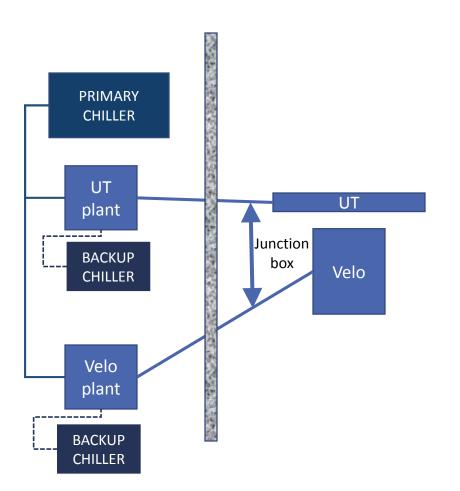
## MAUVE: LHCb UT & Velo CO<sub>2</sub> cooling system operation

6 December 2017

P. Tropea, on behalf of the DT cooling team

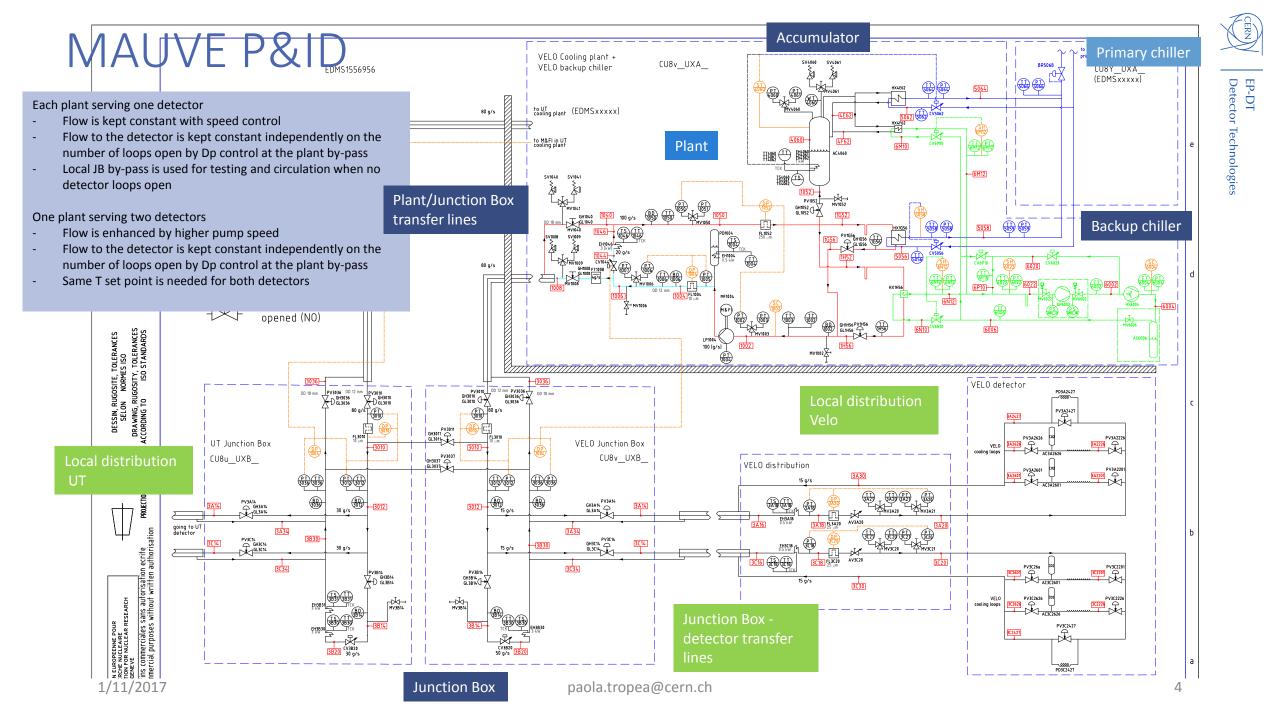
## Summary of relevant document x MAUVE plants

**EDMS repository** 


General docs

- WP for MAUVE plants construction <a href="https://edms.cern.ch/document/1575817">https://edms.cern.ch/document/1575817</a>
- Mauve P&ID plan & document <a href="https://edms.cern.ch/document/1556956">https://edms.cern.ch/document/1556956</a>
- Mauve Functional Analysis <a href="https://edms.cern.ch/document/1562732">https://edms.cern.ch/document/1562732</a>
- Drawings <u>https://edms.cern.ch/document/1703238/1</u>
  Components
- Accumulator <a href="https://edms.cern.ch/document/1836202/1">https://edms.cern.ch/document/1836202/1</a>
- Cold box <a href="https://edms.cern.ch/document/1867798/1">https://edms.cern.ch/document/1867798/1</a>
- Backup chiller https://edms.cern.ch/document/1810421/1
- Main chiller WP <a href="https://edms.cern.ch/document/1870688/1.1">https://edms.cern.ch/document/1870688/1.1</a>

Indico references


- Production Readiness Review Nov 1<sup>st</sup>, 2017 <u>https://indico.cern.ch/event/675723/</u>
- CO<sub>2</sub> cooling EDR Dec 5<sup>th</sup>, 2015 <u>https://indico.cern.ch/event/450162/</u>

### Overview of the MAUVE system

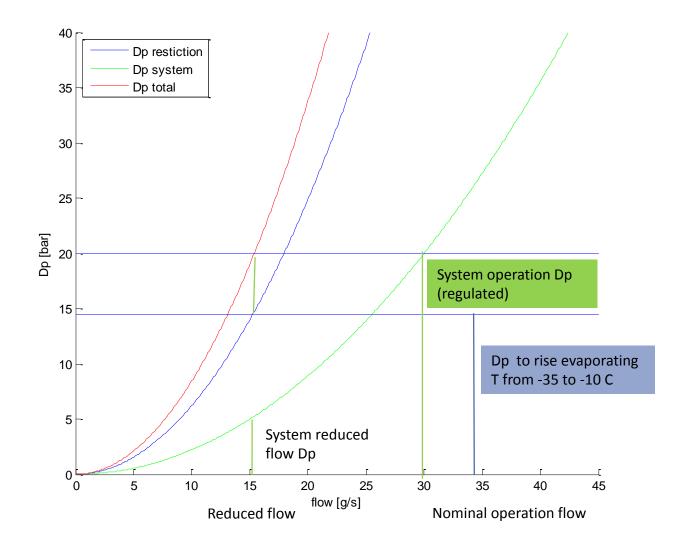


#### Multiple cooling Apparatus for UT and Velo Experiments

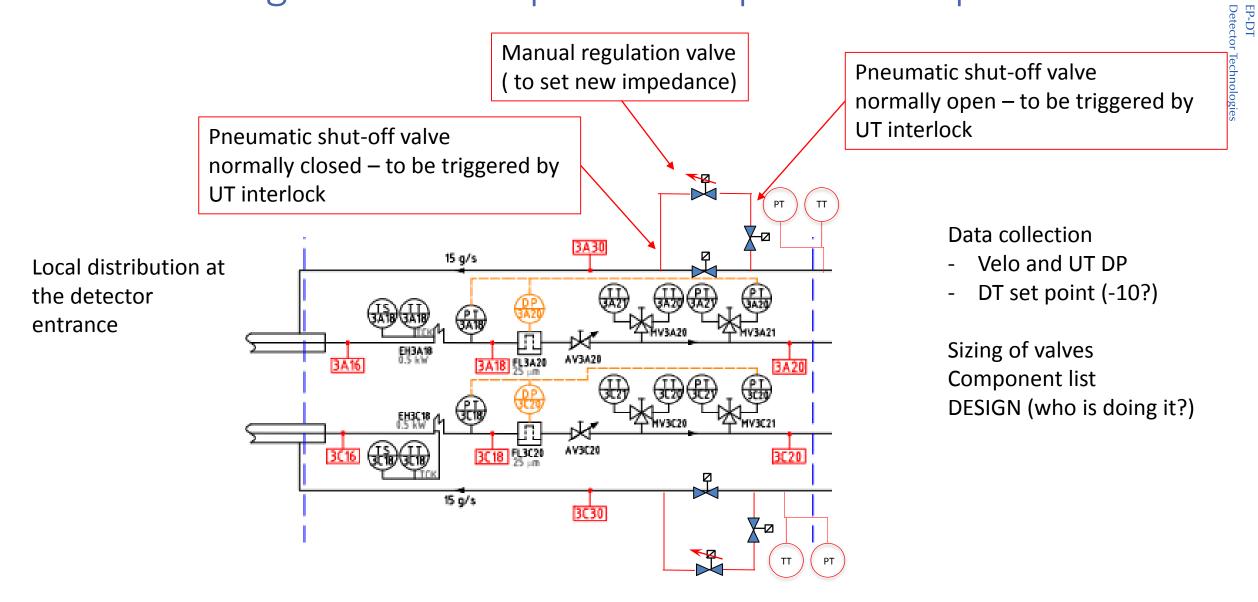
- A. <u>2 CO<sub>2</sub> cooling plants</u>, one for Velo, one for UT
- B. Each plant capable to cool both detectors together <u>(detector power about 7 kW @ -35 C)</u>: i.e. if one plant fails, the second one can feed both detectors (Agreement on operating T needed when "swapping")
- C. 1 common primary chiller to condense CO2, common to other LHCb systems, direct evaporation (EN/CV/DC responsibility)
- D. 1 backup chiller for each UT & Velo plant @ -20 C (CO<sub>2</sub> Temperature) and 3 kW (LUCASZ chiller)
- E. 2PACL circuit with constant pressure drop regulation
- F. Local junction box for swap between plants U & V: no balancing of levels required
- G. Distribution system at detector inlet for balancing right/left

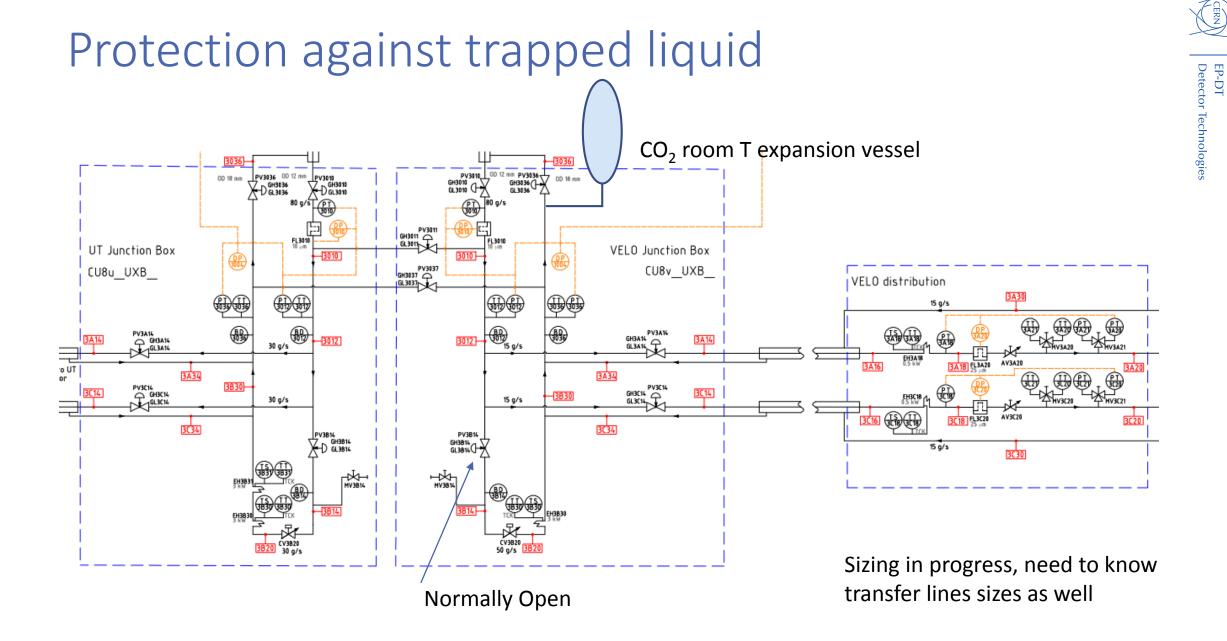


### MAUVE system operation


- The CO<sub>2</sub> plant is started with a T set point = T detector (data from DIP thanks to new protocol being developed)
- The requested T set point is gently reached after circulation is established (few C/min)
- Interlocks to the detector in case of CO<sub>2</sub> system failure are sent trough DSS
- Signal from the primary being off would trigger start of the **backup chiller**: need reaction to power off from detector side & precise **T set point to be maintained (-20 C?)**
- Flow rate to each detector loop is set by the calibrated orifices/capillaries: manual valves to balance A and C side of detector are foreseen at the detector entrance

See P&ID doc for details <u>https://edms.cern.ch/document/1556956/1</u>


## Protection against low T operation


#### Study case:

- Taccumulator = -35
- Set point for T evap in UT = -10
- Dp needed = 14.5 bar
- Nominal ½ UT flow = 30 g/s
- Nominal Dp across regulation valves + detector = 20 bar



## Protection against low T operation – possible implementation





### Planning for construction & commissioning

#### **Junction Box**

- ✓ Construction Jul/Aug
- ✓ Installation in TS2 (Sept 18, 2017)
- ✓ Verification of size for connections LHCb integration team
- Removal & testing @ TIF CL, student Oct-Nov 17

#### Accumulator

- ✓ Design in Jul/Aug TK, JD
- ✓ DO in Oct 17
- Purchase Nov 2017
- Delivery Apr 2018

#### Plant core

✓ Design in

Cς

•

•

- ...e bldg 153 in May/Oct 18
- III LHCb Inst

Local distribution

Cor

Need fr"

collaboration integration)

18ں۔ 153: Apr 2018 Installation LS2

esign in Q2 2017 ✓ DO Q3 2017

**Delivery Nov 2017** 

be updated - 1 mol with purchases 2 MAUVE plants + 2 backup chillers to be connected to electrical cupboards for local testing with junction box in Bldg 153 in Spring/Summer 2018

## Installation & underground commissioning planning

- The MAUVE plants will be kept in bldg 153 up to LS2 start, or up to 5 months before primary chiller available
- We take the primary chiller availability date as milestone for planning (M), unless other LHCb constraints appear
- We need a few months operation with primary for fine tuning before detector operation
- Local distribution valves come with detector?

|                                                    | Mont | hs |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
|----------------------------------------------------|------|----|---|---|---|---|---|---|---|----|----|----|----|-----|-----|----|----|----|
|                                                    | 1    | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14  | 15  | 16 | 17 | 18 |
| LS2                                                |      |    |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| JB installation                                    | х    |    |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| JB cabling & piping                                | х    |    |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| Plant installation                                 |      | х  |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| Accu installation                                  |      | х  |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| Backup chiller installation (BC)                   |      | х  |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| Cabinets installation                              |      | х  |   |   |   |   |   |   |   |    |    |    | c  |     |     |    |    |    |
| Cabling in alcove                                  |      |    | х |   |   |   |   |   |   |    |    |    | 2  | Sum |     |    |    |    |
| Piping in alcove x primary                         |      |    | х |   |   |   |   |   |   |    |    |    |    | 201 | .9? |    |    |    |
| Piping in alcove x CO2                             |      |    | х | х |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| CO2 commissioning on JB & BC                       |      |    |   |   | х | х |   |   |   |    |    |    |    |     |     |    |    |    |
| Primary chiller available (PC)                     |      |    |   |   |   |   | x |   |   |    |    |    |    |     |     |    |    |    |
| CO2 commissioning on JB & PC                       |      |    |   |   |   |   | х | х | х |    |    |    |    |     |     |    |    |    |
| Piping JB/detector                                 | ?    |    |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| UT installation                                    | ?    |    |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| VELO installation                                  | ?    |    |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |
| CO2 commissioning with detector 2 Months at least? |      |    |   |   |   |   |   |   |   |    |    |    |    |     |     |    |    |    |

EP-DT Detector Technologies

# Summary (from PRR remaining & today chat) **CO<sub>2</sub> plants**

- Operation mode to be endorsed & detector spec frozen
- Design almost completed, green light for production needed

#### **Cooling system overall – Open points**

- Integration of connection pipes & electrical trails in alcove
- Design and procurement JB to detector transfer lines
- Local distribution: how do we design and install? Shall we add safety protections for UT