are those that, in the soft limit, give rise to

gluonic IR divergences, corresponding to di↵usion processes, whereas doubly-underlined

ones come from fermion-exchange diagrams and give rise, in the same limit, to conversion

processes. To illustrate our regularization scheme, let us consider the contribution from

the scattering of di↵erent quark species q1q2 $ q1q2, which is given by the square of a

single t-channel diagram. Its contribution to C
large
q1 [P ] reads3
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where the techniques of [8] have been followed, by eliminating one of the three integration

variables in Eq. (2.7) with the momentum-conserving �-function, shifting one of the

3When obtaining the complete C large[P ] and summing over c and d, one obtains a factor of two.
{foot_final}
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3. Corrections to Bremm:

(a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)
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ĈLO[q?] =
Tg

2
m

2
D

q2
?(q2

? + m2
D

)
! A complicated but analytic formula

(b) Large angle brem and collisions with plasmons.

• Include collisions with energy exchange, q� ⇠ gT .

✓ ⇠
p

mD/E

Q = (q+, q�, q?) = (gT, gT , gT )

The large-angle (semi-collinear radiation) interpolates collisional and rad. loss

CLO(q?) =
g2CATm2

D

q2?(q
2

? +m2

D)

CNLO(q?)



NLO diffusion and cross
• At NLO one has these types of diagrams 

 
 
 

• For diffusion (left): application of light-cone techniques still 
possible, huge simplification and closed-form results  
Transverse (NLO    ) is finite Caron-Huot (2008)  
Longitudinal (NLO      ) is UV log-divergent JG Moore Teaney (2015)

• For cross (right): no diffusion picture =  no “easy” light-cone 
sum rules, only bruteforce HTL. Silver lining: they’re finite, so 
just estimate the number and vary it  
Ansatz: LO cross x mD/T(~g) x arbitrary constant that we vary

HTL 
propagators 
and vertices
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Diffusion corrections
• At NLO one has these diagrams  

 
 

• For transverse: Euclidean calculation Caron-Huot PRD79 (2009)  

• For longitudinal:  
 
 
 
 

after collinear subtraction light-cone sum rule still sees only 
dispersion relation (O(g) correction). NLO still UV-log sensitive  

with cuto↵ �Eµ = (µNLO
? )2|p|/(2|k(p� k)|) (with some care on the sign of pk(p� k)) we have
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so that Eq. (64) turns into
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For µNLO
? ! 0 Eq. (65) is recovered.

A Longitudinal momentum di↵usion at NLO

{app_nlo}
Some comments: I have not analyzed HTL vertices (the photon lesson should do) and I have not
explicitly checked the cancellation of the “Coulomb gauge poles” at p+ = p�/2± ip? (p2 = 0).

A.1 The rainbow diagram

P

Q

Figure 3: The rainbow diagram {fig_rainbow}
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where we have used the symmetries of the integrand to express the leading-order term as a �
function of q�.

We now inspect the second term, labeled s
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When deforming on CR and CA we have
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The p� integration can be performed as before, yielding
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which goes like 1/(p+)2 and hence is irrelevant. This can be easily understood by noting that
the pinched poles in p� force p� ⇠ 1/p+, so that the factor of p�/p+ of this term with respect
to Eq. (77) behaves like 1/(p+)2.

Finally, we look at the Euclidean term, labeled e
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We need not go any further with its evaluation, at least for now.

A.2 The crossed self-energy

P

Q

Figure 4: The crossed rainbow diagram {fig_cross}
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P

Q

P +Q

Figure 5: The cat-eye diagram {fig_cateye}

A.3 The cat eye

The amplitude reads, with label c
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where I have defined the three-gluon vertex as

gfabc�µ⌫⇢(P,Q,K) ⌘ �gfabc [gµ⌫(P �Q)⇢ + g⌫⇢(Q�K)µ + g⇢µ(K � P )⌫ ] , (90) {threegluon}

where P,Q,K are all inflowing in the vertex, P is associated with a and µ and similarly for the
others. Taking the coordinate integration gives
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Let us look at the r/a structure of the propagators. Neglecting Lorentz indices the terms in
square brackets can be rewritten as
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which yields
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The second term on the bottom line vanishes under the p+ integration, as it is odd. Similarly,
the first term yields

q̂L

����
(2)

c

= �g4CRCAT
2

Z

CR

dq+d2q?
(2⇡)3

Z
dp+d2p?
(2⇡)3

(q2? + q? · p?)

2(q+)3�Ep+q�Eq

⇥


G��

R (��Eq, p
+, p?)�G��

R (0, p+, p?)

�
, (102)

which vanishes, as the p+ integration can only pick up the residue of the Coulomb gauge poles,
which is O(�Ep) and thus makes the q+ integration vanish.

Finally, terms with p� or p� + q� at the numerator in Eq. (92) vanish again for the loss of
p+ at the numerator and of a pinched pole at the denominator. The last term trivially vanishes.
The entire result is hence given by Eq. (97).

A.4 Self-energy diagrams

We analyze separately the two diagrams show in Fig. 6, the loop diagram on the left and the
tadpole diagram on the right.

P

Q

P +Q P

Q

Figure 6: The loop diagram on the left and the tadpole diagram on the right. {fig_loop}

A.4.1 The loop diagram

The amplitude is labeled by s and reads
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NLO diffusion and cross
• At NLO one has these types of diagrams 

 
 
 

• For cross (right): no diffusion picture =  no “easy” light-cone 
sum rules, only way would be bruteforce HTL. Missing, but 
silver lining: they’re finite, so just estimate the number and vary 
it  
NLO  test ansatz: LO cross x mD/T(~g) x arbitrary constant that 
we vary

•  For cross (right): no diffusion picture =  no “easy” light-cone 
sum rules, only bruteforce HTL. Silver lining: they’re finite, so 
just estimate the number and vary it

HTL 
propagators 
and vertices
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= Ccross

LO
⇥ mD

T
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• Seemingly different processes boiling down to wider-angle 
radiation  
 
 

• Evaluation: introduce “modified    ” tracking the changes in the 
small light-cone component p- of the gluons. Can be evaluated 
in EQCD  
 
 

• Rate ∝ “modified    ” x DGLAP splitting. IR log divergence 
makes collision operator finite at NLO

Semi-collinear processes

q̂

“standard”

“modified”

K soft cut, 
spacelike

q̂

K soft plasmon, 
timelike
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where we have introduced a regulator µ
NLO. As we will show, the semi-collinear

region will remove the dependence on it, so that it should be taken to obey gT ⌧

µ
NLO

⌧
p
gT .

5.3. The semi-collinear region
{sec_semi}

As we anticipated before, semi-collinear processes can be seen as 1 $ 2 splitting
processes where the opening angle (and hence the virtuality) are larger. Two exam-
ples are drawn in Fig. 11. The scalings of this region are as follows: K ⇠ gT is soft,

p
g

p
g

K
KP �Q

Q+K

P �Q

Q+K

Fig. 11. Diagrams for two typical semi-collinear processes. In the first case the soft gluon is in
the spacelike Landau cut, whereas in the second case it is on its timelike plasmon pole, represented
by the black blob. {fig_semicoll}

whereas the two final-state particles are collinear, albeit with an increased virtuality
and opening angle with respect to the collinear sector. The leading contribution
then comes from q

+
⇠ T, q
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2, Q2
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2.

Naive power-counting arguments would suggest that the semi-collinear region
should contribute to leading order, as it is the largest slice of phase space where a soft
gluon can attach to a 1 $ 2 process. However, once all diagrams are summed and
squared, a cancellation, first noticed in the context of photon radiation,30 introduces
an extra O(g) suppression. Furthermore, since K ⇠ gT in all components, the
contribution from timelike soft gluons, e.g. plasmons, is now allowed. This is
contrasted by the collinear region, where kinematics enforce k

�
⇠ �E ⇠ g

2
T ⌧

k
+
, k?, thus restricting soft gluons to the space-like domain only.
The contribution �Csemi�coll to the collision operator can be written in the same

way as the collinear one, as given by Eq. (42), with the replacement of the collinear
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• Important technical detail: subtractions (no, I am not talking about first 
grade algebra)

• Pure O(g) semicollinear rate actually involves subtraction of 
collinear and hard limits ,i.e. 

• This makes it mostly negative: when extrapolating to larger g 
we risk a negative collision operator

• We devised a new implementation that, while equivalent at 
O(g), is better behaved when extrapolating due to 
resummations

• In a nutshell, make                δE-dependent in the first-order of 
the LPM ladder resummation. 

    Semi-collinear processes

q̂(�E)� q̂(0)� q̂(�E,mD ! 0)

C(q?)
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Results
• Inversion of the collision operator using variational Ansatz

• At NLO just add O(g) corrections to the LO collision 
operator, do not treat them as perturbations in the inversion

• Kinetic theory with massless quarks still conformal to NLO

• Relate parameter mD/T~g to temperature through

• Two-loop EQCD g(T) as in Laine Schröder JHEP0503 (2005)

• Simple two-loop MSbar with various  μ/T

• Degree of arbitrariness in the choice of quark mass 
thresholds, test several values of μ/T
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• Cross ansatz introduces O(±30%)  uncertainty  

η/s(T) of QCD
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• Pure QCD running uncertainty band at LO (NNLO) smaller than NLO 
deviation from LO

η/s(T) of QCD
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η/s convergence

• Convergence realized at mD~0.5T

Nc=3, Nf=3 QCD
 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5

 0  0.05  0.1  0.15  0.2  0.25  0.3 0.35
g

4
η

/s

mD/T

αs

LO (AMY)
NLL (AMY)

NLO without cross
LO+NLO qhat only

NLO, cross |cℓ=2|=2

g4
⌘

s



η/s convergence

• The ~entirety of the downward shift comes from NLO 
O(g) corrections to 

Nc=3, Nf=3 QCD
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• Cross ansatz uncertainty much smaller (soft quarks here)  
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DqT convergence

• Convergence realized again at mD~0.5T
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Conclusions
• We have computed all contributions to the NLO linearized 

collision operator but one (for each ℓ)

• NLO corrections are #large, η and D down by a factor of ~5 
in the phenomenological region

• Convergence below mD~0.5T

• Second-order τΠ will be available in the papers

• Corrections dominated by NLO     . Could it be that 
observables directly sensitive to transverse momentum 
broadening show bad convergence and those who are not 
show good convergence? Why? 
#statisticswithsmallnumbers

q̂
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Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.  

• Consider the more general case  

• Change variables to  

• Retarded functions are analytical in the upper plane in any 
timelike or lightlike variable => GR analytical in p0 

• Soft physics dominated by n=0 (and t-independent) 
=>EQCD!  Caron-Huot PRD79 (2009)
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LPM resummation

• All points at spacelike or lightlike separation, only 
preexisting correlations

• Soft contribution becomes Euclidean! Caron-Huot PRD79 
(2008)

• Can be “easily” computed in perturbation theory 

• Possible lattice measurements Laine EPJC72 (2012) Laine 
Rothkopf JHEP1307 (2013) Panero Rummukainen Schäfer 1307.5850

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z
DADqDqe�iS(0)

TrP exp
⇢
�ig

I

⇤
dxµAa

µ(x)T a

�
(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)

s (r)�3(x1 � y1)�3(x2 � y2)e�iTW V
(0)
s (r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆
, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(
V (0)

s (r) = u0(r)
log Z(0)

s (r) = u1(r)
(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)

s (r) = u0(r) = � lim
TW!1

1
iTW

loghW⇤i. (2.12)
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Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540

XQCD, Bern, 4 Aug. 2013: Seite 14 von 25

L
/ eC(x?)L

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D’Eramo Liu 
Rajagopal, Benzke Brambilla Escobedo Vairo



Longitudinal momentum diffusion
• Field-theoretical lightcone definition (justifiable with SCET)  
 
 
F+-=Ez, longitudinal Lorentz force correlator

• At leading order  
 
 
 
 

q̂L ⌘ g2

dR

Z +1

�1
dx+Tr

⌦
U(�1, x+)F+�(x+)U(x+, 0)F+�(0)U(0,�1)

↵

q̂L /
Z

dq+d2q?
(2⇡)3

(q+)2G>
++(q

+, q?, 0)

=

Z
dq+d2q?
(2⇡)3

Tq+(GR
++(q

+, q?, 0)�GA)

Wilson lines in the x
� lightcone directions at x

+ = �1, irrelevant in non-singular

gauges, are discussed in App. B.

We now evaluate Eq. (3.16) at LO: we simply contract the two F fields, obtaining

a forward Wightman correlator, i.e. the diagram shown in Fig. 6, which reads

Figure 6. The leading-order soft contribution to q̂L. The Wilson lines before and after the two
black dots, which represent the F

+� vertices, cancel at leading order, whereas the one between
the two dots always turns into an adjoint line, which we have represented as a double line. The
curly line is a soft HTL gluon. {fig_lo_soft}

q̂L

����
LO soft

= g
2
CR

Z
+1

�1
dx

+

Z
d
4
Q

(2⇡)4
e
�iq�x+

(q+)2G��>(Q), (3.18) {lo}

where G(Q) is the HTL-resummed propagator and the integral is understood to run over

soft momenta only. The x+ integration sets q� to zero and, as we show in App. C, bring

this expression in agreement with the one obtained from the rate-based definition in

Eq. (3.11). Furthermore, only the even-in-q+ part of G>(q+, q� = 0, q?) can contribute,

which is the same for G
> and G

< and is given by Grr. It is furthermore dominated

by the T/q
0 = T/q

+ leading infrared piece of the Bose–Einstein distribution. Upon

expanding it we have, up to O(g2) correction,

q̂L

����
LO soft

= g
2
CR

Z
dq

+
d
2
q?

(2⇡)3
Tq

+(G��
R (q+, q?)�G

��
A (q+, q?)). (3.19) {lo2}

We can perform the q
+ integration by resorting to the analyticity sum rule techniques

developed in [2, 12]. Since retarded (advanced) two-point functions are analytic in

the upper (lower) half-plane in any timelike or light-like variable, we can deform the

integration contours away from the real axis onto CR (|q+| = µ! � gT , Im q
+
> 0) and

CA (|q+| = µ! � gT , Im q
+
< 0), as depicted in Fig. 7. Along the arcs the longitudinal

and transverse propagators simplify greatly, i.e.

G
��
R (P ) !

i

(q+)2

✓
1 +

q
�

q+

◆
2q+q� �M

2
1

2q+q� � q2? �M2
1

����
R

, (3.20) {arcexpand}

where M
2
1 = m

2
D/2 is the gluon asymptotic thermal mass. The end result is then

q̂L

����
LO soft

= g
2
CRT

Z
d
2
q?

(2⇡)2
M

2
1

q2? +M2
1

=
g
2
CRT

2⇡
M

2

1 ln
µq̃?

M1
, (3.21) {lofinal}
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Longitudinal momentum diffusion

• Use analyticity to deform the contour away from the real 
axis and keep 1/q+ behaviour

?

?
�µ+ µ+

q+
q̂L

����
LO

= g2CR

Z
dq+d2q?
(2⇡)3

Tq+(G��
R (q+, q?)�G��

A (q+, q?))

q̂L

����
LO

= g2CRT

Z
d2q?
(2⇡)2

M2
1

q2? +M2
1


