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* Transport in heavy ion collisions

* A modern approach to an effective kinetic theory
for transport (and jets, thermalization, ...)

* Incorporating NLO (O(g)) and non-perturbative
effects: testing the stability of these perturbative
results

Pedagogical review in JG Teaney 1502.03730 (in QGP5)
Gritty details for jets in JG Moore Teaney JHEP1603 (2016)
NLO transport JG Moore Teaney, in preparation
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Flow: a bulk property

* Initial asymmetries in position space are converted by
collective, macroscopic (many body) processes into
final state momentum space asymmetries

e Quantitatively: azimuthal Fourier decomposition of
the final state particle spectra

IN;  dN,
dy d?pr  2mprdPrdy

n=1

vzero amplitude + v, coetficients

e 2D analogue of the multipole expansion of the CMB



A famous example:elliptic flow

Position space

Initial asymmetry . .
Large pressure gradients No more flow
Momentum space

Beam along z

From initial symmetry to final fixed anisotropy

e Hydrodynamics describes the buildup of flow. The shear
viscosity parametrizes the efficiency of the conversion



Hydrodynamics

¢ Field theories admit a long-wavelength hydrodynamical

limit. Hydrodynamics: Effective Theory based on a
gradient expansion of the flow velocity

e For hydro fluctuations with local flow velocity v around an
equilibrium state (with temp. T), at first order in the
gradients and in v

TOO = e, TOi _ (6 _I_p)vz

T = (p—CV -v)§Y — 1 (&wj + 90" — géijv - v)

Navier-Stokes hydro, two transport coefficients: bulk and
shear viscosity



The shear viscosity

= >
No friction e
= >
n >0
>
Friction .

* Finite shear viscosity smears out flow differences (diffusion)



Hydro meets data

CGC .
/s=10
25 . 1l .
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O STAR non-flow corrected (est). i
e STAR event-plane 1/s=0.08

v, (percent)

1 n/s=0.16

1/s=0.24

e The shear viscosity, being dissipative, smears out flow

differences and makes the position—>momentum conversion
less etficient

Plot from Luzum Romatschke PRC78 (2008)



Estimating 7: counterintuitive?

* Weak coupling: long * Strong coupling: short
distances between distances between
collisions, easy collisions, little
diffusion. Large 7 diffusion. Small 7



Estimating 7

(or why is 7/s natural)

* u flow velocity, vx microscopical velocity of particles
TA

Longitudinal flow

i _________ TVX Uz(x)=0

[ I U, (x-1) Transverse particle transfer
<=

Longitudinal flow

>
Figure by S. Jeon <

o TOz=(e+P)uduz diffuses along x with v*=u*/u0 . Net change

(e + p)v*u’ (U (2 — Lngp) — U (2 + Lntp) =~ —2(e + )07 u Ly Opu® () ~ —nu’Opu®(x)
e Using e+ p = sT and in the high-T limit (v¥~1)

Q ~ Tl mfp

S



Estimating 7

(or why is 7/s natural)

* (Mean free path)!~ cross section x density
N 1 1

S P no 120

e Cross section in a perturbative gauge theory (T only scale™)
gt n 1
T s gt

Coulomb divergences and screening scales (mp~gT) in
gauge theories
4 1
g T
7~ e )T (/)

* From holography one instead has n/s=1/(4mn) (for N =4

SYM) and a conjectured lower limit
Kovtun Son Starinets Policastro PRL87 (2001) PLR94 (2004)



The effective kinetic theory



Theory approaches to transport

coefficients

" pQCD: OCD action (and EFTs thereof). Can be

j:;: done both in and out of equilibrium. Real world:
extrapolate from ¢g«1 to as~0.3

[, 1.4 lattice QCD: Euclidean QCD action, equilibrium
e only. Real world: analytically continue to

o ¢ Minkowskian domain

ququququququququ

AdS/CFT: N=4 action, in and out of equilibrium,

~weak and strong coupling. Real world: extrapolate
to QCD




The weak-coupling picture

Figure by D. Teaney
e The gluonic soft fields have large occupation numbers =

they can be treated classically
1 wr~ gl T
W

N (w) — Nﬁ

1
ew/T — 1 g



Weak-coupling thermodynamics
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Mogliacci Andersen Strickland Su Vuorinen JHEP1312 (2013)

* Successful for static (thermodynamical) quantities.
Possibility of solving the soft sector non-perturbatively
(dimensionally-reduced theory on the lattice)



The effective kinetic theory

Baym Braaten Pisarski Arnold Moore Yaffe Baier Dokshitzer Mueller
Schiff Son Peigné Wiedemann Gyulassy Wang Aurenche Gelis Zaraket
Blaizot Iancu . . .



The effective kinetic theory

* Justified at weak coupling, but can be extended to factor in
non-perturbative contributions (in progress, more later)

* The effective theory is obtained by integrating out (off-shell)
quantum fluctuations (for instance from Kadanoff-Baym
equations). Appropriate for describing the dynamics of
excitations on scales large compared to 1/T, which is the size of
the typical de Broglie wavelength of an excitation.

* Boltzmann equation for the single-particle phase space-
distribution: its convective derivative equals a collision

FPEE @it W fex 1) = CI|




The effective kinetic theory

* The effective theory is obtained by integrating out (off-shell)
quantum fluctuations (for instance from Kadanoff-Baym
equations). Appropriate for describing the dynamics of
excitations on scales large compared to 1/T, which is the size of
the typical de Broglie wavelength of an excitation.

* Boltzmann equation for the single-particle phase space-
distribution: its convective derivative equals a collision

PO (3, 4 vp - V) f(px.t) = C]

 In other words at weak coupling the underlying QFT has well-
defined quasi-particles. These are weakly interacting with a

mean free time (1/¢4T) large compared to the actual duration of an
individual collision (1/T)




The AMY kinetic theory

* Effective Kinetic Theory (EKT) for the phase space
density of quarks and gluons

(% + v - Vx) f(p) — 02<—>2 4 Cl<—>2

* Atleading order: elastic, number-preserving 2<>2
processes and collinear, number-changing 1<>2
processes (LPM, AMY, all that) AMY (2003)




Transport coetfs from the EKT

e To obtain the transport coefficients linearize the theory
f(pP) = feq(p) + Z5fe (% +v- Vx> feq(p,u, B, 1) = Chin6 fe]
* Driving term equates linearized collision operator.
Since (T77) 7, (Jq4) = —DyV(ng) n requires {=2, D, {=1

e Transport coefficients obtained by the kinetic thy
definitions of T, | once 6fr has been obtained. Solution
easier in quadratic form (variational). LO n,D~1/ ¢*

/ 0 fe(P) (% + V- Vx) feq(p,u, B, 1) = / 0 fo(P) Chin|d fe]
Arnold Moore Yaffe (2003)



The EKT and transport

* Linearized EKT equivalent to Kubo formula (S TT part of T)

1.1 iwt /T Qi ij
772%&1)12%; d*ze H{[8Y(t,x), §7(0,0)]) 6(t)

* Not practical at weak coupling: loop expansion breaks

down AMY (2000-2003)
SY { § : S
-------- Hard off—shell

----------------- Soft, spacelike, gauge boson, HTL resummed

Hard on—shell, resummed with diagrams of form

| E : etc.




Reorganization

e The NLO corrections come from regions sensitive to
soft gluons (no quarks in this illustration)

* Before we get there, let’s have a reorganized
perspective on these regions at LO

* Look at 2<>2 scattering
pkp’k’
x fuq(p) feq(k) [1 + faq(®)] [1 + foq (k')

< () + xeld) — xe(0) — xeK)]

0 fi(p) = feq(P)(1 + feq(p)) xi(P)



LO soft gluon scattering

 When Q=P’-P becomes soft there are two possibilities
2
for {Xe(P) +xe(k) = xe(p') — Xe(k/)} (xe(p) = fe(P)x(p))

Soft HTL-

resummed

propagator

o Lett: diffusion terms, p and p’ strongly correlated

(xelp) xe(®)? = (ol (p)? + L5 LB

identity a longitudinal and a transverse momentum
broadening contribution, ¢rand ¢



LO soft gluon scattering

* When Q=P’-P becomes soft there are two possibilities
2
for [Xe(p) + xe(k) — xe(p’) — Xg(k/)} (xe(P) = fe(®)x(p))

Soft HTL-

resummed

propagator

e Diffusion terms: transverse becomes Euclidean
[

A1) =g°Ca / 2m2 | on (FHQ)F " )g-=o m
ML 2 2 2 2
—g2C AT / gL _mp___ g7 Calmp 1

2m)2 ¢t +m3 2« mp  F F
Aurenche Gelis Zaraket JHEP0205 (2002), Caron-Huot PRD?79 (2009)



LO soft gluon scattering

* When Q=P’-P becomes soft there are two possibilities
2
for [Xe(p) + xe(k) — xe(p’) — Xg(k/)} (xe(P) = fe(®)x(p))

Soft HTL-

resummed

propagator

e Diffusion terms: longitudinal with lightcone sum rule
R 9 FL d2QJ_ dq—l_ 2 —z
i) =*Ca | G5 [ S P@F ),
e MLdfqr o mZ, g*CaTmZ Jon
—7 CAT/ (2m)2 2 +m2, 27 n Moo [ F
JG Moore Teaney (2015)




LO soft gluon scattering

* When Q=P’-P becomes soft there are two possibilities
2
for [Xe(p) + xe(k) — xe(p’) — Xg(k/)} (xe(P) = fe(®)x(p))

Soft HTL-

resummed

propagator

e Diffusion terms: easy with light-cone techniques®
W _¢CrTmp, V2, g°Cr,Tmy, 11
n q In

qr, — —
soft Am mp soft 2m mp

give rise to the leading log contribution
*Caron-Huot PRD82 (2008) JG Moore Teaney (2015)



LO soft gluon scattering

* When Q=P’-P becomes soft there are two possibilities
2
for [Xe(p) + xe(k) — xe(p’) — Xg(k/)} (xe(P) = fe(®)x(p))

Soft HTL-

resummed

propagator

J

e Right: cross terms, p,p” and k,k’ not correlated.
Two-point function of two uncorrelated deviations
from equilibrium
(diffusion was the response of an off-eq leg to the
equilibrium bath)



LO soft gluon scattering

* When Q=P’-P becomes soft there are two possibilities
2
for [Xe(p) + xe(k) — xe(p’) — Xg(k/)} (xe(P) = fe(®)x(p))

Soft HTL-

resummed

propagator

J

e Right: cross terms, p,p” and k,k’ not correlated.
Light-cone techniques not applicable, have to use
numerical integration.

Easy at LO, where they are finite (no leading log
contribution)



Reorganization

* 12 processes: strictly collinear kinematics, unattected

X o (wv qL)

by reorganization

..................................

* Reorganization of the LO collision operator

[ 85w) (- V) fealpou o) = [ 36uo) |05 fur] 4 €] 4 0 0

* Final ingredient: 2«2 large angle
scatterings, IR-regulated to avoid
the soft region




Going to NLO

e The diffusion, cross and collinear terms receive O(g)
corrections

* There is a new semi-collinear region



Collinear corrections

* The differential eq. for LPM resummation gets correction
from NLO C(g1) and from the thermal asymptotic mass

at NLO (Caron-Huot 2009)

g2CATm%

g1 (g7 +m3)

C = 3
LO (QJ_) : Q — <q+7 q—a QJ_) — <gT7 92T7 gT)

Cnro(qr) complicated but analytical (Euclidean tech)
Caron-Huot PRD79 (2009), Lattice: Panero et al. (2013)

e Regions of overlap with the diffusion and semi-collinear

A
L

regions need to be subtracted




NLO diffusion and cross

* At NLO one has these types of diagrams

propagators
and vertices

e For diffusion (left): application of light-cone techniques still
possible, huge simplification and closed-form results
Transverse (NLO @) is finite Caron-Huot (2008)
Longitudinal (NLO dr)is UV log-divergent JG Moore Teaney (2015)

4 2T3
9 CATTIMD (372 | 10— 41n2)

gNLO = qLO +

3272 T
d’q,  m2 + om? d?q m? q? dm?
~ 2 00 00 2 00 1 00
=g C AT ~ g°C7T
dr{p Lo =g Ca /(2w)2qi+mio+5m%o T /(27r)2 ZmZ " (@ i)



Diffusion corrections

e At NLO one has these diagrams

* For transverse: Euclidean calculation Caron-Huot PRD79 (2009)
g4CiT3 mp
3272 T

(37% 4+ 10 — 41n2)

gNLO = qLO +

* For longitudinal:

d’q,.  m2 + om? /d26u [ m? q? om? ]]
A 2 o0 o0 2 o0 1 o0
—qg“C 4T ~ g°C'sT

delmiivio =g"Ca / AT ) o | mk (q1 +m3.)]

after collinear subtraction light-cone sum rule still sees only
dispersion relation (O(g) correction). NLO still UV-log sensitive




NLO diffusion and cross

* At NLO one has these types of diagrams

propagators
and vertices

e For cross (right): no diffusion picture = no “easy” light-cone
sum rules, only way would be bruteforce HTL. Missing, but
silver lining: they’re finite, so just estimate the number and vary
it
NLO test ansatz: LO cross x mp/T(~g) x arbitrary constant that

we vary

m p
CTross CTrosSss
CNLO — C1L() X T X Ccross



Semi-collinear processes

y different processes

eeming
radiation

K soft cut K sott plasmon,

spacelike timelike

Evaluation: introduce “modified q” tracking the changes in the
small light-cone component p- of the gluons. Can be evaluated
in EQCD

X d? dgt _
“standard” QZQZCA/ (2:;2 /ZQ—W<F L(Q)F 1 )g—=0

. . d? dgt _
‘modified” 4(0F) =°Ca | T8 [ SoFHQF ), o

Rate o< “modifiedq ” x DGLAP splitting. IR log divergence
makes collision operator finite at NLO



/) . .
+¥Semi-collinear processes

® Impor tant technical detail: subtractions (no, I am not talking about first
grade algebra)

* Pure O(g) semicollinear rate actually involves subtraction of
collinear and hard limits ,i.e. ¢(0F) — ¢(0) — q(0E, mp — 0)

e This makes it mostly negative: when extrapolating to larger ¢
we risk a negative collision operator

* We devised a new implementation that, while equivalent at
O(g), is better behaved when extrapolating due to
resummations

* Inanutshell, make C'(q;) 6E-dependent in the first-order of
the LPM ladder resummation.






* Inversion of the collision operator using variational Ansatz

* At NLO just add O(g) corrections to the LO collision
operator, do not treat them as perturbations in the inversion

e Kinetic theory with massless quarks still conformal to NLO
e Relate parameter mp/T~g to temperature through

* Two-loop EQCD ¢(T) as in Laine Schréder JHEP0503 (2005)

e Simple two-loop MSbar with various u/T

* Degree of arbitrariness in the choice of quark mass
thresholds, test several values of 1/ T



u=2.7T QCD

u=2.7T with EQCD

u=rT QCD

u=rT with EQCD
u=2rnT QCD
u=2nT with EQCD
u=4nT QCD
u=4nT with EQCD

0.15

1 10
T [GeV]

100



n/s(T) of QCD
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LO (AMY) u=2.7 T ——

0.1 |
0.15 1 10
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 LO results from AMY (2003)




n/s(T) of QCD
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LO (AMY) p=2.7 T ——

u=4nT llllllll
NLO u=2.7 T ——
u=4nT llllllll
0.1 |
- ] | ] ] T ] ] | | — '_ﬂ 1
0.15 1 10

T [GeV]
* All known NLO terms, no cross ansatz yet



/s(T) of QCD

LO ( u=2.7T
. /;. u=4nT ssmnmnns
: 2 NLO =2.7 T ——
A T ceeeeees l
= NLO p=2.7 T, cross |6y, plet —mov
Kt Cross |c _o|=2 e
0.1 |
0.15 : 10
T [GeV]
Cross ansatz introduces O(£30%) uncertainty




n/s(T) of QCD

T ! T T 11T T 1T T TTTT] I L I N B N N B 100
1 - "/?{:‘ ‘.w"" 4
d g 1 10 F7
— 07/ . LO (AMY) p=2.7 T —— |
S - s U=4T T weeeeee: ] S
' LO (AMY) w/o EQCD p=21x T —— |
u=TCT llllllll
u=4TCT - m T -
NLO u=2.7 T ——
u=4TCT ........
0.1 |
0.15 1 10 100 1000

T [GeV]
e Pure QCD running uncertainty band at LO (NNLO) smaller than NLO

deviation from LO



n/s convergence

O(’S
0 0.05 0.1 0.15 0.2 0.25 0.30.35
I I I
10 1= LO (AMY) ——
NLL (AMY) ——
NLO without cross
8 - LO+NLO ghat onl =
NLO, cross |c)_o|=2 --=:-:--
47 6 F -
g I
S
4 - —
| S e
=3, N=3 QCD
0 I I I I I
0 0.5 1 1.5 2 2.5
mp/T

e Convergence realized at mp~0.5T



n/s convergence

(04
0 0.05 0.1 0.15 0.2 0.25 0.30.35

S

10 1= LO (AMY) ——
NLL (AMY) ——
NLO without cross

8 I LO+NLO ghat onl
NLO, cross |C/_p|=2 -----:---

41l s _
g
S
N _
c:3/ Nf:3 QCD
° 0 o|.5 I1 1I-5 |2 2|'5

mp/T
* The ~entirety of the downward shift comes from NLO
O(g) corrections to ¢



D.T(T) of QCD

T ! LB B B T T T TTTT] T LI B B B B 100
10 27 DT
LO (AMY) p=2.7 T —— |
u=4 TT T ........
; NLO u=2.7 T —— |
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NLO u=2.7 T, cross Tégﬂ |=2 =emememee
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T [GeV]
e (Cross ansatz uncertainty much smaller (soft quarks here)



Dql convergence

o
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NLO, cross |C,_q|=2 ===

0.5 1 1.5 2 2.5
mp/T

* (Convergence realized again at mp~0.5T



04

S
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n, i CrosSs ======-- |
0.8 Dq, * Cross ---------
NLO 0.6 |-
LO | IR
04 F T NN
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NLO Q domination mak

mp/T
es ratios similar



Conclusions

We have computed all contributions to the NLO linearized

collision operator but one (for each ¢)

NLO corrections are #large, n and D down by a factor of ~5
in the phenomenological region

Convergence below mp~0.5T
Second-order 7y will be available in the papers

Corrections dominated by NLO ¢ . Could it be that
observables directly sensitive to transverse momentum
broadening show bad convergence and those who are not
show good convergence? Why?
#statisticswithsmallnumbers






Euclideanization of light-cone soft

physics
e For t/x,=0: equal time Euclidean correlators.
Grr(t=0,%x) = iGE(wn,p)eip'x

e Consider the more general case t/x*| < 1

22 0,.0 ].
Grr(tax) — /dpodpdePJ_ez(p TAPLxL TP (5 =+ nB(pO)> (GR(P) _ GA(P))

 Change variables to p* =p* — p°(t/z*)

~z 1(p*x” X 1 ~z z
Grr(t,x) = /dpodp d’p e'P T AP LX) (5 +nB(PO)> (Gr(p®,pL, 0 + (t/2*)p") — G )

e Retarded functions are analytical in the upper plane in any
timelike or lightlike variable => Gr analytical in p?

o (t,) GG X oap o (0 DO X il 7.0p) /)
» Soft physics dominated by n=0 (and t-independent)
=>HQCD! Caron-Huot PRD79 (2009)



LPM resummation

L
TXL‘ ! e

-
)>X+

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D’Eramo Liu

Rajagopal, Benzke Brambilla Escobedo Vairo
* All points at spacelike or lightlike separation, only
preexisting correlations

o Soft contribution becomes Euclidean! Caron-Huot PRD79
(2008)

e Can be “easily” computed in perturbation theory

* Possible lattice measurements Laine EPJC72 (2012) Laine
Rothkopf JHEP1307 (2013) Panero Rummukainen Schéfer 1307.5850



Longitudinal momentum diffusion

Field-theoretical lightcone definition (justifiable with SCET

41, = 3—2 o da T (U(—o0,z7)FT () U (2™, 0)FT—(0)U(0, —0))

F+=E?7, longitudinal Lorentz force correlator

* Atleading order




Longitudinal momentum diffusion

e Use analyticity to deform the contour away from the real
axis and keep 1/g+ behaviour

dQQJ_ M2

~ ) ©e)
= qg°C T/

L) TR ] ez g+ M




