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What is the Standard Model?

The Absolutely Amazing Theory of Almost Everything

A Quantum Field Theory

Based on (gauge) Symmetry
principles

Describes interactions between
all known elementary particles

Potentially can account for
physics up to very high energies

Experimentally established with
rather high precision

But still it has several shortcomings...(see lectures by Ben Allanach)

Robert Oerter, The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics, 2006
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Courtesy to Wikipedia: ”Standard Model of Elementary Particles”, May 2018
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Particle (Field) content of the SM

Fermions (“Matter”)

Quarks (spin 1/2)

3 colors
(lect. by F. Tramontano)
6 flavours
(lect. by J. Zupan)

Leptons (spin 1/2)

3 charged leptons
3 neutrinos
(lect. by S. Pascoli)

Bosons (“Force Mediators”)

Vector (spin 1) bosons

8 gluons
(lect. by F. Tramontano)
4 electroweak bosons
(Z ,W±, 𝛾)

Scalar (spin 0) boson
(lect. by F. Maltoni)

NB: Gluons and photons (𝛾) are
assumed to be massless. All other
particles have mass (neutrino?).

A. Bednyakov (JINR) QFT & EW SM 5 / 31



The SM interactions (on a T-shirt)
All particle interactions can be read of the SM Lagrangian:

QFT allows one not only to understand why the short expression is unique
in certain sense, but also to derive the long one!

Symmetries (Lorentz, Gauge)

Renormalizability

Moreover, given the Lagrangian one can obtain predictions for observables.

SU(3)x SU(2)x U(1)
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Units, Dimensions, etc.
We use natural units ~ = c = 1. The reference unit is energy (mass):

[t] = [x]= −1, [p] = [E ] = [M] = 1

~ ≃ 6.6 · 10−22 MeV · s, ~c ≃ 2 · 10−14 GeV · cm
Some useful formulas (check the dimension of both sides:)

Commutation relation and uncertainty principle:

[x̂ , p̂] = i , ΔxΔp ≥ 1

Fourier transformation f (x) ↔ f (p):

f (x) =
1

2𝜋

∫︁
dp f (p)e−ipx , 𝜕x f (x) =

1

2𝜋

∫︁
dp [−ip]f (p)e−ipx

Delta-function (distribution):

𝛿(x) =
1

2𝜋

∫︁
dp e−ipx ,

∫︁
dx𝛿(x) = 1
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Lorentz symmetry and Index Summation Notation

We consider Minkowski space in d = 4 dimensions. Greek letters are
used to denote components of Lorentz 4-vectors

x𝜇 = {x0, x}, with time t ≡ x0,

p𝜇 = {p0,p}, with energy E ≡ p0,

while for 3-vectors we use bold-face: x = {x1, x2, x3}, etc.
A scalar product of two 4-vectors in pseudo-euclidean space

px ≡ p𝜇x𝜇 = g𝜇𝜈p𝜇x𝜈 = p0x0 − p · x, g𝜇𝜈 = diag(1,−1,−1,−1)

is invariant under Lorentz transformations (rotations and boosts):

x𝜇 → x ′𝜇 = Λ𝜇𝜈x𝜈 , x𝜇x𝜇 = x ′𝜇x
′
𝜇 ⇒ Λ𝜇𝛼Λ𝜇𝛽 = g𝛼𝛽

The 4-momentum p of a free particle with mass m satisfies

p2 = E 2 − p2 = m2 = invariant
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Why do we need QFT?
Relativistic Quantum Mechanics (QM) describing fixed number of particles
turns out to be inconsistent.
From the energy-momentum relation for a free relativistic particle

E 2 = p2 +m2 (instead of E =
p2

2m
),

and the correspondence principle

E → i
𝜕

𝜕t
, p → −i∇

we have the Klein-Gordon (KG) equation(︀
𝜕2t −∇2 +m2

)︀
𝜑(t, x) = 0 (instead of i𝜕t𝜓 = −∇2

2m
𝜓)

for a wave-function 𝜑(t, x) ≡ ⟨x|𝜑(t)⟩. For any p

𝜑p(t, x) = e−iEt+px, with E = ±
√︀

p2 +m2.

The spectrum is not bounded from below!
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Wave-packets in Relativistic QM
General solution of the KG equation (a wave-packet)

𝜑(t, x) =
1

(2𝜋)3/2

∫︁
dp√︀
2𝜔p

[︁
a(p) e−i𝜔pt+ipx + b(p) e+i𝜔pt−ipx

]︁
with 𝜔p ≡ +

√︀
p2 +m2. Both E = 𝜔p and E = −𝜔p contribute.

An attempt to introduce a positive-definite probability density 𝜌 fails

𝜕𝜇j𝜇 = 0, j𝜇 = i(𝜑*𝜕𝜇𝜑− 𝜑𝜕𝜇𝜑
*)

𝜌 ≡ j0 = i (𝜑*𝜕t𝜑− 𝜑𝜕t𝜑
*) ⇒ 2E for 𝜑 ∝ e−iEt .

Ex: Show that for the general solution we have∫︁
dx · 𝜌 =

∫︁
dp

{︀
|a(p)|2 − |b(p)|2

}︀
,

which is not positively-defined (but time-independent).
NB: Positive-energy condition [b(p) ≡ 0] is not stable under interactions!
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From (R)QM to QFT
To get a relativistic quantum theory that treats space and time
coordinates on the same footing, one re-interprets 𝜑, satisfying

(𝜕2 +m2)𝜑(x) = 0

as a
Quantum Field

Operator

𝜑(x, t) → 𝜑(x, t)

(Heisenberg picture)

Dynamical variable

xi (t) → 𝜑(x, t)
with infinite number

of degrees of freedom (DOFs)

Particles in QFT are treated as field excitations.

Single field accounts for infinite number of particles.

NB: In the Heisenberg picture operators 𝒪H(t) depend on time, while in
the Schrödinger one the states evolve: ⟨𝜓(t)|𝒪S |𝜓(t)⟩ = ⟨𝜓|𝒪H(t)|𝜓⟩.
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Free Scalar Field

The solution of the KG equation* (p0 = 𝜔p)

𝜑(x) =
1

(2𝜋)3/2

∫︁
dp√︀
2𝜔p

[︀
a−p e

−ipx + b+p e
+ipx

]︀
,

is a linear combination of operators a±p and b±p[︁
a−p , a

+
p′

]︁
= 𝛿3(p− p′),

[︁
b−p , b

+
p′

]︁
= 𝛿3(p− p′).

All other commutators are zero, e.g.,
[︁
a±p , a

±
p′

]︁
= 0.

NB1: The operators also satisfy a±p = (a∓p )
† and b±p = (b∓p )

†.

NB2: For a±p ≡ b±p the field is hermitian 𝜑†(x) = 𝜑(x).

*For brevity 𝜑 → 𝜑.
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Free Scalar Field: Fock Space
The operator

𝜑(x) =
1

(2𝜋)3/2

∫︁
dp√︀
2𝜔p

[︀
a−p e

−ipx + b+p e
+ipx

]︀
,

needs some space to act on. In QFT we consider Fock space. It consists of
a vacuum |0⟩, which is annihilated by a−p (and b−p ) for every p

⟨0|0⟩ = 1, a−p |0⟩ = 0, ⟨0|a+p = (a−p |0⟩)† = 0,

and states corresponding to field excitations :

|f1⟩ =
∫︀
dk · f1(k)a+k |0⟩, 1 - particle state

|f2⟩ =
∫︀
dk1dk2 · f2(k1, k2)a+k1a

+
k2
|0⟩, 2 - particle state

NB1: Two sets of operators a± (particles) and b± (anti-particles).
NB2: Since a+p a

+
k = a+k a

+
p , particles are not distinguishable (bosons).
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Free Field and Harmonic Oscillators
The commutation relations[︁

a−p , a
+
p′

]︁
= 𝛿3(p− p′)

should remind you about quantum harmonic oscillators with Hamiltonian

ℋ̂osc =
∑︁
j

1

2
(p̂2j + 𝜔2

j x̂
2
j ), [x̂j , p̂k ] = i𝛿ik , [xj , xk ] = [pj , pk ] = 0

expressed in terms of ladder operators
√
2𝜔a±j = (𝜔x̂j ∓ i p̂j)

ℋ̂osc =
∑︁
j

𝜔j

2

(︁
a+j a

−
j + a−j a

+
j

)︁
after re-ordering

=
∑︁
j

𝜔j

(︀
n̂j +

1
2

)︀
, n̂j = a+j a

−
j ,

[︁
a−j , a

+
k

]︁
= 𝛿jk .

Here, n̂j counts energy quanta for oscillator j : n̂j |nj⟩ = nj |nj⟩.

Zero-point Energy
𝜔
2

𝜔

3𝜔
2

|0⟩

|1⟩

|2⟩

a+

a−

A. Bednyakov (JINR) QFT & EW SM 15 / 31



Free Field: Hamiltonian
Indeed, if we put our field in a box of size L, p and 𝜔p will be quantized

p → pj = (2𝜋/L)j, j = (j1, j2, j3), ji ∈ Z,

𝜔p → 𝜔j =
√︁

(2𝜋/L)2j2 +m2

The QFT Hamiltonian is obtained by taking the limit L → ∞ in ℋ̂osc :

ℋ̂part = lim
L→∞

⎡⎣(︂2𝜋

L

)︂3∑︁
j

⎤⎦
⏟  ⏞  ∫︀

dp

𝜔j

[︃ (︂
L

2𝜋

)︂ 3
2

a+j⏟  ⏞  
a+p

(︂
L

2𝜋

)︂ 3
2

a−j⏟  ⏞  
a−p

+
1

2

(︂
L

2𝜋

)︂3

⏟  ⏞  
𝛿(0)

]︃

We had two kind of operators, so

ℋ̂ = ℋ̂part + ℋ̂antipart =

∫︁
dp𝜔p

{︂[︂
np +

1

2
𝛿(0)

]︂
+

[︂
n̄p +

1

2
𝛿(0)

]︂}︂
,

with (n̄p ≡ b+p b
−
p ) np ≡ a+p a

−
p counting (anti-)particles with momentum p.
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Free Field and Vacuum Energy
There is a disturbing problem in

ℋ̂ =

∫︁
dp𝜔p [np + n̄p] +

∫︁
dp𝜔p𝛿(0), np ≡ a+p a

−
p , n̄p ≡ b+p b

−
p .

The additive “constant”, associated with vacuum (no particles):

E0 = ⟨0|ℋ̂|0⟩ =
∫︁

dp𝜔p𝛿(0)

is infinite. There are two kind of infinities:

InfraRed (large distances, L → ∞) due to L3 → (2𝜋)3𝛿(0).
UltraViolet (small distances, p/𝜔p → ∞).

To “solve” the problem, let’s measure all energies w.r.t the vacuum:

ℋ̂ → :ℋ̂:= ℋ̂ − ⟨0|ℋ̂|0⟩

Equivalently, we can say that by definition the operators
in :ℋ̂: are normal-ordered, e.g.,

:ℋ̂osc :=
𝜔j

2

(︁
:a+j a

−
j + a−j a

+
j :
)︁
= 𝜔j :a

+
j a

−
j := 𝜔ja

+
j a

−
j
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Free Field: Momentum and Charge
Now we have

ℋ̂ =

∫︁
dp𝜔p (np + n̄p) , n̄p ≡ b+p b

−
p , np ≡ a+p a

−
p , ℋ̂|0⟩ = 0.

It is easy to check that (no negative energies)

ℋ̂|p⟩ = 𝜔p|p⟩, |p⟩ = a+p |0⟩, ℋ̂|p̄⟩ = 𝜔p|p̄⟩, |p̄⟩ = b+p |0⟩.

We can also “cook up” the 3-momentum operator (Ex: )

P̂|0⟩ = 0|0⟩, P̂|p⟩ = p|p⟩ P̂|p̄⟩ = p|p̄⟩

and the charge operator that distinguishes particles from antiparticles

Q̂|0⟩ = 0|0⟩, Q̂|p⟩ = + |p⟩ Q̂|p̄⟩ = − |p̄⟩.

NB: The operators P̂ and Q̂ do not depend on time and
[︁
P̂, Q̂

]︁
= 0.

Ex: Show that multiparticle states |p1...pn⟩ are eigenvectors of ℋ̂, P̂, Q̂.
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Free Scalar Field Propagator
The field 𝜑† (𝜑) increases (decreases) charge of a state[︁

Q̂, 𝜑†(x)
]︁
= +𝜑†(x),

[︁
Q̂, 𝜑(x)

]︁
= −𝜑(x)

Consider the following amplitudes

t2 > t1 : ⟨0|𝜑(x2)⏟  ⏞  
a−

𝜑†(x1)⏟  ⏞  
a+

|0⟩

Particle (charge +1)
propagates from x1 to x2

t1 > t2 : ⟨0|𝜑†(x1)⏟  ⏞  
b−

𝜑(x2)⏟  ⏞  
b+

|0⟩

Antiparticle (charge −1)
propagates from x2 to x1

Both possibilities can be taken into account in one function:

⟨0|T [𝜑(x2)𝜑
†(x1)]|0⟩ ≡ 𝜃(t2 − t1)⟨0|𝜑(x2)𝜑†(x1)|0⟩

+ 𝜃(t1 − t2)⟨0|𝜑†(x1)𝜑(x2)|0⟩,

with T being time-ordering operation.
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Free Scalar Field Propagator
This is Feynman Propagator:

⟨0|T [𝜑(x2)𝜑
†(x1)]|0⟩⏟  ⏞  

−iDc (x−y)

≡ 𝜃(t2 − t1)⟨0|𝜑(x2)𝜑†(x1)|0⟩

+ 𝜃(t1 − t2)⟨0|𝜑†(x1)𝜑(x2)|0⟩,

Fourier transform

Dc(x − y) =
−1

(2𝜋)4

∫︁
d4p

e−ip(x−y)

p2 −m2 + i𝜖

The i𝜖-prescription (𝜖→ 0) picks up certain
poles in the p0 complex plane.

The propagator is a Green-function:(︀
𝜕2x +m2

)︀⏟  ⏞  
KG equation

Dc(x − y) = 𝛿(x − y)

p0

𝜔p − i𝜖

−𝜔p + i𝜖

NB: Feynman propagator is a Lorentz-invariant function (distribution)!

vanishes
for t2 < t1
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From Field to Particle to Force
The propagator of particles can be connected to the force between two
static classical sources Ji (x) = 𝛿(x− xi ) located at xi = (x1, x2). Presence
of the sources disturbs the vacuum |0⟩ → |Ω⟩, since Hamiltonian
ℋ → ℋ0 + J · 𝜑. Assuming for simplicity that 𝜑 = 𝜑† we can find

⟨Ω|e−iℋT |Ω⟩ ≡ e−iE0(J)T ⇒ in the limit T → ∞

= e
i2

2!

∫︀
dxdyJ(x)⟨0|T (𝜑(x)𝜑(y))|0⟩J(y) = e+

i
2

∫︀
dxdyJ(x)Dc (x−y)J(y)

Evaluating the integral for J(x) = J1(x) + J2(x) we get the contribution
𝛿E0 to E0(J) due to interactions between two sources

lim
T→∞

𝛿E0T = −
∫︁

dxdyJ1(x)Dc(x − y)J2(y)

𝛿E0 = −
∫︁

dp

(2𝜋)3
e+ip(x1−x2)

p2 +m2
= − 1

4𝜋r
e−mr , r = |x1 − x2|

This is nothing else, but Yukawa potential due to scalar massive field. It is
attractive and fall off exponentially over the distance scale 1/m.
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Free Scalar Field: Lagrangian
A convenient way to deal with (quantum) fields is to consider the
following Action functional (“function → number”):

𝒮[𝜑(x)] =
∫︁

d4x ℒ(𝜑(x), 𝜕𝜇𝜑)⏟  ⏞  
Lagrangian (density)

=

∫︁
d4x

(︁
𝜕𝜇𝜑

†𝜕𝜇𝜑−m2𝜑†𝜑
)︁

⏟  ⏞  
𝜑†·K ·𝜑

.

To have an analogy with Classical Mechanics one can rewrite the Action as

𝒮[𝜑(x)] =
∫︁

dt L(t), L = T − U, H = T + U

T =

∫︁
dx|𝜕t𝜑|2, U =

∫︁
dx(|𝜕x𝜑|2 +m2|𝜑|2)

A system of coupled oscillators with kinetic energy T and potential U.
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Free Scalar Field: Lagrangian
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.

We can derive the equations of motions (EOM) via the Action Principle:

𝒮[𝜑′(x)]− 𝒮[𝜑(x)]⏟  ⏞  
𝛿𝒮[𝜑(x)]

=0

=

∫︁
d4x

[︃(︂
𝜕𝜇

𝜕ℒ
𝜕𝜕𝜇𝜑

− 𝜕ℒ
𝜕𝜑

)︂
⏟  ⏞  

(𝜕2
𝜇+m2)𝜑

=0

𝛿𝜑+ 𝜕𝜇

(︂
𝜕ℒ
𝜕𝜕𝜇𝜑

𝛿𝜑

)︂
⏟  ⏞  
surface term

=0

]︃
.

𝜑′(x) = 𝜑(x) + 𝛿𝜑(x), 𝛿𝜑(x) is infinitesimal (“tiny”)
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(︁
𝜕𝜇𝜑

†𝜕𝜇𝜑−m2𝜑†𝜑
)︁

⏟  ⏞  
𝜑†·K ·𝜑

.

We can derive the equations of motions (EOM) via the Action Principle:

𝒮[𝜑′(x)]− 𝒮[𝜑(x)]⏟  ⏞  
𝛿𝒮[𝜑(x)]=0

=

∫︁
d4x

[︃(︂
𝜕𝜇

𝜕ℒ
𝜕𝜕𝜇𝜑

− 𝜕ℒ
𝜕𝜑

)︂
⏟  ⏞  

(𝜕2
𝜇+m2)𝜑=0

𝛿𝜑+ 𝜕𝜇

(︂
𝜕ℒ
𝜕𝜕𝜇𝜑

𝛿𝜑

)︂
⏟  ⏞  
surface term=0

]︃
.

We look for specific 𝜑(x) that gives 𝛿S [𝜑(x)] = 0 for any variationa 𝛿𝜑(x).
NB1: Fields satisfying EOMs are said to be “on-mass-shell”.
NB2: ⟨0|T [𝜑(x)𝜑†(y)]|0⟩ can be found by inverting the quadratic form K.

aSatisfying boundary conditions.

A. Bednyakov (JINR) QFT & EW SM 22 / 31



About Symmetries (a Relaxing Slide)

With Action you can study
Symmetries...

The latter are intimately connected
with transformations, which leaves
something invariant...

Symmetries are not only beautiful
but also very useful:

An architect can design only half of the
building (parity x → −x)

And winter decoration will
take much less time
(rotation by a finite angle)
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Field Theory: Symmetries
Transformations can be discrete, e.g.,

Parity : 𝜑′(x, t) = P𝜑(x, t) = 𝜑(−x, t),

Time-reversal : 𝜑′(x, t) = T𝜑(x, t) = 𝜑(x,−t),

Charge-conjugation : 𝜑′(x, t) = C𝜑(x, t) = 𝜑†(x, t),

or depend on continuous parameters, e.g.,

𝜑(x) 𝜑′(x)

x x + a

𝛿𝜑

Re 𝜑(x)

Im 𝜑(x)

𝜑(x)

𝜑′(x)

𝛼

𝜑′(x + a) = 𝜑(x) 𝜑′(x) = e i𝛼𝜑(x)

We can distinguish space-time and internal symmetries.
For x-dependent parameters we have local (gauge) transformations.
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Quantum Field Theory: Symmetries

In Classical Physics symmetry transformations allows one to find

new solutions to EOMs from the given one, keeping some features of
the solutions (invariants) intact.

how a solution in one coordinate system (as seen by one observer)
looks in another coordinates (as seen by another observer).

In Quantum World a symmetry 𝒮 guarantees that transition probabilities
𝒫 between states do not change upon transformation:

|Ai ⟩
𝒮→ |A′

i ⟩, 𝒫(Ai → Aj) = 𝒫(A′
i → A′

j), |⟨Ai |Aj⟩|2 = |⟨A′
i |A′

j⟩|2

Symmetries are represented by unitary† operators U:

|A′
i ⟩ = U|Aj⟩, ⟨A′

i |A′
j⟩ = ⟨Ai |U†U⏟ ⏞ 

1

|Aj⟩

†or anti-unitary (time-reversal).
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Quantum Field Theory: Symmetries
A transformation of states can be reformulated as a change of operators:

⟨Ai |𝒪k(x)|Aj⟩
𝒮→ ⟨A′

i |𝒪k(x)|A′
j⟩ = ⟨Ai |U†𝒪k(x)U|Aj⟩

⟨Ai |𝒪k(x)|Aj⟩
𝒮→ ⟨Ai |𝒪′

k(x)|Aj⟩, O ′
k(x) ≡ U†𝒪k(x)U

For example, translational invariance leads to

⟨Ai |𝜑(x)|Aj⟩ = ⟨Ai |𝜑′(x + a)|Aj⟩ = ⟨Ai |U†(a)𝜑(x + a)U(a)|Aj⟩

so quantum field should satisfy

𝜑(x + a) = U(a)𝜑(x)U†(a)

We can have non-trivial (realizations of) symmetries mixing different fields:

𝜑′i (x
′) = Sij(a)𝜑j(x) ⇒ 𝜑i (x

′) = Sij(a)U(a)𝜑j(x)U
†(a), x ′ = x ′(x , a)

Examples will be provided later...For the moment, let us find a connection

between Symmetries of Action, Conserved Quantities and Unitary Operators that

realize the symmetries at the quantum level.

Symmetry relates these quantities
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Global Continuous Symmetries: Noether Theorem
Given 𝒮[𝜑] one can find its symmetries, i.e., particular infinitesimal
variations 𝛿𝜑(x) that for any 𝜑 leave 𝒮[𝜑] invariant up to a surface term

𝒮[𝜑′(x)]− 𝒮[𝜑(x)] =
∫︁

d4x 𝜕𝜇𝒦𝜇, 𝜑′(x) ≡ 𝜑(x) + 𝛿𝜑(x).

We compare this with

𝒮[𝜑′(x)]− 𝒮[𝜑(x)] =
∫︁

d4x

[︃(︂
𝜕𝜇

𝜕ℒ
𝜕𝜕𝜇𝜑

− 𝜕ℒ
𝜕𝜑

)︂
𝛿𝜑+ 𝜕𝜇

(︂
𝜕ℒ
𝜕𝜕𝜇𝜑

𝛿𝜑

)︂]︃
.

and require 𝜑(x) to satisfy EOMs. This results in a local conservation law:

𝜕𝜇J𝜇 = 0, J𝜇 ≡ 𝒦𝜇 − 𝜕ℒ
𝜕𝜕𝜇𝜑

𝛿𝜑

Integration over space leads to the conserved charge

d

dt
Q = 0, Q =

∫︁
dxJ0

NB: If 𝛿𝜑 = 𝜌i𝛿i𝜑 depends on parameters 𝜌i , we have a conservation law
for every 𝜌i . For Global symmetries 𝜌i do not depend on coordinates.
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The Noether Theorem: Space-time symmetries

Consider space-time translations

𝜑′(x + a) = 𝜑(x)

expand in a ⇒ 𝛿𝜑(x) = −a𝜈𝜕𝜈𝜑(x),

𝛿ℒ(𝜑(x), 𝜕𝜇𝜑(x)) = 𝜕𝜈 (−a𝜈ℒ)

𝜑(x) 𝜑′(x)

x x + a

𝛿𝜑

A conserved Energy-Momentum Tensor T𝜇𝜈 :

J𝜇 = −a𝜇ℒ+ a𝜈
𝜕ℒ
𝜕𝜕𝜇𝜑

𝜕𝜈𝜑 = a𝜈T𝜇𝜈 , 𝜕𝜇T𝜇𝜈 = 0

leads to time-independent “charges”

P𝜈 =

∫︁
dxT0𝜈

Ex1: Consider ℒ = |𝜕𝜇𝜑|2 +m2|𝜑|2 and find the expression for P𝜇.
Ex2: Substitute 𝜑(x) by its expansion in terms of operators a±p and b±p
and prove that modulo operator ordering ambiguities P𝜇 → (ℋ̂, P̂).

A. Bednyakov (JINR) QFT & EW SM 28 / 31



The Noether Theorem: Space-time symmetries

Consider space-time translations

𝜑′(x + a) = 𝜑(x)

expand in a ⇒ 𝛿𝜑(x) = −a𝜈𝜕𝜈𝜑(x),

𝛿ℒ(𝜑(x), 𝜕𝜇𝜑(x)) = 𝜕𝜈 (−a𝜈ℒ)

𝜑(x) 𝜑′(x)

x x + a

𝛿𝜑

A conserved Energy-Momentum Tensor T𝜇𝜈 :

J𝜇 = −a𝜇ℒ+ a𝜈
𝜕ℒ
𝜕𝜕𝜇𝜑

𝜕𝜈𝜑 = a𝜈T𝜇𝜈 , 𝜕𝜇T𝜇𝜈 = 0

leads to time-independent “charges”

P𝜈 =

∫︁
dxT0𝜈

Ex1: Consider ℒ = |𝜕𝜇𝜑|2 +m2|𝜑|2 and find the expression for P𝜇.
Ex2: Substitute 𝜑(x) by its expansion in terms of operators a±p and b±p
and prove that normal-ordered expression P𝜇 → (ℋ̂, P̂).

Lorentz transform
for a scalar field
𝜑′(Λx) = 𝜑(x)
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The Noether Theorem: Internal symmetries

There is an additional symmetry of

ℒ = 𝜕𝜇𝜑
†𝜕𝜇𝜑−m2𝜑†𝜑

𝜑′(x) = e i𝛼𝜑(x)

𝛿𝜑(x) = i𝛼𝜑(x)

J𝜇 = i(𝜑†𝜕𝜇𝜑− 𝜑𝜕𝜇𝜑
†)

Re 𝜑(x1)

Im 𝜑(x1)

𝜑(x1)

𝜑′(x1)

𝛼
Re 𝜑(x2)

Im 𝜑(x2)

𝜑(x2)

𝜑′(x2)

𝛼

It is a U(1) symmetry:

It acts in internal space (“rotates” complex number 𝜑(x) at every x)

It is a global symmetry (rotation angle 𝛼 does not depend on x).

Ex: Check again that we will obtain the expression for the operator Q̂.
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Lagrange Approach to Quantum Fields: Mini Summary
The approach based on Lagrangians allows one to (given ℒ)

Derive EOMs (via Action Principle).

Find Symmetries of the Action.

Find Conserved quantities (via the Noether Theorem)

After quantisation the operators of conserved quantities

can be used to define a convenient basis of states, e.g.,:

|p⟩ ≡ |p,+1⟩, |p̄⟩ ≡ |p,−1⟩ ⇒ Q̂|p, q⟩ = q|p, q⟩, P̂|p, q⟩ = p|p, q⟩

act as generators of symmetries, e.g. for space-time translations:

U(a) = exp
(︁
i P̂𝜇a𝜇

)︁
, 𝜑(x + a) = U(a)𝜑(x)U†(a)

NB: For a𝜇 = (t, 0) we obtain the connection between Schrödinger and
Heisenberg pictures:

OH(t) = e iℋ̂tOSe
−iℋ̂t .
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Lagrange Approach to Quantum Fields: Mini Summary

In QFT we usually start building our models by postulating symmetries
(and other good properties) of the Action/Lagrangian!

We assume that general ℒ is

Lorentz (Poincare) invariant* (a sum of Lorentz scalars),

Local (involve finite number of partial derivatives),

Real (hermitian) (respects unitarity=conservation of probability)

In addition, we can impose other symmetries and get further restrictions
on the model...

*Lorentz invariance is crucial for proving the 𝒞𝒫𝒯 -theorem.
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